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Abstract

A simple and effective algebraic angular momenmm projection procedare for constructing basis vectors
of SU{dy 5 S(3) 0 50¢2) from the canarical 3o U2) o (L) asis vectors is ontined. The ex-
pansion coefficients are components of the null-space vectors of a projection matrix with. in general, four
aonzero elements in each row, where the projection mawix is derived trom koown matrix elements of the
17¢3) generatars in the canomical basis. The advantage of the new procedure lies in the fact that the ITill—
Wheeler integral involved in the Elliott's projection operator method nsed previoudly is avolded, tereby
achieving faster numerical calenlations with improved accuracy. Selected analytical expressions of the ex-
pansion coctticients for the 8L (3) itreps [zy3,n33], or equally, (L. ) = (ngz — r23,n23) With L and g
the SL7(3) labels famaliar from dhe Elliott model, are presented as examples for ags = 4. Explicit forow-
lac for evaluating 5O (3)-redveed matrix clements of S€7(2) generators are derived. A gencral formola for
evaluating the ST7{3) 5 S0(3) Wipner coeflicients fs given, which is expressed in fenms of the exparsion
coefficicnts and known U 2) = U(1) Wigner cocliicients, Fonnulae for evaluating tie
elementary Wigmer coeffi SO, e, for lhe SU(3) cougling [ry3.m33] & [1, 0, are
explicilly given with some aralytical cxamples shown o check e validity of the rwesuls, However, e
Gram=Schmidl orthononmalization is still needed in order 1o provide orthenornalized basis veetors,

@ 2016 Elsevier BV, All ighis reserveid.
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Abstract. An analytical formula for the overlap integrals in the case of the non-canonical
basis of Bargmann and Moshinsky has been obtained. These integrals are tabulated for 4=0.
1,2, 3,4 and /> u. The overlap integrals are used for the construction (by means of the
Hilbert-Schmidt procedure) of an orthonormal basis. The transformation coefficients are
tabulated for 4=0, 1, 2, 3 and />

1. Introduction

The angular momentum associated with the group O(3), which is embedded in the group
SU(3), plays a major role in the application of SU(3) in nuclear physics. The corresponding
chain of subgroups is

SU(3)>0(3)>0(2). (LD

The basic functions cor to ition (1.1) are common eigenfunctions
of the second- and third-order Casimir operators C; and C; of SU(3) and of the angular
momentum operators L? and L, associated with O(3) and O(2) respectively. Chain (1.1),
however, is not canonical, i.e. in a given (4, x) irreducible representation (1r) of SU(3) there
can be more than one state characterised by the quantum numbers (L, M) of the
decomposition O(3) > O(2). There is one label missing to characterise the states completely
and in that sense the construction of the basis is somewhat arbitrary. The ‘missing label”
problem can be solved in the following way.

(i) The basic functions are constructed as polynomials in some chosen variables. The
missing label is introduced by means of a special prescription which leads to a simple
labelling of the states by integers. For instance, in the case of the basis of Bargmann and
Moshinsky (1961: hereafter referred to as Bm) an additional quantum number g (or ) is
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Elliott’s S{/(3) model and its developments in nuclear ph
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Absteact. The S (%) srom, i s
bl truncited shell model calcu lations and puzzles assorialed with quadnpole qusckupole
itoracrion ogarher with soliriens are bricfly dscribed AR VIS of VaCious inpertant
devclopments remilting fiom the applicstion of $%3) symmetry, and its potcntial i exploring
s [rcalsers of auslear siuclure physics i presentel

1. Introduction

Symmetries have plaved a very important role in understanding the complex nuclear spectra
The siriking resemblunce of the specir obtained [or "F i the shell model caloulations of
Elliott and Flowers [1] and sollective model calculations of Paul [2] and the degeneracies in
the harmonic oseillator spectrum led to the discovery of Llliot’s ST/ model [3] exactly
40 years go. | thank the organizers for hestowing on me the honour of reviewing the rale
of §1/(3) symmetry in nuclear structure physics. | take this oppertunity tn conpratulate Phil
Ellott upon the profound:success of the ST (3) model whish s extended cven inlo the present
era markesd by the ever-widening [rontiers of nuclear structure physics

