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Outline of the talk

o Introduction: Hamiltonian fomulation of SU(3) Yang-Mills QM
constrained by the non-Abelian Gauss-laws

o Unonstrained Hamiltonian fomulation via exact resolution of
the Gauss-laws using a new algebraic gauge (flux-tube gauge)

with a simple but non-trivial Jacobian (Faddeev-Popov det)

o Exact solution of the 'corresponding harmonic oscillator
problem’, the integrable system obtained by replacing the
magnetic potential by the multiple harm. oscillator potential
B2,(A) — w?A2,, but keeping the non-trivial measure and the

kinetic term unchanged — ONB (orthonormal polynomials)

o Calculation of the low-energy spectrum of SU(3) YM QM:
using ONB truncated at increas. polyn.degree — convergence

o Comparison of the results with those of Weisz and Zieman
(1986) obtained in the constrained approach, and comparison
with the low glueball spectrum obtained using lattice QCD
(Morningstar and Peardon (1997) and Chen et. al. (2006))

o Conclusions.



Constrained SU(3) Yang-Mills theory
The action of SU(3) Yang-Mills theory of the gluon fields V,,(z) = Vau(z)Aa/2

1
S[V]:= /d% {fZF“fVF‘““’} Fo, = 0,V — 0,V + gfapcVEVE . a=1,.,8

is invariant under the SU(3) gauge transformations

i _
Vii@a/2 = Ulul@)] (Vou(@ha/2+ 20, ) U fu(a)]
chromoelectric : E¢ = Fi}) and chromomagnetic B = %Eiijqu
II4; = —E4; momenta can. conj. to the spatial V,; — canonical Hamiltonian
1 1
He = /d?’:c[QEgi 4 5Bﬁi(\/) — Va0 (Di(V) b Eps)

with the covariant derivative D; (V)b = 0060 — 9fabeVei
Exploit the time dependence of the gauge transformations to put
Vao =0, a=1,.,8 (Weyl gauge)
The dynam. vaiables V,;, —F,; are quantized in the Schrodinger functional approach
imposing the equal-time CR, —E,; = —i0/9Vq;. The physical states ® satisfy
. 1 1
Hoy® = /d% {5E3 +5 (Bui(V))? | ®=E® , Go(z)® = D;(V)apEp; =0

The Gauss law operators G, are the generators of the residual time independent
gauge transformations, satisfying [Ga, H] = 0 and [Ga, Gp] = ifapcGe.

matrix elements given in the Cartesian form (®'|O|®) o /dV (V)0 d(V). .
Wi



Constrained Quantisation of SU(3) YM QM of spatially constant fields

For the case of SU(3) YM QM of spatially constant fields, the physical states ® satisfy

— 1 2 1 hom 2 _ 92/3 hom ,__
HO P = |:2Ea,i + 2 (Bai (V)> :|(D =F |:V011/3 P 5 Bai G (1/2)961_7]6 fa.bc VbJVCk
Ga® = fape Vaily =0, a=1,.8. VEXa/2 = Uw] Vaida/2 U™ [w]

The Gauss law operators G, are the generators of the residual time independent
global gauge transformations, satisfying [Ga, H] = 0 and [Ga, Gp] = i fapcGe.
Hy is invariant under spatial rotations [Hy, J;] = 0 with

Ji = —€iixVajBar ©1=1,2,3, [Ji,J5] = texdr
and invariant under parity [Ho, P] = 0 and charge conjugation [Hp,C] =0 Jre
P: Vai>\a — _Vai)\a C s Vai)\a — _(Vaika)*
The matrix element of an operator O is given in the Cartesian form
(®'|0]®) o /dV (V)OO (V) .
Weisz and Ziemann (1986): Variat. calc. with trial functions

2PCW) = B S (V) exp[=(0/2) (Vo)

auge inv.

| shall show that the above constrained system becomes integrable if one replaces
2
(B};;‘)m(v)) — w? (Vai)2 9 w > 0 free parameter

