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Kerr-Schild Formalism. Debney, Kerr and

Schild, J. Math. Phys. 10 (1969) 1842

The Kerr-Schild ansatz for metric,

gµν = ηµν + 2he3µe3ν ,
√−g = 1. (1)

ηµν - auxiliary Minkowski space-time.

Principal null direction

e3 = du + Ȳ dζ + Y dζ̄ − Y Ȳ dv (2)

is expressed via complex function Y (x) in the

null Cartesian coordinates
√

2ζ = x+iy,
√

2ζ̄ =

x− iy,
√

2u = z − t,
√

2v = z + t.

Null tetrad ea, a = 1,2,3,4. Real directions e3 =

du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv and e4 = dv + he3, and

two complex conjugate directions

e1 = dζ − Y dv, e2 = dζ̄ − Ȳ dv.

1



The Kerr theorem.

The geodesic and shearfree (GSF) null con-

gruences e3(Y ) satisfy the conditions

Y,2 = Y,4 = 0.

GSF congruences are determined by Y (x)

which is a solution of the equation

F (Y, l1, l2) = 0 , (3)

where F is an arbitrary analytic function of

the projective twistor coordinates

Y, l1 = ζ − Y v, l2 = u + Y ζ̄ . (4)
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Integration of the Einstein-Maxwell field

equations for the geodesic and shear-free con-

gruences was fulfilled in DKS, leading to the

following form of the function

h =
1

2
M(Z + Z̄)− 1

2
AĀZZ̄ , (5)

of the Kerr-Schild ansatz:

gµν = ηµν + 2he3µe3ν . (6)

Necessary functions Z = P/r̃, Y (x) and param-

eters are determined by the generating func-

tion F.

PZ−1 = r̃ = − dF/dY (7)

is complex radial distance, factor P is con-

nected with Killing vector or the boost of the

source.

There was obtained a system of differential

equations for functions A, and M.
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Electromagnetic sector:

A,2−2Z−1Z̄Y,3 A = 0, A,4 = 0, (8)

DA + Z̄−1γ,2−Z−1Y,3 γ = 0, γ,4 = 0, (9)

where D = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2.

The strength tensor of self-dual electromag-

netic field is given by the tetrad components

F12 = AZ2, F31 = γZ − (AZ),1 . (10)

Gravitational sector:

Real function M.

M,2−3Z−1Z̄Y,3 M = Aγ̄Z̄, (11)

DM =
1

2
γγ̄, M,4 = 0. (12)
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For any holomorphic F (Y ) ⇒ GSF congruence

⇒ algebraically special solution.

Final integration of eqs. I and II was given

only for γ = 0 and quadratic in Y function

F (Y ), (Debney, Kerr and Schild 1969) ⇒ a

broad class of exact solutions containing Kerr-

Newman solution as a very important partic-

ular case:

Metric gµν = ηµν+2hkµkν, where h = mr−e2/2
r2+a2 cos2 θ

.

Electromagnetic field Aµ = er
r2+a2 cos2 θ

kµ.

It is remarkable simple form. All the complica-

tions are included in the form of the the Kerr

congruence kµ(x) = e3µ(Y )
√

2/(1+Y Ȳ ) which

is determined by function Y (x) (solution of the

eq. F (Y, x) = 0.

Singularity is by r + ia cos θ ≡ ∂Y F = 0 ⇒ r =

cos θ = 0.
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The Kerr congruence is vortex of null lines

(twistors)
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The Kerr singular ring and the Kerr congru-

ence.

The Kerr singular ring is a branch line of

space on two sheets: ”negative” and ”posi-

tive” where the fields change their signs and

directions. Congruence covers the space-time

twice.
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Twosheetedness of the Kerr space-time. The

‘in’ and ‘out’ electromagnetic fields are posi-

tioned on different sheets, they are aligned to

Kerr congruence and don’t interact with each

other.
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Classical extended electron.
Gyromagnetic ratio g = 2 as that of the Dirac
electron (Carter 1968).
Spin J = ma = 1/2 is very high with respect to
mass m = 10−22, | a |>> m and BH horizons
are absent, singular ring is naked.
Kerr’s ring as a string (A.B. 1974, 1978, 1993,
1995, 2003 ... 2006). Compton size a ∼ h̄/m.

