Polarimetry of the proton beams at RHIC

A. Bazilevsky, A. Bravar, G. Bunce⁺, R. Gill, H. Huang, Y. Makdisi, A. Nass, M. Sivertz, A. Zelensky: Brookhaven National Laboratory, Upton, USA O. Jinnouchi: Riken-BNL Research Center, Upton, USA I. Nakagawa: RIKEN, Saitama, Japan I.G. Alekseev, V.P. Kanavets , D.N. Svirida: ITEP, Moscow, Russia S. Dhawan: Yale University, New Haven, USA W. Haeberli, T. Wise: University of Wisconsin, Madison, USA G. Igo, C. Whitten, J. Wood: UCLA, Los Angeles, USA K. Kurita: Rikkyo University, Tokyo, Japan K. Boyle, A. Dion, A. Khodinov: SUNY, Stony Brook, USA H. Okada, N. Saito: *Kyoto University*, *Kyoto*, *Japan* W. Lozowski, E. Stephenson: *IUCF*, *Bloomington*, *USA* K.O. Eyser: University of California, Riverside, USA C. Camacho, H. Liu: Los Alamos National Laboratory, Los Alamos, USA A. Hoffman: MIT, Boston, USA

also Riken-BNL Research Center

XII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, Dubna, September 3 - 7, 2007

- 1. Absolute polarization measurement with ΔP_{beam} / P_{beam} < 0.05 for experiments.
- 2. Fast (< 5 min) measurement for accelerator debugging.
- 3. Ramp and profile measurements.
- 4. Cover large energy range: 25 250 GeV

Solution – CNI !

ON HIGH ENERGY

DUBNA

II WORKSHOF

Elastic scattering in the CNI region

 $A_N = C_1 \phi_{em}^{flip} Im \phi_{had}^{nonflip} + C_2 \phi_{em}^{nonflip} \phi_{had}^{flip}$

A_N arises mainly from interference between **EM** spin-flip amplitude and hadronic non spin-flip amplitude (CNI = Coulomb – Nuclear Interference)

Regge poles /Pomeron exchange

m,p

Μ

An is also sensitive probe to hadronic spin flip amplitude

• All kinematics is defined by recoil particle.

 $\propto (\mu - 1)_p$ Pure CNI $\propto \sqrt{\sigma_{had}^{pp}}$

- For all RHIC beam energies recoil particle goes at 90°.
- Analyzing power small, but with weak energy dependence.
- Large cross section \Rightarrow very good figure of merit.
- Need to collect $2-5 \cdot 10^7$ events per measurement.
- Energy of the recoil particle is very small \Rightarrow target must be extremely thin. $\sin \alpha = \frac{\sqrt{p^2 + m^2} + M}{n} \sqrt{\frac{T_R}{T_P + 2M}} \propto$

ON HIGH ENERGY (II WORKSHOP pC: shape is different ! – Calibration required. DUBNA ح 0.05 ح $-t (GeV/c)^2$ Ref 5=0, Imf 5=0 Plots by O. Jinnouchi 0.04 0.045 % 0.005 0.035 0.03 no hadron spin-flip 0.015 0.025 0.b2 0.04 Fit with CNI theory function p = 3.9 GeV/c(hep-ph/0305085) 0.03 0.02 5 0.01 100 GeV 0 = 6.5 GeV/c-0.01 07 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 ر ع 0.03 ح Crosses zero 0.025 24 GeV .7 GeV/¢ Plot by S. Bravar 0.01 0.005 100 GeV ł Doesn't cross zero 0

recoil Carbon energy (keV)

750

1000

1250

500

250

Ø

0.025 0, -t (GeV/c)²

Igor Alekseev (ITEP)

0.015

0.02

0.01

-0.005

2000

1750

1500

ON HIGH ENERGY XII WORKSHOP **RHIC-Spin** accelerator complex **DUBNA** 2007 RHIC pC "CNI" absolute pH polarimeters polarimeter **BRAHMS PHOBOS & PP2PP** RHIC Siberian **PHENIX STAR Snakes Siberian Snakes Spin Rotators** Pol. Proton Source 5% Snake LINAC BOOSTER AGS 200 MeV polarimeter AGS quasi-elastic polarimeter 20% Snake **Rf Dipoles** AGS pC "CNI" polarimeter

Igor Alekseev (ITEP)

Igor Alekseev (ITEP)

pC polarimeter setup

ON HIGH ENERGY

07

WORKSHOP

Polarized gas jet target

Igor Alekseev (ITEP)

ON HIGH ENERGY

Polarized gas jet target (2)

Improvements 2006

- ✓ Independent BLUE, YELLOW and Hjet DAQ hardware.
- New WFD firmware version for Hjet long waveforms without internal analysis
- ✓ New Hjet online monitor.
- ✓ Scanning profile in each pC measurement

Igor Alekseev (ITEP)

Hjet: 10% absolute measurement in one store

Polarization profile - discussion (data 2006)

- Observed in both rings, both vertical and horizontal
- Different from fill to fill
- Both Hjet and pC (in horizontal scan mode) measure polarization averaged over intensity – no correction needed
- Experiments see polarization averaged over luminosity – a product of the beams intensities. => Can produce a systematic shift of the polarization.
- Correction for experiments (fill by fill ?): $+\frac{1}{2}(\sigma_L/\sigma_P)^2 \sim 0-7\%$

Figures by C. Camacho

Igor Alekseev (ITEP)

Roadmap to absolute polarization