Using an exact gauge reduction the energy-eigensystem can be found and used as a
Hilbert-basis for the YM QM. Truncating at higher and higher numbers of nodes, a
converging low-energy eigensystem of YM QM is obtained:
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Unconstrained formulation using the flux-tube gauge

Point trafo to new set of adapt coord., 24 V,;; — 8 gauge angles q;, 16 reduced Ag;

Vai (g, S) = Oup (q) Apis Oup(q) orth. 8 x 8 matrix adjoint to U(q)
Oab(q) = (1/8)Tr [U™ (@) AaU(q)\s]

. 0 Az Ags _
A=| o @ 4B |=&xvz.
0 As2 Aes
0 0 Ars
Ag1  Asa  Ass
Xa(A) = (Ti)gy Api =0 :  Aag1=0 Ya=1,245067 A Ap=0 VYa=57.

Preserving the CCR — old canonical momenta in terms of the new variables
~Bus(a 4,9 P) = Ot (@) | Pos = 0 (4) (305 @ + (4, P) )
with the FP operator vq3(A) = (I'3) 44 fabeAci and the Ty (A, P) = fapecApiPei-
= Go® = Oak(q)Q,;.1 (@pi®=0 < i(p =0 (Abelianisation)

qi
(for the case of unconstrained SU(2) YM: Khvedelidze and Pavel 1999, 2000)



Unconstrained Hamiltonian of SU(3) YM-QM in the flux-tube gauge

The correctly ordered unconstrained Hamiltonian (e.g. Christ and Lee 1980) of SU(3)
YM-QM in the flux-tube gauge takes the form

1 1
H= - Poi [v(A)| Pai +

2| [v(4)] WlA)'Ta lv(A)] (v‘lv‘lT)ac Te + <B};§’m(A)>2} ,

using the homogeneus part B(};‘gm = (1/2)g¢€ijk fabe AbjAck of the chromomagnetic
field and the operators

Ta(A, P) := fapeAviPe; = T) (Y, Py ) + TZ(Z,Pz) .

Note, that the components of the (non-reduced) TZ = —ifqpe Zp, 0/0Z. satisfy the
su(3) algebra
[TZ,T7] =i fabe TZ

whereas the reduced T =—if,p. Y3 0/0Y: do not.
The matrix element of a physical operator O is given by

(V'0]¥) o /dA [y(A)] ¥"*[A] O ¥[A]

The inverse v~ ! of the homogeneous part of the Faddeev-Popov operator exists in the
regions of non-vanishing determinant

(A = X3 (X3 -3X3)° YaYe



flux-tube gauge for SU(3): Faddeev-Popov operator

with the homogeneous part of the FP operator

Its explicit expression is
0 —X3

X3 0
—Ys/2 0
_ 0
V= 0 0
0
0
0

—Y4/2

Yab = (Fi)ad fdbcAci .

0 0 0
0 0 0
—Yi/2 Y4 0
0 0 Xy
0 -X. 0
0 0 0
0 0 0
Ye/2 Yi/2 Ya/2

Y_

(1)
0 0
0 0
~Y2/2 —/3Yy/2
0 0
0 0 ’
—-X_ 0
0 0
0 —V/3Ys/2
()

using the abbreviations X1 := —(X3 £/3X3)/2 and Y := —(Y3 £/3Y3)/2.
The inverse v~ 1 of the homogeneous part of the Faddeev-Popov operator exists in the
regions of non-vanishing determinant

dety = X3 (X3 —3X3)* YaYe



Analytical invertibility of the FP-operator in the flux-tube gauge

The inverse v~ of the homogeneous part of the Faddeev-Popov operator exists in the
regions of non-vanishing determinant

dety = X3 (X2 —3X2)° YaYe

and the non-vanishing matrix elements of the inverse y~1!