2. Elliott’s SU(3) model

The salient features of ST/(3) symmetry are briefly reviewed before embarking upon its
applications aver the lnst 40 years. This symmetry is penerated by the hamonic oscillator
quanta-consarving. momentum-dependent quadnipole (Q) and angular momentum (L)
operatars, with the quadratic Casimir operater given by

COSTN = 220 0+ 3L I (0]

‘asintir operaor are

The cigenvalues of the
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where i p are the difference in quanta in the = and <. . and y directions, respectively:
Shell model caloulaticns with the qusdrupole—gquadrupole (€ - @) interaetion,
L (3
gives the rotational spectrum,
E = (= hat =3 30 e Lil - 0}
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The simplest SU(3) model Hamiltonian counsists of the quadrupole-quadrupole
interaction, the rotational term and the other terms constructed from generators of
the partner groups G = SU(3) x SU(3), see [G6zdz, A., 2018| and references therein.
A possible Hamiltonian H used in this schematic nuclear model can be written as:

H=~Cx(SU(3)) —kQ-Q+ BL- L+ H"(Q,L)
= (v — K)C(SUE)) + (3 + B)L + H"(Q, L), 1)
where the second order Casimir operator C>(SU(3)) = Q- Q+3L- L, Q and L are

generators of SU(3), i.e. quadrupole and angular momentum, respectively; Qand L
are generators of the intrinsic group SU(3).

Some examples of physically interesting forms of the interaction H” can be written as

Hio = hoa (@@ Q- (@@ Q)%,) | (2)
Hsia = haia ((Z Q3 - (Lo é)s—z) ; ®3)
Hio = hia(y/ 5 (@ )+ (@@ Q)+ (2@ Q)Y), @

where (T, ® Ty)% denotes the tensor product of two spherical tensors
[Varshalovitch, D.A.; 1975]. These interaction terms can simulate either the
tetrahedral or octahedral nuclear symmetry [Dudek, J., 2002].




The low part of spectrum at L = 0 of hamiltonian H/hsq = 7' C2(SU(3)) + Hya/haq:
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Fig. 1. Example of spectrum of Hamiltonian (24) for 4’ = 1.5. The pair (A, ;1) labels
the irreducible representations of the group SU(3) and the label (n), where n =
1,2, 3 denote degeneration of eigenvalues due to the intrinsic tetrahedral/octahedral
symmetry.



The SU(3) collective nuclear models in the orthogonal non-canonical
Bargmann—Moshinsky (BM) Basis [Bargmann, V., Moshinsky, M. 1961]

H‘ £l >:E’ e > ’ e > 2 ce

) by

(AM)B> _,<(>\u) ‘Om E’L’)M’>'

(5)

ble Hamiltonian H used in t chematic nuclear model [ Arima, A., 1

H=~Cy(SUB)) — kQ- Q+ BL- L = (v — x)Ca(SU(3)) + (3x + B)L

(6)

To solve this problem we need to construct the orthonormal basis
in the space spanned by the non-canonical Bargmann—Moshinsky
(BM) vectors

[ 2 )-Eawol Gk ). o

E)?:’Llf)LB > differ

from the states (3.8) given by [Moshinsky, M., 1975] in the

21t should be noted that the used states

definition of the number a and coincide up to a phase factor (—1)%.

Here multiplicity index i is
introduced to differentiate the
orthonormalized states and
AP1)(L) are the BM basis

orthonormalization coefficients.

These coefficients fulfill the
following condition

AME () —0, P> a

(8)

Because the BM vectors (5) are linearly independent, one can require the orthonormalization properties for

the vectors (17)

(A, 1)
oLl | £ L L

(X 1) > — o

(9)




Overlap Integrals of BM Basis [Bargmann, V., Moshinsky, M. 1961]

Commutation relations of the spherical tensors L, (v = £1,0), Q.(v = £2,£1,0)

L, L] =—V2(1v1/[lv + )y,  [Qu, L] =—V62r1vI2v +1)Qu .y,
[Q., Q] =3V10(2v2y [1v + V)L, .

