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Introduction

In this report, using the Wigner unitary irreps of the covering group ISL(2,C),
which covers the Poincare group ISO↑(1, 3), we construct spin-tensor wave
functions of a special kind. These spin-tensor wave functions form spaces
of irreducible representations of the group ISL(2,C) and automatically
satisfy the Dirac-Pauli-Fierz wave equations for free massive particles of
arbitrary spin. We use the approach set forth in S. Weinberg, Phys. Rev.
133 (1964) B1318; 134 (1964) B882; see also books: 1) ”Introduction to
Elementary Particle Theory” by Yu. Novozhilov, 2) ”Ideas and Methods of
Supersymmetry and Supergravity: Or a Walk Through Superspace” by I.
Buchbinder and S. Kuzenko, 3) ”Theory of Groups and Symmetries. Part
II” (in preparation) by A. Isaev and V. Rubakov, . . . The construction
is carried out with the help of Wigner operators which translate unitary
massive representation of the group ISL(2,C) (induced from the irreps of
the little subgroup SU(2)) acting in the space of Wigner wave functions
to representations of the group ISL(2,C), acting in the space of special
massive spin-tensor fields.
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Here a special parametrization of Wigner operators is proposed, with the
help of which the momenta of particles on the mass shell and solutions
of the Dirac-Pauli-Fierz wave equations are rewritten in terms of a pair of
Weyl spinors (two-spinor formalism K.P. Tod, L.P. Hughston, S. Fedoruk,
J. Lukierski, J. A. de Azcarraga and many others). The expansion of a
completely symmetric Wigner wave function over a specially chosen basis
provides a natural recipe for describing polarizations of massive particles
with arbitrary spins. As the application of this formalism, a generalization of
the Behrends-Fronsdal projection operator is constructed, which determines
the spin-tensor structures of the two-point Green function (propagator) of
massive particles with any higher spins in the case of arbitrary space-time
dimension D. Note that these spin projection operators are also employed
for analysis of the high energy scattering amplitudes.
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Massive unitary representations of ISL(2,C)

To fix the notation, we recall the definition of the covering group ISL(2,C)
of the Poincare group ISO↑(1, 3). The group ISL(2,C) is the set of all pairs
(A,X ), where A ∈ SL(2,C), and X is any Hermitian (2× 2) matrix which
can always be represented in the form (xm ∈ R)

X = x0 σ
0 + x1 σ

1 + x2 σ
2 + x3 σ

3 = xk σ
k =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
∈ H

The multiplication in the group ISL(2,C) is given by the formula

(A′,Y ′) · (A,Y ) = (A′ · A, A′ · Y · A′ † + Y ′) ,

The ISL(2,C) group action in the Minkowski space R1,3 = H

(A,Y ) · X = A · X · A† + Y ∈ H , ∀ X ,Y ∈ H
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The action of the SL(2,C) group on vectors x in the Minkowski space R1,3

is:
X → X ′ = A · X · A† ⇒

σkx ′k = σk Λ m
k (A) xm ⇒ x ′k = Λ m

k (A) xm ,

where Xαβ̇ = xk σ
k
αβ̇

, (α, β̇ = 1, 2) and the (4× 4) matrix ||Λm
k(A)|| ∈

SO↑(1, 3) is determined from the relations

A · σm · A† = σk Λ m
k (A) ⇔ A α

ξ A∗ β̇
γ̇ σm

αβ̇
= σk

ξγ̇ Λ m
k (A)

We need also to have dual set of σ-matrices:

σ̃k = (σ0,−σ1,−σ2,−σ3), (σ̃k)β̇α
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Further we will consider mostly the massive case: m > 0. In this case
the unitary irreps of the group ISL(2,C) are characterized by spin j =
0, 1/2, 1, 3/2, . . . and act in the spaces of Wigner wave functions φ(α1...α2j )(k),
which are components of a completely symmetric tensor of rank 2j . Here
k = (k0, k1, k2, k3) denotes the four-momentum of a particle with mass m:

(k)2 = knkn = krη
rnkn = k2

0 − k2
1 − k2

2 − k2
3 = m2

Let us fix some test momentum q = (q0, q1, q2, q3) such that (q)2 = m2,
q0 > 0 and choose a representative A(k) ∈ SL(2,C):