(7_1)12 == (7_1)21 = X?)_l )

are rather simple,

(s = %X;?l (Ya/Ye —Yo/Ya) , (v ')gy = 7%)(;1 (Ya/Ye + Ys/Ya) ,
(771)45 == (771)54 = 7X-&7-1 ) (771)34 =-Vv3 (771)84 = **X+1(Y2/Y6) )
(Vg5 = f%X;l (—Y1/Ye —2Y1/Ya) , (v V)g = 2—\1/§X;1 (Y1/Ye —2Yy/Ya) ,
(771)67 == (’771)76 =x', (771)36 = \/5(771)86 = %Xil(YQ/YAL) 5

1

(g, = 5le (Y1/Ys —2Y_/Ye) , X“1(W/Ya+2Y_/Ye) ,

iy b
(v )87_2\/3

grouped into those prop. to X;l, X_T_l, and X:l, and those indep. of X.
Such a " Weyl-decomposition” — considerable simplification of the non-local potential.



Hamiltonian of SU(3) YM-QM in the flux-tube gauge

H[A,P] = Kx+Ky+Kz+
1 (WP +5%) (L7 +157) (g7 +17%)
272 cos? 1 cos? [ + 27w /3] cos2 [¢ + 4m/3]
1 1 1 2
]YZ ]YZ - Bhg)m X.Y.Z
+2y42 + + 2Y62 = 2 ( ai [ s Ly ]) s
(T1]|0|T2) = /dMX/dMY/dMZ ‘IIIO Wy X3 =rcosy, Xg=rsiny

2w
/dMX o< / drr7/ di 0052[31[)] ,
0 0
oo oo oo oo oo oo
/duy / dY1/ dYg/ dYg/ dYg/ dY4Y4/ dYeYs ,
—o0 —oo —oo —o0 0 0

8 oo
[z o« T1[ az.
a=1Y

The single-direction kinetic terms read

R

1782 78 1 o 82 1. 9
Ky—=—-|—+22 4+ - (_6¢ 242 Ky——-
X 2 [8r2 + r or + r2 ( 6 an[gw]aw + 87,[)2):| ’ 7z 2 Z

7

1 92 92 ) 1 d 8 \?
Ky=-2> . — (Vi —Yp—
Y 2[a§388Y3+aZ46<8Y3+Ya8Ya Yg(laYQ 28Y1)




Hamiltonian of SU(3) YM-QM in the flux-tube gauge |l

and the interations

vz
Im

¥z

with the shifted non-Hermitean i}/ and Hermitean

_ 1 Yt FZ =Y | TZ
— (Y4Y6T YiYs + T2 (Tm+Tm>
1 1
= ¢ + —TZ) +2TY} (TZ + —TZ>
[( &3 \/g 8 83 3 \/g 8
T‘aZ defined as
Y 1 Y, 1
T - =2 ( >+ = (TB Ts) g
2Y, V3 2Ys V3
T,
Y 1 Yy 1
Ty — Ty — — - (T3+ —T3) ,
. 2Yo(3 \/3) Y4(3+\/§8)
Yo 1
Ty — Ty — —Tg ) ,
> 2Ys ( ° V3 8)
Tot+ 2 (1+ L Y- (- L
6 2Y4 3 \/g 8 Y6 3 \/g 8 )
Yo 1
Ty — Ty + —Tg ) ,
T, ( SV 8)



The corresponding harmonic oscillator problem

Replacing in H(A, P) the magnetic potential by the separable harmonic oscillator
potential with free parameter w > 0

1 1
5 (BhOm(A)) — S0 (Aa) = 5P [P+ Y Y2 4V 4 + 22

we obtain the corresponding harmonic oscillator problem (with the same measure !!l)