The effective method for constructing a non-canonical BM basis with the highest weight vectors
of SO(3) irreducible representations corresponding to the group chain SU(3) D O(3) D O(2) with
the Casimir operator

Co(SUB)) = Q- Q+8L - L= 4(N2 + % + Ap + 3X + 3p)

was described in [Alisauskas, S., 1981] *. Let us introduce the notation for the vectors of this basis:

A
<a a'> — < fx):l}f)la (O/:l‘l:)ﬁ/’ > (10)
Here the quantum numbers A, p label irreducible representations (irreps), A\, =0,1,2,... and

A > p; L, M are the quantum numbers of angular momentum L - L and its projection Ly (in our
case, M = L); a is the additional index that is used for unambiguously distinguishing the
equivalent SO(3) irreps (L) in a given SU(3) irrep (A, p). The dimension of subspace irrep for given
A, i can be calculated by using the following formula:

Daw = g+ 1)+ DO + 4 +2) (11)

?Alisauskas, S., Raychev, P., Roussev, R.: Analytical form of the orthonormal basis
of the decomposition SU(3) D O(3) D O(2) for some (A, u) multiplets. J. Phys. G: Nucl.
Phys. 7, 1213-1226 (1981)




Overlap Integrals of BM Basis

In order to perform classification of the BM states (5) one should determine the set
of allowed values of o and L. It is well known that the ranges of quantum numbers «
and L are determined by the values of quantum numbers A and p. However, the
determination of former quantities is rather cumbersome. The easiest way to get the
allowed values of o and L is by using the symbolic algorithm 1 that consists of the
following steps:

v
Step 1.

Firstly we should start with choosing some particular value of the quantum number
w. For the following consideration, it is convenient to introduce auxiliary label K
[Elliott, J.P., 1958] which varies in the ranges

K=pup—2,u—4,..,10r0, since X > pu. (12)
The label K is related to a by
1
azE(,u—K). (13)

So, for every fixed pu, the set of possible values of K can be obtained directly from the
definition of K from (12). Now, the set of allowed values of a may be determined
from these K values using relation (13).




Overlap Integrals of BM Basis

Step 2.

In the case K = 0, that may occur only for even values of y, the allowed values of L
are determined by the label X:

L= XXx—2,2—4,..,10r0. (14)

| N

Step 3.

In the case K # 0, the Lnin = K. Since for every particular p, there is a number of
possible K numbers, according to (12) there exists a number of the corresponding «
numbers. It means that for every particular p, there will be a number of pairs
(@, Liin). The maximum value of L is defined by the expression Ly = p—2a+ X — 3,
where o 1
_ ) + p — L even,
5—{ 1, A+p—Lodd. (15)

To determine L. it is convenient to consider two alternatives: A — L is even and

A — L is odd. In both cases, the label § is defined by the given u value, and the
number Ly, is also determined. An illustrative example for calculation of allowed
values of « and L is presented in Tables 1a and 1b at K # 0 and K = 0, respectively.
It should be noted that the set of allowed values of L for overlap integrals is given by
the intersection of these sets for the corresponding < bra| and |ket > vectors.




Overlap Integrals of BM Basis

The overlap integral of the non-canonical BM

[Alisauskas, S., 1981]

o¢> = < e ‘ a’)z*[?‘i > = G0 LAY +2)P(L — i+ 20)
uw—2a" — B (u—2a" —B+A—1)I

o _A_ 1o, —20 —A—
XZ( S0—5— ) )(_1)(M+2a A B)/2+2< e 22 A - B)

(w— NN (p+ B8+ )
(w—1—=22)1 (u —2a’ + NI
(A= L4 p—2a — B! A+L—A+2)1 (L+ 1)
A—L+A+22)! A+L—p+2a+p+2z+2)0 L
A+p+L+B8+2) A+B+2z4+1) A+p—1—L+A)
A+L+1+B8+2z+2)1 A+B8+1) (A—L+p—2a" —p)!
XCo(\, L, A, Z2).

(I=D+8— ) —0—p—22)1

Here o > o’ and B from (15) and we use the following notations
A_{ 0 X—Leven, m\ _ m!
L 1, A-Lodd, n ) npm—ny’
L>x+A, (A+L+A+1+22)1

]
) EIR) T
Ci(\, L, B) = { QELEAEDE ) oy A Co(X, LA, 2) = (A+L(+A++1)+22)!!
@L+nn — ? (A+L+Aa+1)n

)

(16)

L>X+4,
L<A+A.