(kσ) = A(k) (qσ) A†(k) ⇔ km = (Λk) n
m qn ,

where (kσ) = knσn, (qσ) = qnσn. The relation between the matrices A(k)

and Λk ≡ Λ(A(k)) is standard.
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Define a stability subgroup (little group) Gq ⊂ SL(2,C) of the momentum
q as the set of matrices A ∈ SL(2,C) satisfying the condition

A · (qσ) · A† = (qσ) ⇔ A γ
α (qnσn)γα̇ (A∗) α̇

γ̇ = (qnσn)αγ̇

In the massive case (q)2 = m2, m > 0, the stability subgroup Gq is
isomorphic to SU(2) for any choice of test momenta q. The matrix A(k) ∈
SL(2,C) is defined up to right multiplication A(k) → A(k)U by an element
U of the stability subgroup Gq = SU(2):

(A(k) · U) · (qσ) · (A(k) · U)† = A(k) · (U · (qσ) · U†) · A†(k) = (kσ) .

For each k we fix a unique matrix A(k) which numerate left cosets in
SL(2,C) with respect to the subgroup Gq = SU(2), i.e. matrices A(k) are
points in the coset space SL(2,C)/SU(2)

8 / 23



Explicit formula for unitary irreps of ISL(2,C)

Let T j be a finite-dimensional irreducible SU(2) representation with spin
j , acting in the space of symmetric spin-tensors φ(α1...α2j ) . The Wigner
unitary irreducible representations U of the group ISL(2,C) with spin j are
defined by the following action of the element (A, a) ∈ ISL(2,C) in the
space of wave functions (WFs) φ(α1...α2j ):

[U(A, a) · φ]ᾱ(k) ≡ φ ′ᾱ(k) = e ia
mkm T

(j)
ᾱᾱ′(hA,Λ−1·k) φᾱ′(Λ−1 · k)

Here we use the concise notation φᾱ(k) ≡ φ(α1...α2j )(k), the indices ᾱ, ᾱ′

are multi-indices (α1 . . . α2j), (α′1 . . . α
′
2j), the matrix Λ ∈ SO↑(1, 3) is

related to A ∈ SL(2,C) as usual, and the element (dependent on k)

hA,Λ−1·k = A−1
(k) · A · A(Λ−1·k) ∈ SU(2) ,

belongs to the stability subgroup SU(2) ∈ SL(2,C).
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Proposition 1. Wigner representation U can be transform into the following
form (so - called spin-tensor representation):

[U(A, a)·ψ(r) ]
(β̇1...β̇r )
(α1...αp)(k) = e ia

mkm A γ1...γp
α1...αp

(
A†−1

)β̇1...β̇r

κ̇1...κ̇r
ψ(r)(κ̇1...κ̇r )

(γ1...γp) (Λ−1·k),

where we introduced spin-tensor wave functions:

ψ(r)(β̇1...β̇r )

(α1...αp) (k) = [A⊗p(k) ⊗
(
A†−1

(k) (qσ̃)
)⊗r

φ(k)]
(β̇1...β̇r )
(α1...αp) =

= 1
mr (A(k))

δ1...δp
α1...αp ·

(
A−1†

(k) · (qσ̃)
)β̇p+1...β̇p+r ;δp+1...δp+r

φ(δ1...δpδp+1...δp+r )(k)

Proof. Take T j(hA,Λ−1·k) as tenzor pruduct hA,Λ−1·k , then we write r
multipliers h in form h = (qσ̃)−1 ·h† −1 ·(qσ̃) using the generalized unitarity
condition for the elements of little group, use the factored form of the
matrix hA,Λ−1·k .
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Proposition 2. The wave functions ψ(r) satisfy the Dirac-Pauli-Fierz (DPF)
equations [P.A.M.Dirac (1936), M. Fierz and W. Pauli (1939)]:

km(σ̃m)γ̇1α1ψ(r)(β̇1...β̇r )

(α1...αp) (k) = mψ(r+1)(γ̇1β̇1...β̇r )

(α2...αp) (k) , (r = 0, . . . , 2j − 1) ,

km(σm)γ1β̇1
ψ(r)(β̇1...β̇r )

(α1...αp) (k) = mψ(r−1)(β̇2...β̇r )

(γ1α1...αp) (k) , (r = 1, . . . , 2j) ,

which describe the dynamics of a massive relativistic particle with spin
j = (p + r)/2.
Proof. Use the definitions of matrices A(k).