Problem of the Kerr source. W.Israel(1970),
A.B.(1974,1988,2000), M.Gürses and F.Gürsey(1975),
V.Hamity(1976), C.López(1984)...
Alternatives:
a/ Alice string + twosheetedness,
b/ disklike source.
Compromise:
rotating superconducting disk – a “mirror
gates” in the “Alice mirror world”. Similar
twovaluedness appears in the models of the
cosmic “Alice” strings which are connected with
superconducting properties of the source. The
“negative” sheet looks as a mirror image of the
“positive” one.
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Smooth and regularized Kerr source. A.B.,

E. Elizalde, S.Hildebrandt and G. Magli, PRD

(2002)

Ansatz gµν = ηµν + 2hkµkν, where

h = f(r)/(r2 + a2 cos2 θ) (Gürses and Gürsey

1974).

Regularized solutions have tree regions:

i) the Kerr-Newman exterior, r > r0, where

f(r) = mr − e2/2,

ii) interior r < r0 − δ, where f(r) = fint and

function fint = αrn, and n ≥ 4 to suppress the

singularity at r = 0, and provide the smooth-

ness of the metric up to the second derivatives.

iii) a narrow intermediate region providing a

smooth interpolation between i) and ii).
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Non-rotating source: by n = 4 and α =

8πΛ/6.

Interior: Constant curvature R = −24α.

Energy density ρ = 1
4π(f ′r − f)/Σ2. Tangential

and radial pressures prad = −ρ, ptan = ρ −
1
8πf ′′/Σ, where Σ = r2.

De Sitter - for α > 0, AdS for α < 0, and flat

interior for α = 0.

The resulting sources may be considered as

the bags filled by a special matter with positive

(α > 0) or negative (α < 0) energy density.

The transfer from the external Kerr-Newman

solution to the internal region (source) may be

considered as a phase transition from ‘true’ to

‘false’ vacuum.
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Assuming that transition region is very thin,

one can consider the following useful graphical

representation.
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Regularization of the Kerr spinning particle by

matching the external field with dS, flat or AdS
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The point of phase transition r0 is determined

by the equation fint(r0) = fKN(r0).
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It yields

m =
e2

2r0
+

4

3
πr30ρ. (13)

The first term on the right side is electromag-

netic mass of a charged sphere with radius r0,

Mem(r0) = e2

2r0
, while the second term is the

mass of this sphere filled by a material with a

homogenous density ρ, Mm = 4
3πr30ρ.

The point of intersection r0 acquires a deep

physical meaning, providing the energy balance

by the mass formation.

Transfer to rotating case is trivial: the re-

placement

r → Σ = r2 + a2 cos2 θ, (14)

where new r and θ are the oblate spheroidal

coordinates.



The Kerr source represents a rigidly rotating
disk with the boundary r = r0. In the coro-
tating with disk coordinate system, the mat-
ter of the disk looks homogenous distributed,
however, because of the relativistic effects the
energy-momentum tensor increases strongly near
the boundary of the disk.
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Supersymmetric Superconducting Bag as

Source of the Kerr Spinning Particle

U(I)×Ũ(I) field model for cosmic strings (Wit-

ten 1985)

L = −(DµφA)(DµφA)− 1

4
F

µν
A FAµν

(D̃µφB)(D̃µφB)− 1

4
F

µν
B FBµν − V.

Two sorts of superconductivity, A and B. Two

Higgs fields φA and φB, and two gauge fields

Aµ and Bµ describe the ‘true’ and ‘false’ vacua.

Supersymmetric version of this model (J.Morris,

Phys. Rev.D56, 2378 (1997)) contains fife

chiral fields, V = V (ΦA, Φ̄A,ΦB, Φ̄B, Z). Field

Z synchronizes transfer true ↔ false vacua for

spherical bag (A.B., Grav.Cosm. 2000).
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In the limit of a very thin disk a stringy sin-

gularity develops on the border of disk. This

case corresponds to the Israel-Hamity source

1970-1976.
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The Kerr disk-like source and two axial null

beams k
µ
L and k

µ
R.
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Dirac-Kerr electron. (A.B.PRD(2004),hep-

th/0507109)

The axial null half-strings play peculiar role

controlling the Kerr twistorial structure.

Dirac equation in the Weyl basis, Ψ† = (φα, χα̇),

σ
µ
αα̇(i∂µ+eAµ)χ

α̇ = mφα, σ̄µα̇α(i∂µ+eAµ)φα = mχα̇.

Null vectors k
µ
L = χ̄σµχ, k

µ
R = φ̄σ̄µφ determine

current Jµ = e(Ψ̄γµΨ) = e(χ̄σµχ + φ̄σ̄µφ),

momentum pµ = m
2 (kµ

L + k
µ
R) and spin (po-

larization) nµ = 1
2(k

µ
L − k

µ
R) of electron.