Overlap Integrals of BM Basis

Table la. The allowed values of «, Lmin, and Lya for up to g =5 when K # 0.

I a Lt Limax (A — L even) Liax(A — L odd)
1 0 1 A A+1
2 0 2 A+2 A+1
3 0 3 A+2 A+3
1 1 A A+1
4 0 4 A+4 A+3
1 2 A+2 A+1
5 0 5 A+ 4 A+5
1 3 A+2 A+3
2 1 A A1

The above algorithm was realized in the form
of the program implemented in the computer
algebra system Wolfram Mathematica 10.1.
L, (\—Leven) The typical running time of calculating the
AMA=2A—4 ..10r0 irreducible representations p =4 and p = 8 is
M—22—4,...,10r0 3 and 57 seconds and memory is 35 and 47
MA=2,A—4 ..,10r0 Mb, respectively using the PC Intel Pentium
CPU 1.50 GHz 4GB 64bit Windows 8.

Table 1b. The allowed values of «

and L for up to 4 =5 when K = 0.

N U]
N = SO0




Table 2. Overlap integrals of non-canonical BM basis for u = 4.

(ala’) L A — L even L A — L odd
(2[2) 0,..., A (U] )

(2[1) ) co0p (ua|ur)

(210) 4,5 (u2|up) o
(1[1) 25 a0an A (uq|uy) By ooog W 4 1 (| Ty)
(11 A+2 (uy|ug) o
(110) 4,..., 2 (uq|ug) 4, A+ 1 (@ |to)
(110) A+2 (ufug) o
(0[0) 4,5 (ug|ug) 4, A +1 [y,
(0[0) A+2 (pus) A+3 (@10
(0]0) A+4 (g lug)

Table 3. Overlap integrals of the non-canonical BM basis. for = 4 and A — L even.

p=4 and X — L even
(Uzup) = 8LI(X — L)N(X + L+ 1)1(3L* + 6L°
—(8A(X +8) + 135)L% — 2(4A(A + 8) + 69)L + 8(A + 3)2(A + 5)%) /(2L + 1)!!
(Ualury =8LI(—A + L—2)(A + L+ 6)(A — DI'(A + L+ NI
X (3(L — 1)L — 2(2A (X + 8) + 33)) /(2L + )11
(Upltpy = 280X — L+ 2)(A—L+ &)X+ L+ 4)
XA+ L+6)(A — DU+ L+ 1)1/ 2L+ 1),
(%) | (uilu) = —4(L — 2)1(A — L+ 2)1(A + L+ 1) (6L5 +6() +5)L*

—(A(7A + 59) + 150)L3 — (A + 6)(A(7A + 55) + 118)L2
—(A + 2)(A(BA + 48) + 129)L — 6(X + 2)(A(A + 10) + 27)) /(2L + 1)!!
() | Wiy =42 +2)(A £ 3)(A + (X £ 3B)AL.
(U1 TUo) =24(L—2){A — L+ B A+ L+6)(A —L+2)
XA+LA+LA+L+4)+2)+2)(A+ L+ 1)!1/(2L+ 1)!!

(uf[ug) = 96(X\ + 2)(A + 3)(X + 4!

(%) | (Uplug) = 24(L — 4)I(X — L+ 4)!I(X + L+ 1)!1(9(X + 2)(X + 4)
+L5 +2(X +3)L5 + 8(A +2)(A + 3)L+ (A(\ + 4) — 8)L*
—2(A + 3)(A + 6)L3 + (A(BA + 38) + 88)L%) /(2L + 1)!!,

———— — —




Table 4. Overlap integrals of non-canonical BM basis for @ = 5.