Proposition 3. Spin-tensor wave functions ψ(r) satisfy the equations

[(Ŵm Ŵm) ψ](r)(β̇1...β̇r )

(α1...αp) (k) = −m2j(j + 1) ψ(r)(β̇1...β̇r )

(α1...αp) (k) ,

Ŵm are the components of the Pauli-Lubanski vector

Wm =
1

2
εmnijM

ijPn =
1

2
εmnij Σ̂

ijPn
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The matrices A(k) numerate points of the coset space SL(2,C)/SU(2).
The left action of the group SL(2,C) on SL(2,C)/SU(2) is

A · A(k) = A(Λ·k) · UA,k , A ∈ SL(2,C) , Λ ∈ SO↑(1, 3)

The element UA,k ∈ SU(2) depends on A and k . Under this left action
the element A ∈ SL(2,C) transforms two columns of the matrix A(k) as
two Weyl spinors.
Therefore, it is convenient to represent the matrix A(k) by using two
Weyl spinors µ and λ with components µα, λα (the matrix A†(k) will be
correspondingly expressed in terms of the conjugate spinors µ, λ) in the
following way:

(A(k))
β
α =

1

(µρ λρ)1/2

(
µ1 λ1

µ2 λ2

)
, (A†−1

(k) )α̇
β̇

=
1

(µρ̇ λρ̇)1/2

(
λ2̇ −µ2̇

−λ1̇ µ1̇

)

12 / 23



In the case q = (m, 0, 0, 0), it follows from

(kσ) = A(k) (qσ) A†(k)

that the momentum k is expressed in terms of the spinors µα, λβ , µα̇, λβ̇
as follows:

m

|µρλρ|
(µαµβ̇ +λαλβ̇) = (knσn)αβ̇ ,

m

|µρλρ|
(µαµβ̇ +λαλ

β̇
) = (knσ̃n)β̇α

These two-spinor expressions for the 4-vector k(k2 = m2 and k0 > 0)
are generalizations of the well-known Penrose twistor representation for
momentum k of a massless particle. The wave functions of massive relativistic
particles, which are functions of a four-momentum k can be considered as
functions of two Weyl spinors µ and λ.
One can show that the two-spinor description of mass. particles based on
the representation described above proves to be extremely convenient in
describing polarization properties of mass. particles with arbitrary spin j .
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The expansion of the spin-tensor fields over the polarization vectors of
arbitrary integer spin is

ψ(r)(β̇1...β̇r )

(α1...αp) (k) =
1√
(2j)!

j∑
m=−j

φm(k)
(m)

e
(β̇1...β̇r )

(α1...αp)(k),

where the polarization vectors are defined

(m)

e
(β̇1...β̇r )

(α1...αp)(k) =
1√
(2j)!

p

Π
i=1

(A(k))
ρi

αi

r

Π
`=1

(
A−1†

(k) σ̃0

)β̇`ρp+` ε
(m)
ρ1···ρ2j .

The constant symmetric tensor ε(m)
ρ1···ρ2j is defined as

ε(m)
1···1︸︷︷︸
j+m

2···2︸︷︷︸
j−m

=
√

(j + m)!(j −m)!,

and for other components we have ε(m)
ρ1···ρ2j = 0. If we express matrices A(k)

in terms of spinors µ and λ we obtain explicit formulas for polarization
vector-spinors in terms of µ and λ.
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Proposition 4. The spin-tensors
(m)

e satisfy the relations:

(m−1)

e
(β̇1...β̇r )

(α1...αp) = 1√
(j+m)(j−m+1)

(
λγ

∂
∂µγ
− µγ̇ ∂

∂λ
γ̇

)(m)

e
(β̇1...β̇r )

(α1...αp),

(m = −j + 1, · · · , j)