1
HhpolA Pl = Hx+Hy+Hz+ 2Y2IIZ + QYQI’IZ +
1| (W7+57) (7 +157) (157 +177)
R cos? 1 cos? [ + 27w /3] = cos2 [¢p + 4m/3]

The single-direction Hamiltonions read

o 2
szl {_a— = zg -t,-i (6tan[3'¢) ﬂ - i) +w27“2] )
r2

2| or2 ror oY Oy
1 02
Hy|: Z (———f—w?Yaz)
2 a=1,2,3,8 aY‘E
1 9 1 ) a\?
- — — (i— —Yo— Byre
+GZ4:6< oz~ Yaov, | V2 ( oY 2BY1) e “”

8
1 0?2 272
:iz {az? Z“}’



The corresponding harmonic oscillator problem

The corresponding harmonic oscillator problem (with the same measure !!!)
(J)PC wpc [ 4*3 (1)PC
HhAo.(A7 P)‘q:'z,M > = 6ho. T |<I>»L,M > )

turns out to be trigonal in the space of the monomial functionals

5 5 1
M[ws[2],w3/23[3] , wzb[4] , w°/2b[5] , w3/2a[3] , wza[4], w”’/Qa[s]] exp[fiw (AM')Q} ,
The M are monomials in the 35 components of seven elementary SU(3)-invariant
spatial tensors in reduced A-space shown in Table 1. Note (Am-)2 = (s11 + s22 + s33)

Sym. sfgfg]. [A] := AgiAa; , (< 7) ot+,2t+
sym. 5[73];]]6[.4] = dape AaiAbjAck ) (7' <s< k) 177,37~
sym. bizf;j [A] := BhomBhom (i <j), Bp™ := (1/2)esjk fabe AbjAck | 071,27 F

bp; [A] = dabe BRg™ Bp™ Aci + 1 (25518128 — sjjsikk — swnsigg) , (£ j# k)| 17~

ags A = fabe AarAsgAcs = BEF™ A1 = Big™ Aqz = Big™ Aus 0+
afy; [A] = dabe B™ ApiAci,  (i=1,2,3) 1

Sym. ll[_g,rm [A] = dabe BRO™ App(dege AqiAes) , (A< JAk#14,7) 0~F,27F




elementary SU(3)-inv. spatial tensors in A-space ("elementary glueballs™)

Our result is in agreement with theorem by Dittner (1972):
"'maximal number of primitive SU(3)-invariants in original constrained V-space is 35".

e.g. in constrained V-space, the SU(3)-invariant
dapcCfa[VICTIVICH[V]  with  Cf[V] = dape VP V5,

is independent of s11[V], s12[V], s12[V], s111[V], s112[V], s122[V], s222[V], b33[V],
in the sense, that it cannot be represented as a sum of products of them. It is,
however, not primitive because it is related to them via outer products.

In reduced A-space, however, where outer products of invariant tensors are absent, the
corresponding polynomial is indeed reducible

a b c 1 3 1 1
dabcC2[A]C12[A]CTR[A] = Esm[A} - 6812[A] s11[A] s22[A] — 53111[14] s222[A]

3 1
+18112[A] s122[A] + 6812[14] b3z[A] .



All solutions of the corresponding harmonic oscillator problem

Organising the monomial functionals according to the degree n (as a polynomial in
the A) and the conserved quantum numbers J,M,P,C and applying a Gram-Schmidt
orthogonalisation with respect to the measure, we obtain all exact solutions

B(PC 4] = p(IIPC

[n]i,M [n]i,M[wS[Q]’w3/2

i3], w?bpag, w*/ 2bps), w2 agz), w?agy, 0¥ agg)]
X exp[—w (AM')2 /2],

of the corresponding harmonic oscillator problem with energies

Eé{gfc =124+ n)w,
where n is the degree of P,,) as a polynom in the A.
The lowest 017 eigenstates e.g., are (SES]H—_‘— = (511 + s22 + 833) /V/3)

O)++ _ . (0)++
€0 =12w : P[O]

