Spin-Orbit Dynamics from the Gluon Asymmetry

Gordon P. Ramsey Loyola University Chicago and Argonne National Lab

Collaboration with Y. Binder & D. Sivers

Outline

- 1. Proton structure status
- Modeling the gluon asymmetry Physical constraints
 DGLAP evolution
- 3. LO results
- 4. NLO results
- 5. Implications for orbital dynamics

- Quark spin (helicity) $\Delta \Sigma \approx 0.30 \pm 0.03$
- Transverse components $\Delta_T \Sigma$
- Gluon spin ΔG
- Orbital motion L_z (quark and gluon)
- J_z sum rule: $1/2 = \Sigma/2 + \Delta G + L_z$

Definitions

Gluon asymmetry: $A(x,t) \equiv \Delta G/G$ $t = \ln[\alpha_s^{LO}(Q_0^2)] / \ln[\alpha_s^{LO}(Q^2)]$ Split A into t-dependent and tindependent parts: $A(x,t) = A_0(x) + \varepsilon(x,t)$ where $A_0(x) \equiv [\partial \Delta G / \partial t] / [\partial G / \partial t]$ is calculable via DGLAP. Thus,

 $\Delta G(\mathbf{x},t) = A_0(\mathbf{x}) \cdot \mathbf{G} + \Delta \mathbf{G}_{\varepsilon}$

Calculating the asymmetry

Choose a suitable model for ΔG_{ϵ} and use the definition of $A_0(x)$ to determine the asymmetry.

$$A_{0} = [\Delta P_{Gq} \otimes \Delta q + \Delta P_{GG} \otimes (A_{0}(x) \bullet G + \Delta G_{\varepsilon})] / [P_{Gq} \otimes q + P_{GG} \otimes G]$$

Due to zeros in the denominator, the equation is transformed into.

$$A_{0}[P_{Gq} \otimes q + P_{GG} \otimes G] - \Delta P_{GG} \otimes [A_{0}(x) \bullet G] = [\Delta P_{Gq} \otimes \Delta q + \Delta P_{GG} \otimes (\Delta G_{\varepsilon})]$$

Modeling the gluon asymmetry Generate Ansätze for ΔG_{ϵ} : $-0.25 \le \int_0^1 \Delta G_{\epsilon} dx \le 0.25$ Physical constraints on A_0

- Endpoints: $A_0(0) = 0$, $A_0(1) = 1$
- Positivity: $A_0(x) \le 1$ (all x)
- Monotonicity

To satisfy these assume A_0 has the form $A_0 \equiv Ax^{\alpha} - (B - 1)x^{\beta} + (B - A)x^{\beta+1}$

Distributions used to calculate A₀

- Unpolarized q(x) and G(x) are CTEQ5 and CTEQ6
- Polarized ∆q(x) modified GGR distributions
- Q₀² = 1.0 GeV² approximately the scale of chiral symmetry breaking
- ΔG_{ϵ} models are polynomials in x that integrate to less than unity.

NLO asymmetry calculation

Similar to the LO asymmetry,

$$\begin{split} \mathsf{A}_{0} &= [\mathsf{P}_{\mathsf{Gq}}^{\mathsf{NLO}\otimes}\mathsf{q} + \mathsf{P}_{\mathsf{GG}}^{\mathsf{NLO}\otimes}\mathsf{G}] - \Delta\mathsf{P}_{\mathsf{GG}}^{\mathsf{NLO}\otimes}[\mathsf{A}_{0}(x)\bullet\mathsf{G}] \\ &= [\Delta\mathsf{P}_{\mathsf{Gq}}^{\mathsf{NLO}\otimes}\Delta\mathsf{q} + \Delta\mathsf{P}_{\mathsf{GG}}^{\mathsf{NLO}\otimes}(\Delta\mathsf{G}_{\epsilon})] \\ \text{Use NLO DGLAP to develop } \mathsf{A}_{0}^{\mathsf{NLO}} \\ \text{Then: } \Delta\mathsf{G}(x,t) = \mathsf{A}_{0}(x)\bullet\mathsf{G} + \Delta\mathsf{G}_{\epsilon} \\ &\text{for each model of } \Delta\mathsf{G}_{\epsilon} \end{split}$$