(a]a”) L A — L even L A —Lodd
(2[2) 1,052 (Uz|u2) 1 A+ 1 (U2 |Up)
(211) 3, s A (uz|uq) 3, A+ (02| 01)
(210) 5,.., (Up|uo) 5, A+1 (Ua|To)
(11) &y ooog A (uq|ug) 3,..,A+1 (Uq|0q)
(111) A+2 (ug|ufp) A+3 (o |ag)
(110) 5,.., 2 (uy |ug) 5., A+1 (U1 Gg)
(110) A2 (ug|ug) A+3 (07 |Gg)
(0]0) By coop A (Ug|ug) B, cocg N ap 1 (g | U )
(0[0) At2 (vhlug) N4 (5|55
(0]9) At4 (up'lug") A+5 (Tg' |y )

Table 5. Overlap integrals of the non-canonical BM basis. for © =5 and X\ — L even.

p=5 and X\ —Leven

(Ua[tz) = 24X + 2)(L+ )L — )I(X = DI(X + L+ 1)1
X (—(4X(A + 10) 4+ 109)L2 — 2(2A(A + 10) + 55)L
+8(A(A + 10)(A(A + 10) + 49) + 603) + L* + 213) /(2L + 1)!!

(Ualury = 28X + 2)(L+ 1) (=X + L— 2)(A + L+ 8)(L — 1!
x ((L — 1)L — 2(A(A + 10) + 27)) (A — L)X + L + 1)11/(2L + 1)1

Uty = 24X F 2)(LF N(—AFL—H(-AFL—2)(A+LF6)
x(L— 1)1\ + L+ 8)(A — L)U(A + L+ 1)11/(2L + 1)1t

Uty = 12Z F 2)(L+ )L =3) (A — L+ 2)N(A+ L+ N1
X ((A(BX + 29) + 96)L% + (A(A(3X + 53) + 316) + 680)L2
+(AA(7X + 100) + 487) + 716)L — 2L5 — 2(\ + 7)L*
+2(A(A(7A + 102) + 491) 4 684)) /(2L + 1)!!

(Wilup) =120 + 2)(A + 3)2(X + (A +5) (X + 20)(A — 1)!

(U1]to) = 28(A + 2) L+ A — L+ A+ L+ 8) (L —3)I(A —LF 2!
X(5A + LB3A + LA + L +6) +8) +12)(A + L+ 1)!1/(2L + )!!

(Wlluh)y = 96(A +2)(A +3°(A + H(A +5)(A — 1)
Uolto) = 24N + )L+ L =B)(X =L+ HN(A F L+ NI




Orthonormalisation of BM Basis

Let us construct the orthonormal basis in the space spanned by the non-canonical
BM vectors (5), (M = L). For this purpose, we propose a bit more efficient form of
the Gram—Schmidt orthonormalisation procedure

(A n) S ooy | e
‘ fLL )= 2O L) ()
Here mult1p11c1ty index i is introduced to differentiate the orthonormalized states and

A(A ) (L) are the BM basis orthonormalization coefficients. These coefficients fulfill
the following condition

ASM(L) =0, ifi>a. (18)

Because the BM vectors (5) are linearly independent, one can require the
orthonormalization properties for the vectors (17)

A, A
< ﬁLu)L gk,ﬁf)L >=5,-k. (19)




Orthonormalisation of BM Basis

In the case of the subset of three independent BM vectors (5) indicated by the
displayed values of labels, expansion (17) takes the form (u =4, A — L even))

(M) \ Zoaum) (X, )8
bl L )= O] 57 ;

(Ap) N a0 (A, 1) (A1) (A, 1)
‘ﬁ,L,L =ANTO LD )HARTO 5 )
A p A, A, p A, B A, A, p
| S0 Y =S| Sl Y+ | Qi h e Aw| S ),
_ _ _ U |\U
AZOW) = (alue) ™72, AW = —@al) 2 AR = (i) ”2%:[;;7

Ay —1/2 )y (dolwe) TP (te|ur) (2| o)
A0 = ~twnlun) % AW = LI (g + L))
(N4) gy _1/2 [ {u2|uo) 1 _ (Ualug) (uz|uo) \ (uz|ur)
Az (L) = (old) [(U2|U2> <¢1|1/11)( il == (U |t2) >(U2|U2)}
_ _ (|w)® 1 _ (p|tn) (a|o) \®
(o) = (uoluo) — {2 <w1|w1>< (unl-+ {22 K
_ {wefu)?

(1 l¥1) = (un|ur)

(Up|up)




Orthonormalisation of BM Basis

The Gram—Schmidt orthonormalization symbolic algorithm 2. Step 1.

