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Higher derivative theories is a class of models whose Lagrangian depends on second
and higher time derivatives of the generalized coordinates,

(k)

i T i dk i
S[q'(t)]:/L(q’,q7q,...)dt, gi=249

dtk -
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Even though the canonical energy is unbounded, higher derivative theories can have
bounded conserved quantities that prevent collapse of classical solutions.

No collapse of classical solutions does not automatically mean that the spectrum
of energies has the vacuum state with minimal energy.

= To have well-defined vacuum state with minimal energy, higher derivative model
should admit alternative Hamiltonian formulation with bounded Hamiltonian.

in mechanics Bolonek and Kosinski, 2005

in field theory DK, Lyakhovich, and Sharapov, 2014
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Warm-up example: Pais-Uhlenbeck oscillator

Lagrangian
1
[ = 2 2 2y -2 2,242) )
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First-order equations
q: qla ql - q2a 672 = q3a C-I3 = 7(&}%4’&13)(]27&}%&}%(] (3)

Two-parameter series of Hamiltonians

H(B) = Zﬂa ¢+ w3q')? + (Wf +wi —wi)(@® +wiq)). (4)

Poisson brackets
{qla CI} = 1/ﬂ1 + 1/62 5 {q27 ql} = _{q37 q} = w%/ﬁl + w%/ﬁZ )

(5)
(@t =w3/Br+wi/B2,  {d*q}={d’q'}=0.

Bolonek and Kosinski, 2005
Generalizations Damaskinsky and Sokolov, 2006; Masterov, 2015 and-2016
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Extended Chern-Simons model & conserved quantities

Constrained Hamiltonian formulation

Alternative Poisson brackets

@ Alternative Hamiltonian action
@ Stable interactions

@ Summary
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Extended Chern-Simons model

Extended Chern-Simons a class of theories of vector field A = A,dx* on 3d
Minkowski space with the action functional

1
S[A]:5/*A/\(alm*dA+a2*d*dA—{—m’l*d*d*dA), (6)

d is the de-Rham differential, x is the Hodge star operator, m is a dimensional
constant, and a1, ap are dimensionless constant real parameters.

Deser and Jackiw, 1999

The theory admits a two-parameter series of conserved quantities
E(a,pB) = /d2 [B2m™2G, G, +2m ' B1GLFy + (Broe — Bocr) FuFu] . (7)

where (1,0, are parameters, F = xdA, and G = xd xdA; B1 = 1,6, = 0
corresponds to the canonical energy.

DK, Karataeva and Lyakhovich, 1999
The general representative in the series (7) is bounded if
B2>0, —f+axfif2—a1ff;>0. (8)
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First-order equations

Lagrange equations for the extended Chern-Simons,

gE(alm*d+a2*d*d—|—m_1*d*d*d)AzO, (9)

involve the third-time derivatives of A.
Introduce new variables F;, G; that absorb the time derivatives of A

Fi=cij(Ai — 9jA0), Gi=—Ai+ A+ 9j(9;A —diA), i,j=1,2, (10)
with ¢j; being the 2d Levi-Civita symbol. In so doing, F; = (xdA);, G;i = (*dF);.
The first-order equations of motion in terms of the fields A,, F;, G; are

Ai=0iAo—ciF,  Fi=ci[0k(OA; — 9A) — G |

) (11)
G = Ejj [6k(8kl-j — aij) + m(OLQGJ' + Ozlij)] ,
and we have one constraint
@Ee,-ja,-(m’lGj—kasz—kalmAj) =0. (12)
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Constrained Hamiltonian formulation

