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We construct the superintegrable generalization of
Rosochatius/Smorodinsky-Winternitz system on complex projective
space interacting with constant magnetic field. The model belongs
to the class of the so-called " Kahler oscillators” and admits “weak
N = 4" (or su(2|1) ) supersymmetric extension.
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Superintegrable Smorodinsky-Winternitz System

» The N-dimensional oscillator harmonic oscillator is maximally
superintegrable system, with su(N) symmetry algebra.

> Its deformation with potential >, i—; preserves
superintegrability property but yieldl the highly nonlinear
algebra. This singular oscillator sometimes called
Smorodinsky-Winternitz system.

» Smorodinsky-Winternitz system possesses superintegrable
generalization to (pseudo)sphere (e.g. Groshe, Pogosyan,
Sissakian'1995; Harland Yermolayeva'2004; Galajinsky,A.N.,
Saghatelian'2013).

It was suggested by Rosochatius in 1877 (without noticing
superintegrability)



Is it possible to construct the superintegrable counterparts of
Smorodinsky-Winternitz system on complex projective spaces?

YES!



CP"-oscillator (Bellucci, A.N.'2003)
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» Symmetry generators form quadratic algebra
» It admits "weak N =4 " supersymmetric extension

» It is not covariant under transition from one chart to other



CPN-oscillator potential in homogeneous coordinates
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“Forminvariantisation”
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» In flat limit it results in CN-Smorodinsky-Winternitz system

» Can be viewed as the analog of Rosochatius system

CPN-Rosochatius/Smorodinsky-Winternitz model



CN-Smorodinsky-Winternitz system(Shmavonian' 2018)
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CP"-Rosochatius/Smorodinsky-Winternitz model
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where
Jop = i(2Pms — TpZ?) — Bl+zz’ Joa = 5 + 2°(27) + ZBlizz
are su(N + 1) generators




Symmetry algebra of CPV-R/SW model
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Reduction to (spherical) Rosochatius system

Coordinate transformation
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Reducing by pZ, we arrive the (spherical) Rosochatius systemwith
Ya = Xa/xo, with (x0, x,) be Cartesian coordinates of RV+1,
sum,{\’:()x,-2 =1



Supersymmetrization

The Hamiltonian of CPY-SW/R model can be represented in the
form of “Kahler oscillator” (shifted by constant),
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» w=0,B =0: Admits N = 4 supersymmetric extension.

» w # 0: Admits “Weak N/ = 4" (or SU(2|1)) supersymmetric
extension



Weak N = 4 supesymmetrization of Kahler oscillator
Supersymplectic Structure
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Weak N = 4 supersymmetry algebra
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Kinematical symmetries
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zazb z?
h,; = - h, = —.
1+ 2z 142z




“Supersymmetric” remarks

‘Weak NV = 4" CPY-RSW model inherits kinematical SU(N)
symmetries. What about hidden symmetries?

lw| =0,B = 0: N =4 supersymmetry
N

Wl =0 = |wo| <> lwal, with |wo| < |wr|<... < |wnl
a=1

CPN-oscillator does not belong to this set of models.
wi =0,B#0: SU(N + 1)-symmetric “weak N = 4"
super-CPVN-Landau problem.

All these statements remain correct for
CN-Smorodinsky-Winternitz.



Concluding remarks

Quantum mechanics of CPV-RSW model? In progress

We are sure that HPV-RSW model defined by CPV-RSW
Hamiltonian with z? be quaternionic oordinates is
superintegrable system admitting interaction with BPST
instanton field

Quantum mechanics of “weak N = 4" super-CPN-RSW will
hopefully be done in collaboration with E.lvanov and
S.Sidorov.

Could hidden symmetries of CPN-RSW model be extended to
“weak N = 4" super CPV-RSW model? One should clarified
in “weak N = 4" CN-Smorodinsky-Winternitz at first.

Is it possible to construct the superintegrable CPN-Calogero
model?



Thank you for your attention