) ++ _ . (0)++ 1 ()++
€5 = ldw : P[Z] o —2\/5-1—5(.08[2] ,

(O ++ _ . (0)++ 13 ++ 1 /3 o7 (0++)2

eho T =16w 1 Pyt o W—,/?wsm +54 36 (5[2] ) ]
(0)++ L e @++\2 1 13 o) (2) (2)y(0)++
g G S () +35 105% (%12t ,

(0)++ 12 5 0)4+)2 I 9, (2 (2\(0)++
P o (s ) WO ROL

x< 1,

[4]3 3V 35

L 14 5, 0)++
+§ Ew 6[4] s eeeennns



Low-energy eigensystem of SU(3) Yang-Mills quantum mechanics

Consider the basis of energy eigenstates of the correponding unconstrained harmonic
oscillator Schrodinger equation orthonormal with respect to the Yang-Mills measure

1
Hy o ®pn [A,w] = [Tkin + §w2AZi:| @n[A,w] = E'Irlb'o'@n[A,w] )
Then the matrix elements of the unconstrained Yang-Mills Hamiltonian are given as
1
Mo 1= (o] (Tuan + 2 B14]) @0l ]

1 1
—[fumes® = (@h14,0]( 3042 014, w])a] + SO [4,0] (214D Bl
since the kinetic terms Ti;, are the same for the Yang-Mills and the corresponding
harmonic oscillator problem. We treat w as a variational parameter, which in each
symmetry sector can be choose to minimize the lowest eigenvalue of the matrix M.

The spectrum is purely discrete and the lowest energy is e§+ = 12.589 .

The results are in good agreement with the results of Weisz and Zieman (1986) using
the constrained Hamiltonian approach in the 07+ and 2+ sectors, much more
accurate values in other sectors considered by them, e.g. in 17~ and 37~ sectors ,

and give quite accurate " new results” for the states not considered by them, as e.g.
2——, 3Tt .



Eigenstates of Hy, o, from Gram-Schmidt Orthogonalisation

Enumerate all possible monomials for given JEC in increasing order n and multipl. m
J)PC J
MEDPCLA] = MG 512 A), 5131[A], biay[A], bis)[A], ags)[A], agay (4], ajs[4]]

0)++__ 0)++ 0)++__ 0)++ (0)++ 0)++
My = M[o] , M M M. M

e.g. 2 = My, , 34,5 [4]1,2,3 >

Gram matrix PO - (N PC
(Gra) PP = ((MIFOMEDTO) )

27 =) 8 =)
/0 dip cos?[3 w]/o drr 7 exp[—wr?] Ll;[l /_Oo dZ, exp|-wZ2]

a

1,2,3,8 fo%s) o
1T / dY, .exp[-wY?] / dY1Yy exp[—wY7] / dYsYs exp[—wY7]
—o00 0 0

Gram-Schmidt orthogonalisation (7" lower-triangular) — orthog. polynomials

MOl = POTOUAL= Y T MDTCl] TeDFPOTT =1
k=1
ONB of sol.s of corresp. harm. oscill. : @%J)PC[A,LU} = P,(lJ)PC[A} exp[féw (Aui)?]

Calculate finally magnetic matrix elements:

(<I>

m [

w] (BHIAD) @A, )7 = T T ((MEFEB2(A] M) 4)



: Low-energy spectrum of SU(3) YM QM

(R 0t (0,2,4,6,8,10) 0~* (3,5,7,9,11) 0t~ (10) ~ (9,11)
aF1[g?/3] | 12.589(12.591) [12.589] 17.74(17.76) [17.8] 28.55 [28] | 25.20(25.56)
aFs[g?/3] 15.39(15.45)  [15.38] 19.99(20.05) 29.80 26.76(27.44)
aFEs[g?/3] 17.24(17.34)  [17.23] 21.40(21.66) —— 27.68(28.35)
dim basis | 1+1+3+8+17+39=69| 1+2+6+ 17+ 40 = 66 2 3+9=12