Using the explicit formula for
(j)

e in terms of µ and λ:

(j)

e
(β̇1...β̇r )

(α1...αp) =
(−1)r

(µρ λρ)p/2(µρ̇ λρ̇)r/2
µα1 · · ·µαpλ

β̇1 · · ·λβ̇r

and Proposition 4 one can obtain all the polarization vectors in terms of
Weyl spinors µ and λ.
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Spin projection operator Θ(k)

First we consider the case of integer spins j . We construct the spin projection
operator Θ(k) as the sum of products e(m) (k) · e(m) (k) over all polariz. m:

Θ
n1···nj
r1···rj (k) := (−1)j

j

Σ
m=−j

e(m)
r1···rj (k)e(m)n1···nj (k)

This operator is sometimes called the density matrix for a massive particle
with integer spin j, or the Behrends-Fronsdal projection operator (R.E.
Behrends, C. Fronsdal (1957)).
For spin j = 1 the operator Θ(k) is well known

Θ(1)
nm(k) =

(
ηnm −

knkm
m2

)
=
(
ηnm −

knkm
k2

)

16 / 23



Proposition 5. The operator Θ(k), defined as
∑

m e(m) (k) ·e(m) (k) satisfies
the following properties:

1) projective property and reality: Θ2 = Θ, Θ† = Θ;

2) symmetry: Θ
n1···nj
···ri ···r`··· = Θ

n1···nj
···r`···ri ···, Θ···ni ···n`···r1···rj = Θ···n`···ni ···r1···rj ;

3) transversality: k r1 Θ
n1···nj
r1···rj = 0, kn1 Θ

n1···nj
r1···rj = 0;

4) traceless: ηr1r2 Θ
n1···nj
r1r2···rj = 0;

Instead of the tensor Θ
n1···nj
r1···rj symmetrized in the upper and lower indices,

it is convenient to consider the generating function

Θ(j)(x , y) = x r1 · · · x rj Θ
n1...nj
r1...rj (k) yn1 · · · ynj

D.Francia,J.Mourad,A.Sagnotti (2007); D.Ponomarev,A.Tseytlin (2016)
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Proposition 6. The generating function Θ(j)(x , y) of the covariant projection
operator Θ

n1···nj
r1···rj (in D - dimensional space-time), satisfying properties 1)-

4), listed in previous Proposition, has the form

Θ(j)(x , y) =

[ j
2 ]∑

A=0

a
(j)
A

(
Θ

(y)
(y) Θ

(x)
(x)

)A (
Θ

(y)
(x)

)j−2A
,

where [ j2 ] – integer part of j/2, a(j)
0 = 1 , for (A ≥ 1) we have

a
(j)
A =

(
−1

2

)A j!

(j − 2A)!A! (2j + D − 5)(2j + D − 7) · · · (2j + D − 2A− 3)

and the function Θ
(y)
(x) is defined as follows:

Θ
(y)
(x) ≡ Θ(1)(x , y) = x r yn Θn

r , Θn
r = ηnr −

krk
n

k2
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Remark 1. The generating function Θ(j)(x , y) satisfies differential equation

∂

∂x r
∂

∂yr
Θ(j)(x , y) =

j(j + D − 4)(2j + D − 3)

(2j + D − 5)
Θ(j−1)(x , y)

One can use this equation to calculate trace of the operator Θ(j). The
complete trace of the Behrends-Fronsdal projector Θ(j) in the case of D -
dimensional space-time (D ≥ 3) is:

(Θ(j))
r1r2...rj
r1r2...rj =

(D − 4 + j)!

j! (D − 3)!
(2j + D − 3)

This trace is equal to the dimension of the subspace, which is extracted
from the space of vector-tensor wave functions fn1...nj by the projector Θ(j).
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In the case when the dimension of the space D > 4, the symmetric
irreps considered here are not the most general. The way to construct spin
projectors of an arbitrary type of symmetry relate to construct all primitive
orthogonal idempotents for the Brauer algebra Bj(ω). The Brauer algebra
Bj(ω) is generated by elements σ1, . . . , σj−1, κ1, . . . , κj−1 with defining
relations:

σ2
i = 1, κ2

i = ωκi , σiκi = κiσi = κi , i = 1, . . . , j − 1,

σiσ` = σ`σi , κiκ` = κ`κi , σiκ` = κ`σi , |i − `| > 1,

σiσi+1σi = σi+1σiσi+1, κiκi+1κi = κi κi+1κiκi+1 = κi+1,

σiκi+1κi = σi+1κi , κi+1κiσi+1 = κi+1σi , i = 1, . . . , j − 2,

To construct all primitive orthogonal idempotents EΛ for the Brauer algebra
Bj(ω) one can use oscillating Young graph (here Λ is the path in oscillating
Young graph).
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We need the representation T which acts in the space (R1,D−1)⊗j (in this
representation we have ω = D − 1)

T (σk) · (ei1 ⊗ · · · ⊗ eik ⊗ eik+1
⊗ · · · ⊗ eij ) =

(e`1 ⊗ · · · ⊗ e`k ⊗ e`k+1
⊗ · · · ⊗ e`j )Θ`1

i1
· · ·Θ`k−1

ik−1
Θ`k

ik+1
Θ`k+1

ik
Θ`k+2

ik+2
· · ·Θ`j

ij

T (κk) · (ei1 ⊗ · · · ⊗ eik ⊗ eik+1
⊗ · · · ⊗ eij ) =

(e`1 ⊗ · · · ⊗ e`k ⊗ e`k+1
⊗ · · · ⊗ e`j )Θ`1

i1
· · ·Θ`k−1

ik−1
Θ`k`k+1 Θik ik+1

Θ`k+2

ik+2
· · ·Θ`j

ij

Example 1. The idempotent EΛj which corresponds symmetrizer expressed
by the recurrence formula

EΛj = EΛj−1

(yj + 1)(yj + j + ω − 3)

j(2j + ω − 4)

T (EΛj ) = Θ(j). Where yi ∈ Bj(ω) - is Jucys-Merphy elements

yn+1 = σn − κn + σnynσn, y0 = 0
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Spin projection operator for half-integer spins

Proposition 7. For arbitrary space-time dimension D > 2 and any half-
integer spin j the projection operator Θ(j) satisfies the conditions 1)-4) of
the Proposition 4, and the additional spinor condition

(Θ(j))
n1...nj−1/2
r1...rj−1/2

· γn1 = 0 = γr1 · (Θ(j))
n1...nj−1/2
r1...rj−1/2

and the following formula holds:

((Θ(j))
n1...nj−1/2
r1...rj−1/2

) B
A = c(j) (Θ(1/2)) G

A (γr ) C
G (γn) B

C (Θ(j+ 1
2 ))

n n1...nj−1/2
r r1...rj−1/2

,

where Θ(j+ 1
2 ) – operator for the integer spin (j + 1

2 ), factor c(j) = j+1/2
(2j+D−2)

and (Θ(1/2)) = 1
2m (γnkn+m I ) (here operator I is 2[D/2]⊗2[D/2] unit matrix

and [a] denotes the integer part of a), matrices γn (n = 0, 1, · · · ,D − 1)
represents generators of the Clifford algebra in dimensions D.
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Conclusion. We hope that the formalism considered here for describing
massive particles of arbitrary spin will be useful in the construction of
scattering amplitudes of massive particles in a similar way to the construction
of spinor-helicity scattering amplitudes for massless particles. Some steps
in this direction have already been done in papers:

1. E. Conde, E. Joung and K. Mkrtchyan, Spinor-Helicity Three-Point
Amplitudes from Local Cubic Interactions, Journal of High Energy Physics
08 (2016) 040; arXiv:1605.07402 [hep-th]. 2. A. Marzolla, The 4D on-
shell 3-point amplitude in spinor-helicity formalism and BCFW recursion
relations, in Proceedings of 12th Modave Summer School in Mathematical
Physics (11-17 Sep 2016, Modave, Belgium), (2017) 002; arXiv:1705.09678
[hep-th]. 3. N.Arkani-Hammed, T.C.Huang, Y.-t. Huang, Scattering Amplitudes
for all masses and spins arXive:1709.04891[hep-th]
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