Step 1. First one needs to organize the loop running over all indices

Q = Qmax, Omax — 1,...,0 of a given set of the BM states. Then the first
orthonormalization coefficients of the orthogonal BM states (i.e., some linear
combination of initial states (5)) for a given value of « are calculated by the formula

<UQ | uO‘max)
B, i = T U Y172 (20)

where the (Uq|U,) denotes the overlap integrals (16).




Orthonormalisation of BM Basis

|

Step

Step 2. Secondly one needs to organize the inner loop inside the loop defined in
Step 1. of this algorithm. This inner loop should run over all indices

&' = Qmax — 1, Qmax — 2, ..., + 1 of a given set of BM states. For the following
calculations, it is convenient to introduce the intermediate quantity

<u0¢ | uO‘max > <U0¢max | 2% >
(Ut | Ut )

fayar = —(UalUar) + (21)

Now the orthonormalization coefficients for the BM states for any given values of «
and o are calculated by the formula

e
ba,a/ B <1/}a’ |1/}a’>1/2 . (22)
Here the normalization integral is defined as
(i) = {talia) = > B (23)

i=a+1
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Step 3.

Step 3. Now we make the recursive step and calculate the next quantity f, o from
the results of the previous step

1
fa,a’—1 = fa,a’—)a’—1 ain mfa—)a’—ha’fa,a“ (24)

Here the arrows in the right hand side of the (24) indicate that the quantity f, ./
obtained at the previous step is used with the appropriate substitution of indices.
Having calculated the quantity f, ./, the expression of the next orthonormalization
coefficient b, ./ can be obtained by Eq. (22). The steps of the orthonormalization
algorithm defined above are recursively repeated doing the loop over all allowed
values of indices o and «'.

| A\

Step 4.

Step 4. Finally, we should to collect all the coefficients in the recursively obtained
analytical expansion representing the orthonormalized state for every independent
BM state (5). In this way, we get the required orthonormalization coefficients of
expansion (17).




Orthonormalisation of BM Basis

Table 6. Transformation coefficients A&“ ')(L) for p = 4.

a i
4
2 2 0 L. A A (0) —
A4
1 2,3, A Al ,24’(L) —
K
0 4,5,...,\ Aéf:(L) A;
1 1 2,3, . A +1 ASJ’ (L) Ag,{ v
A2 AN +2) -
X4 A2 4
0 45+t AN 2650w
A+2 »‘\5,?1’4)(A +2) -
X4 A(X,4
0 0 4,5, A+1 AW ASsPw
A2 A5 +2) -
A+3 = A5 +9)
A+4 AR (A + 4) -

The above algorithm was realized in the form of the program implemented in the
computer algebra system Wolfram Mathematica 10.1. The typical running time of
calculating the irreducible representations p = 4 is 30 seconds and memory is 60Mb
using the PC Intel Pentium CPU 1.50 GHz 4GB 64bit Windows 8.

Recursive calculation of the quantities f, .- (24) and the normalization integrals (23)
do not involve any square root operation. This distinct feature of the proposed
orthonormalization algorithm may make the large scale symbolic calculations feasible.
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and MaxMemoryUsed versus parameter p (b): maximum number of Megabytes (Mb) used to store all data
for the current Wolfram System session during the calculations of the orthogonal BM basis (circles)
consisted of calculation of the overlap integrals by means of Algorithm 1 code(squares) and execution of

the othonormalization Gram-Schmidt procedure by means of Algorithm 2 code (triangles).

The orthonormalization numerical algorithm

et

i:o (<a’”‘> - "’(L)‘saa/) Cori(l) =0

o4

For A; # 0 one gets the following basis of orthonormal states

)\’ Amax , )\’ Amax
| 2 )= | S ) 3 el welw = o e9)
a=0 a=0




The Action of the Zero Component of the Quadrupole Operator onto the
Orthogonal Basis

Following the paper [ Raychev, P.; 1981], we determine the action of the zero
component of the second order generator of SU(3) group onto the BM basis vectors®

(Av B
Q| L) 2 a’ a+sL+kL (26)
k=0,1,2
s=0,=+1

where the coefficients a*) = a(sk)(a) can be calculated as in [ Afanasjev, G.N., 1973]
and they have the form given in [ Raychev, P.; 1981], and the inverse transformation
/z\,(.jx“)(L) from formula (17)

A, 1)B ) (A, u
oLt )= 2;“ M 5L, &)
I
where conventional relations take place
Z A DAN(L) = b0, and > AP (L)ACH(L) = 5y . (28)

21t should be noted that the used states differ from the states (3.8) given by
[Moshinsky, M., 1975] in the definition of the number a and coincide up to a phase
factor (—1)® in Lh.s. and (—1)*"® in r.h.s..