Kerr’s geometry is also fixed by two null vec-

tors k
µ
L and k

µ
R controlling spin (orientation)

and Lorentz deformation of congruence.

Dirac wave manages the Kerr congruence.

Null tetrad is completed by vectors mµ = φσµχ ,

and m̄µ = (φσµχ)+ determined by phase of the

wave function. Phase of Dirac wave synchro-

nizes null tetrad in space-time, playing the role

of an ‘order parameter’.
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The simplest class of the exact stationary

Kerr-Schild solutions.

Electromagnetic field is aligned with the Kerr

congruence:

Fµνkµ = 0. (15)

Kerr -Schild metric gµν = ηµν − 2hkµkν, where

h = m(Z + Z̄)/(2P3)−AĀZZ̄/2. (16)

Stationary case, P = 2−1/2(1 + Y Ȳ ) and A

has the general form

A = ψ(Y )/P2, (17)

and ψ is an arbitrary holomorphic function of

Y .

Kerr-Newman solution is very particular case:

ψ(Y ) = e = const.
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In general case function Y (x) = eiφ tan θ
2 ∈ CP1

is coordinate on projective sphere, and there is

an infinite set of the exact solutions, in which

function ψ(Y ) is holomorphic on the punctured

sphere at the set of points {Yi, i = 1,2, ...},
ψ(Y ) =

∑
i

qi
Y (x)−Yi

.

In these solutions ψ(Y ) is singular at a set

of angular directions φi, θi, and there appear

semi-infinite ılightlike beams, (singular pp-strings)

along some of the null rays of the Kerr con-

gruence. How act such beams on the BH

horizon?

Singular beams lead to formation of the holes

in the black hole horizon, which opens up the

interior of the “black hole” to external space.
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Black holes with holes in the horizon

A.B., E.Elizalde, S.R.Hildebrandt and G.Magli,

Phys. Rev. D74 (2006) 021502(R)
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Near extremal black hole with a hole in the

horizon, caused by a lightlike singular beam.

The r+ and r− surfaces are joined, by forming

a simply connected surface.
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Wave and nonstationary electromagnetic
excitations.

Exact self-consistent solutions with γ 6= 0 are
absent, however, EM eqs. may be solved.
(Eq.I) A = ψ/P2, where ψ,2 = ψ,4 = 0, but
now ψ = ψ(Y, τ), where τ is complex retarded
time obeying τ,2 = τ,4 = 0.

(Eq.II) DA + Z̄−1γ,2−Z−1Y,3 γ = 0,
where D = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2.

Integration yields

γ =
21/2ψ̇

P2Y
+ φ(Y, τ)/P, (18)

By any nonstationarity, ψ̇ 6= 0, there ap-
pears a pole in ψ or γ, and there appears
inevitably a singular beam.

It was shown that for the slowly varying EM
field γ → 0, and the approximate KS solu-
tions containing singular beams tend to the
corresponding exact stationary Kerr-Schild so-
lutions.
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The analytical twistorial structure of the Kerr

spinning particle leads to the appearance of an

extra axial stringy system. As a result, the

Kerr spinning particle acquires a simple stringy

skeleton which is formed by a topological cou-

pling of the Kerr circular string and the axial

stringy system. The projective spinor coordi-

nate Y is a projection of sphere on complex

plane. It is singular at θ = π, and such a

singularity will be present in any holomorphic

function ψ(Y ). Therefore, all the aligned e.m.

solutions turn out to be singular at some an-

gular direction θ. The simplest modes

ψn = qY n exp iωnτ ≡ q(tan
θ

2
)n exp i(nφ + ωnτ)

(19)

can be numbered by index n = ±1,±2, ....

The leading wave terms are

F|wave = fR dζ ∧ du + fL dζ̄ ∧ dv, (20)
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where

fR = (AZ),1 ; fL = 2Y ψ(Z/P )2+Y 2(AZ),1
(21)

are the factors describing the “left” and “right”

waves propagating along the z− and z+ semi-

axis correspondingly.

The parameter τ = t−r−ia cos θ takes near the

z-axis the values τ+ = τ |z+ = t− z− ia, τ− =

τ |z− = t + z + ia.

The leading wave for n = 1,

F−1 = 4qei2φ+iω1τ−
ρ2 dζ̄ ∧ dv,

propagates to z = −∞ along the z− semi-axis.

The leading wave for n = −1,

F+
−1 = −4qe

−i2φ+iω−1τ+

ρ2 dζ ∧ du,



is singular at z+ semi-axis and propagates to

z = +∞.

The n = ±1 partial solutions represent asymp-

totically the singular plane-fronted e.m. waves

propagating without damping.