1P¢ 1=~ (3,5,7,9) 1t= (4,6,8,10) -+ (7,9) 1+ (6,8, 10)
aF1[g?/3] | 16.58(16.74) [17.05] 18.77(18.82) [18] 23.45(23.70) [23] | 21.52(21.93)
aFs[g?/3] | 18.62(19.18) 21.33(21.84) 24.15(24.53) 22.95(23.64)
aFEs3[g?/3] | 18.92(19.47) 22.14(22.55) 26.51 24.16(24.73)
dim basis | 1 +4+12+35=52 | 1+ 3+ 13+ 39 = 56 2+9=11 1+7+26=34

PPC 21+ (2,4,6,8,10) -+ (5,7,9) ~ (6,8,10) = (5,7,9)
aF1[g%/3) | 14.81(14.86) [14.85] | 19.95(20.30) [21] | 21.69(22.15) [22.1] 18 53(19.04)
aBs[g?/3] | 17.18(17.29) [17.26] | 20.87(21.22) 24.36(24.72) 20.14(20.51)
aEs3[g?/3] | 17.60(17.83) 22.78(23.22) 24.55(25.15) 21.50(22.19)
dim basis [1+3+9+294+80=122] 2+8+427 =237 1+7+33=41 |2+8+29=39

gFe 37~ (3,5,7,9) 3t~ (6,8,10) 3=F (7,9) 31+ (6,8, 10)
aF1[g?/3] | 16.09(16.15) [16.5] 21.20(21.68) 23.38(23.71) 19.56(20.14)
aFs[g?/3] | 18.73(19.39) 21.79(22.13) 24.03(24.29) 21.36(21.76)
aE3[g?/3] | 19.13(19.71) 24.10(24.98) 25.99 22.04(22.46)

dim basis | 1+3+13+44=61 | 2+10+45=57 | 2+ 13 =15 | 3+ 12+ 46 = 61

The values obtained by Weisz and Ziemann (1986) are shown in{]-brackets.




Energy-eigenvalues as a function of polynomial order of truncation

lowest 07/1"*/2"/3° states owest 07*/17"/27"/3"" states lowest 0/17/2"/3"states lowest 0°/1°/2°/3™ states
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Figure: Energy-eigenvalues as a function of polynomial order of truncation. The
blue/black/red/green lines correspond to spin-0/spin-1/spin-2/spin-3




energy-spectrum of YM-QM  vs  glueball-spectrum of lattice YM

YM-QM Chen et.al.(2006)
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Conclusions

@ An unconstrained Hamiltonian formulation of SU(3) Yang-Mills QM (lowest order
in an strong coupling expansion of YM theory) is possible with a simple,
analytically invertible, but non-trivial Faddeev-Popov operator.

@ The spectrum of the Hamiltonian of SU(3) Yang-Mills QM of spatially constant
fields can be determined in an effective way using the exact solutions of the
corresponding harmonic oscillator problem. The results are in good agreement
with the results of Weisz and Zieman (1986) using the constrained Hamiltonian
approach in the 07+ and 211 sectors, much more accurate values in other
sectors considered by them, e.g. in 1=~ and 37~ sectors , and give quite
accurate "new results” for the states not considered by them, as e.g. 27—, 3t+

o In order to get convergent results polynomials in orders of at least 10 are
necessary. Hence we need powerful computers and very effective Computer
algorithms to cope with very large numbers of terms.

@ A quite accurate knowledge of the eigensystem of SU(3) Yang-Mills QM is a
good basis for strong coupling pert.theory in small A = g=2/3 analogous to the
SU(2) approach (H.-P. P., Phys. Lett. B 685 (2010) 353-364.)

@ The calculation can straightforwardly be generalised to the inclusion of quarks
analogous to the case of SU(2) Dirac-Yang-Mills QM ( H.-P. P., Phys. Lett. B
700 (2011) 265-276.) — meson spectrum ?

o The very effective formulation in terms of the 35 components of 7 spatial
symmetric tensors might give some useful information about the decay channels
of glueballs, important for their experimental detection.
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