The Action of the Zero Component of the Quadrupole Operator onto the
Orthogonal Basis

Using (26), (27), and (28), one obtains the action of the zero component of the
quadrupole operator onto the orthogonal BM basis vectors

A, A,
QO‘ %,L/,LZ >: Z q'/ (L) %7LM_~)_/(7L >7 (29)

where the coefficients q,/k (L) are calculated by the formula

q,g.y)(L): > A (L)a A<*g+s (L+ k), (30)

and Afi\f )(L) are elements of the inverse and the transpose of matrix

A (L) = (A (L), (31)




The Action of the Zero Component of the Quadrupole Operator onto the
Orthogonal Basis

The matrix elements of the quadrupole operators, generators of the group SU(3) can
be reduced to the calculation of the reduced matrix elements by means of the
Wigner-Eckart theorem

(o o iy ) =503 (o] 12

The corresponding reduced matrix element is determined by formula

(52 82 - Bt

e L
L T+ k, L 2ojeD) Y (L)
where the coefficients q,(?,ﬁ‘)(L) are defined by (30). In this definition, kK > 0.
Dimension of subspace of the ket vectors |(Aun)iLM) at fixed A and p are defined by
formula (11). The dimension of this subspace determines the complexity of the above
algorithms, i.e., required computer memory and execution time.

(33)

w

In this paper, the new results for the coefficients q,.(ji“)(L) in the orthonormal BM
basis with the highest weight vectors of SO(3) irreps for u = 4 were calculated. Note
that the coefficients q,-(/.?“)(L) for up to p = 3 were calculated as well and their values
are equal to those presented in Table 1 of Ref. [ Raychev, P., 1981].




The zero component of the quadrupole operator into the nonorthogonal
BM basis

The zero component of the quadrupole operator Qp into the nonorthogonal BM

basis, i.e. the coefficients a) = a(sk)( )= (-1 )sqék)(a) of expansion (26) reads as

o 120 120
Y T{Tr2@+ae o= [(+2)2+3) /2 A
(1):1205(/1 +1)+o+B) 68
® (I+2)(/+1)1/2 (14 1)172°
o _ 120 = 1208h

R (EEEE

©_, JU+1D)=3h+B)? , I0+1)-8k+B° , 38
o e @i e T U+ D@ +3) (h= k) (” /+1>
0) _ 1204/1(/1 - 1)

T+ 1) 2l +3)’

q(o):_ 120’/2(/271)

U (I+1)21+3)°

8= 0, A+ p—Leven,
- 1, A+up—Lodd,

where T=X/2, n=2u+ X\, h =L+2a0—n/2+T,b=n/2—-T —2a — .




Resume

o We present the practical symbolic algorithm implemented in Mathematica for
constructing the non-canonical Bargmann—Moshinsky (BM) basis with the
highest weight vectors of SO(3) irreps., which can be used for calculating spectra
and electromagnetic transitions in molecular and nuclear physics.

o The proposed recursive orthonormalisation algorithm allows one to find the
analytical expressions of the orthonormalized basis. The distinct advantage of
adapted Gram—Schmidt orthonormalisation is that it does not involve any square
root operation on the expressions coming from the previous recursion steps.

o This makes the proposed method very suitable for calculations of spectral
characteristics (especially close to resonances) of quantum systems under
consideration and to study their analytical properties for understanding the
dominant symmetries.

o The formalism of partner groups allows for simulation of the intrinsic properties
of quantum systems (also nuclei), including their intrinsic symmetries. The
presented nuclear SU(3) model is extended and allows for additional intrinsic
structure, especially it allows to construct terms having required point
symmetries.

o Calculations of spectral characteristics of the above nuclei models and study of
their dominant symmetries will be done in our next publications.
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