There are corresponding self-consistent solu-

tion of the Einstein-Maxwell field equations which

are singular plane-fronted waves (pp-waves).

The Maxwell equations take the form

∂µ∂µA = J = δ(string), and can easily be inte-

grated leading to the solutions

A+ = [Φ+(ζ) + Φ−(ζ̄)]f+(u)du, (22)

A− = [Φ+(ζ) + Φ−(ζ̄)]f−(v)dv, (23)

where Φ± are arbitrary analytic functions, and

functions f± describe the arbitrary retarded

and advanced waves. Therefore, the wave ex-

citations of the Kerr ring lead to the appear-

ance of singular lightlike beams (pp-waves) which

propagate outward along the z+ and/or z−
semi-axis.
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Asymptotically exact Kerr-Schild solutions

with aligned wave excitations.

Corresponding solutions with wave electromag-

netic excitations are asymptotically exact in

the low-frequency limit. In the far zone the

wave beams tend to the exact pp−wave so-

lutions. Similar ‘axial’ strings where also ob-

tained by fermionic wave excitations.

Wave excitations propagating in the direction

Yi are described by means of the function

ψi(Y, τ) = qi(τ) exp{iωτ} 1

Y − Yi
, (24)

where the extra dependence is on the retarded

time τ. The right hand sides of the gravita-

tional KS equations are proportional to γ and

γγ̄ and are quite small for low-frequency aligned

wave excitations, since the function γ will be

of the order: γ ∼ ψ̇ ∼ iωψ.
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Note that the smallness of function ψ(Y, τ) not

required. The electromagnetic field A = ψ/P2

and the metric distortion via the function H =

{mr−ψ(Y )2/2}/(r2 + a2 cos2 θ) can be in fact

very strong. At the same time, the right hand

sides of the gravitational equations are deter-

mined by γ ∼ ψ̇, and in the low-frequency limit

ω → 0, the corresponding eqs. tend towards

the resolved stationary eqs., and solutions tend

to exact stationary Kerr-Schild solutions with

singular beams.



Quantum deformation of the BH horizon.

Since solutions tend to exact in the limit γ → 0,

one can consider a black hole immersed into

the zero-point field of the virtual photons. One

has a sum over small excitations in the diverse

directions ψ(Y, τ) =
∑

i
qi(τ)
Y−Yi

, which lead to a

flow and migration of many singular micro-

beams and also to an instantaneous appear-

ance and disappearance of the micro-holes at

the horizon.

24



It suggests a new mechanism of black hole

emission, which is both a semiclassical alter-

native and a complement to the quantum tun-

nelling conjectures on BH evaporation.

The old idea - dynamical origin of Hawking

radiance (J.York Jr. 1983, C. Rovelli 1996).

Microstructure of gravitational field related to

zero point fluctuations.

Micro-structure of the emission from BH may

be related with specific, aligned excitations of

BH, singular beams (or pp-wave strings).

Loop quantum gravity: appearance of strong

topological deformations of the horizon (taken

from paper by A. Ashtekar, J. Baez and K.

Krasnov, Adv. Theor. Math. Phys. 4, 1

(2000)). The quantum singular hairs of the

black hole pierce the horizon, forming strings

outgoing from the horizon with different topo-

logical loop numbers.
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Quantum horizon and polymeric structure of

a BH as obtained from loop quantum grav-

ity. (A. Ashtekar, J. Baez and K. Krasnov,

Adv.Theor.Math.Phys.4,1(2000))

Aligned excitations lead to formation of the

micro-holes at the horizon by singular strings

which are null twistor lines aligned with the

Kerr principal null congruence. The polymer

structure of the vacua turns out actually to

be a twistor structure of the black hole, which

looks very entangled for multi-black-hole (that

is, multi-particle) solutions.
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The case of quadratic Kerr’s generating

functions F(Y) is well studied. A.B. and G.

Magli, Phys.Rev.D 61044017 (2000).

The considered in DKS function F is quadratic

in Y ,

F ≡ a0+a1Y +a2Y 2+(qY + c)λ1− (pY + q̄)λ2,

(25)

where the coefficients c and p are real con-

stants and a0, a1, a2, q, q̄, are complex constants.

The Killing vector of the solution is determined

as

K̂ = c∂u + q̄∂ζ + q∂ζ̄ − p∂v. (26)

Writing the function F in the form

F = AY 2 + BY + C, (27)

one can find two solutions of the equation F =

0 for the function Y (x)

Y1,2 = (−B ±∆)/2A, (28)
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where ∆ = (B2 − 4AC)1/2.