Use $J_z = 1/2$ sum rule to determine nature of orbital components

Nature of L_z^{Total}

Start with J_z sum rule:

$$1/2 = \Sigma/2 + \Delta G + L_z$$

 $\approx 0.15 + (A_0(x) \cdot G + \Delta G_{\epsilon}) + L_z$
 $\Rightarrow L_z \approx 0.35 - \langle (A_0(x) \cdot G + \Delta G_{\epsilon}) \rangle$
Evolution:

 $\partial L_z / \partial t \approx - A_0(x) [\partial G / \partial t] \text{ at LO & NLO}$

Asymmetry models at LO

Key to plots Blue $\Delta G_{\epsilon} = -90x^{2}(1-x)^{7}$ $<\Delta G > = 0.05$ Yellow $\Delta G_{\epsilon} = -4.5 x (1-x)^{7}$ $<\Delta G > = 0.23$ Green $\Delta G_{\varepsilon} = 2(1-x)^7$ $<\Delta G > = 0.42$ Red $\Delta G_{\epsilon} = 0$ $<\Delta G > = 0.03$

Evolution of L_z with t at LO

Lz Brems vs t at LO

Asymmetry models at NLO

Evolution of L_z with t at NLO

Lz Brems vs t (mod)-NLO

L_z as a function of $<\Delta G_{\epsilon} >$

Lz vs DGe Trend Line

Constraints as a function of ΔG_{ϵ}

The range of A_0 is near linear in x and satisfies all physical constraints.

The models of ΔG_{ϵ} giving these asymmetries leads to constraints on ΔG and L_z

```
Values of \Delta G_{\epsilon} satisfying physical constraints:

-0.25 \le \Delta G_{\epsilon} \le 0.25

Constraint on \Delta G:

-0.15 \le \int_0^1 \Delta G \, dx \le 0.42

Constraint on L_z:

-0.10 \le L_z \le 0.50
```

Phenomemology

- Lattice results on L_z hep-lat/0509100 L_q consistent with zero.
- Measurements of $\Delta G/G$ over a wider kinematic range of x and Q² [find $\varepsilon(x,t)$]
- Determine $\Delta G(x,t)$ large kinematic range
- Role of transversity measurements flavor dependence of L_z & B-M functions

Conclusions

- 1. The asymmetry models hover around a certain range around the line $A_0 = x$ with more positive $\langle \Delta G_{\epsilon} \rangle$ being less than or approximately equal to $A_0 = x$ and negative $\langle \Delta G_{\epsilon} \rangle$ being greater than $A_0 = x L_z^{Brems} LO$ evolution increases almost linearly in absolute value
- 2. A_0 linear gives larger values of $\langle \Delta G \rangle$

Conclusions continued

- 3. $\langle \Delta G \rangle$ roughly increases with ΔG_{ϵ} the trend being linear, including sign L_z^{Brems} NLO evolution increases less, but still linear in t
- 4. There is a trend that L_z is more negative with negative ΔG_{ϵ}
- 5. $L^{\text{total}}_{\text{HERMES}} \approx -0.80 < \Delta G_{\epsilon} > +0.15 \text{ and}$ $L^{\text{total}}_{\text{COMPASS}} \approx -0.80 < \Delta G_{\epsilon} > +0.18$
- 6. The angular momentum L_z tends to be more positive and less than 0.5 in absolute value, as does ΔG

Final conclusion

- 7. Measurements of $\Delta G/G$ (extremsion of present experiments) and ΔG alone (jet production and prompt photon production) over a wide kinematic range is important
- 8. Determining transversity properties of the proton can add additional valuable information on the orbital angular momentum of its constituents.

End of talk

Extra slide follows