Complex radial distance

r̃ = −∂F/∂Y = −2AY −B, (29)

and consequently

r̃ = PZ−1 = ∓∆. (30)

These two roots reflect the known twofolded-

ness of the Kerr geometry. They correspond

to two different directions of congruence on

positive and negative sheets of the Kerr space-

time. In the stationary case

P = pY Ȳ + q̄Ȳ + qY + c . (31)

Link to the complex world line of the source.

The stationary and boosted Kerr geometries

are described by a straight complex world line

with a real 3-velocity ~v in CM4:

x
µ
0(τ) = x

µ
0(0) + ξµτ ; ξµ = (1, ~v) . (32)



The gauge of the complex parameter τ is cho-

sen in such a way that Re τ corresponds to the

real time t.

K̂ is a Killing vector of the solution

K̂ = ∂τx
µ
0(τ)∂µ = ξµ∂µ . (33)

P = K̂ρ = ∂τx
µ
0(τ)e

3
µ , (34)

where

ρ = λ2 + Ȳ λ1 = xµe3µ. (35)

It allows one to set the relation between the

parameters p, c, q, q̄, and ξµ, showing that these

parameters are connected with the boost of

the source.

The complex initial position of the complex

world line x
µ
0(0) in Eq. (32) gives six param-

eters for the solution, which are connected to



the coefficients a0, a1 a2 . It can be decom-

posed as ~x0(0) = ~c + i~d, where ~c and ~d are

real 3-vectors with respect to the space O(3)-

rotation. The real part ~c defines the initial

position of the source, and the imaginary part
~d defines the value and direction of the angu-

lar momentum (or the size and orientation of

a singular ring).

It can be easily shown that in the rest frame,

when ~v = 0, ~d = ~d0, the singular ring lies in

the orthogonal to ~d plane and has a radius a =

|~d0|. The corresponding angular momentum is
~J = m~d0.



Complex Kerr source, complex shift. Appel

1887!

A point-like charge e, placed on complex z-

axis (x0, y0, z0) = (0,0, ia), gives the real Appel

potential

φa = Re e/r̃. (36)

r̃ = r+ ia cos θ is the Kerr complex radial coor-

dinate, where r and θ are the oblate spheroidal

coordinates. It may be expressed in the usual

rectangular Cartesian coordinates x, y, z, t as

r̃ = [x2 + y2 + (z − ia)2]1/2. (37)

The singular line of the solution corresponds

to r = cos θ = 0.

Appel potential describes exactly the e.m. field

of the Kerr-Newman solution.
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Multisheetedness of the multiparticle KS so-

lutions. The functions F (Y ) of higher de-

grees are formed as a product of quadratic

blocks corresponding to n different particles

F (Y ) =
∏n

i Fi(Y ). The particles i and j are

positioned on different Riemannian sheets of

the function F (Y ) and interact with each other

only via a common twistor line of the i-th and

j-th congruences, by forming a singular null

string connecting these particles.
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Complex world line and complex Kerr string.

The Appel source can be considered as a mys-
terious ”particle” propagating along a complex
world-line x

µ
0(τ) in CM4 and parametrized by

a complex time τ = t + iσ.

Complex source of the Kerr-Newman solution
leads to a complex retarded-time construction
for the Kerr geometry.

Complex world-lines occupy an intermediate
position between particles and strings. Like
a string they form two-dimensional surfaces
or world-sheets in space-time. In many re-
spects this source is similar to the ”mysteri-
ous” N = 2 complex string of superstring the-
ory.

The Kerr congruence is a track of the complex
light cones (left null planes) emanating from
the complex world line x

µ
0(τ).
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Complex retarded-time parameter.

Parameter τ may be defined for each point x

of the Kerr space-time and plays the role of a

complex retarded-time parameter. Its value for

a given point x may be defined by L-projection,

using the solution Y (x) and forming the twistor

parameters λ1, λ2 which fix a left null plane.

The points xµ and x
µ
0 are connected by the left

null plane spanned by the null vectors e1 and

e3.

The point of intersection of this plane with

the complex world-line x0(τ) gives the value of

the ”left” retarded time τL, which is in fact

a complex scalar function on the (complex)

space-time τL(x).

By using the null plane equation, one can get

a retarded-advanced time equation

τ = t∓ r̃ + ~v ~R. (38)

31



For the stationary Kerr solution r̃ = r+ia cos θ,

and one can see that the second root Y2(x)

corresponds to a transfer to the negative sheet

of the metric: r → −r; ~R → −~R, with a si-

multaneous complex conjugation ia → −ia.