Constrained Hamiltonian formulation for extended Chern-Simons reads
Zi={Z H(o.f)}as, ©=0. (13)
where Z; = {A;, F;, G }.
We seek the Hamiltonian in the form
H(a, B, k) = E(a, B) + / d’x(koAo + kiFo + k2Go)®©, (14)
where ko, kq, ko are some constants; kg # 0.
Substituting (14) into (13), we get defining equations for the Poisson bracket
{Ai, H(a, B, k) } a8,k = OiA0 — €jiFj
{Fi, H(a, B, k) }a, 5.6 = €5 [0k(OkAj = 0A) = G] , (15)
{Gi, H(cv, B, k) Yo,k = €if [0k(OkFj — OjFk) + m(a2Gj + aymF;)]
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Solution for Poisson brackets and kg, k1, k>

(1 —3)+aa2fe 3 o
= m’e;6(X —y),
8% — axf1fB2 + o33 (X = 5)

{Gi(%), Gi(M)}tarp.4

(A (T _ a1 — aif > o o
{F,(X), GJ(y)}Oc,ﬁy’Y - 6]2_ _ a26162 + alﬂgm €U5(X y)v
o . o . B o S
{A/(X)7 G:/'(y)}ayﬁﬁ’ = {FI(X)7 El(y)}/377 = _ﬂ% _ CYQﬂl;Q _|_ 0[1/65 mg"jé(x - .y)7
N oo _ B2 o o
{AI(X),FJ(y)}OL,B,’Y - 6%_a2ﬁ1ﬁ2+a153<€u6(x y)7
A A _ Y —1_.5(2 ).
{Al(X),AJ(}/)}a,ﬁ,'y - B% — azﬂlﬂz n Ollﬁg m 6U5(X }/) '
(16)
o Baan — Bafran + (3 o — P21 + (201 — Praz)
0 — ) 1= )
B1 — Bacy — ya B1 — ooz —yaq (17)
ky = B3+ b

p1 — Bz — v
Here, Y is accessory parameter.
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Critical points for Poisson bracket

Solution for Poisson bracket is not defined if parameters a, 3,y meet the relations:
Biay — Bafron + 7 =0, B1 — Brar —yar =0. (18)
The first relation implies that the energy of the system,
1
E(a, B) = 5 / d*x[Bam 2 GG+ 2m ™ B1GuFy + (Broz — Bran) FuFy) s (19)

is a degenerate quadratic form in the variables F, G.
= degenerate conserved quantity can't serve as Hamiltonian.

The second relation implies that the constraint © is unable to generate gauge
symmetry of the vector field A,

(A0 O = eI 0B —7) =0, (20

= there is a critical value of 7 such that constraint © can't serve as gauge generator.
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Alternative Hamiltonian (final form)

The final form for total Hamiltonian reads

H(a, B,7) = E(a,ﬂ)+/d2xe [51 2152 +a152A

B1P2 + a1 By — a1y m e A; + B3 + By _26,'13,'/‘_1} ’
f1 — aaffa — a1y B1 — azfo — ary

where
Bian = Bafraz + 7 #0,  Bi— fraz —yon #0, (22)
and Poisson bracket is defined by equations (16).

@ Constrained Hamiltonian formulation exists for almost all «, 3,~. The param-
eters are two constants (3, while -y is accessory quantity;

@ Canonical Ostrogradski's Hamiltonian is included in the series for

Bi=0, B=v=0; (23)
@ Alternative Hamiltonian is bounded if
B>0,  [2ay— Bafron+ 52> 0. (24)
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Alternative first-order action

For all the admissible values of the parameters «, 3,7, the Poisson bracket is a
non-degenerate tensor

det({Zi, Z;}) = (B1 — Bz — a1 )*(B3on — Bafra + B7)° # 0. (25)

So, the Poisson bracket define the series of Hamiltonian action functionals

_ 87 — f1fa + 233 -1 ;
S(a, B,7) = / { [Py N—— (cumA; + 2asF; +2m™" Gj)ejjAj +

ﬂl (a3 — a1)Br — arafa)y 4 :
m~eiiFiFi+
B1 — azf2 — ayry e
+2ﬁlﬁ2 + (a2f1 — o)y m_zg’_j G+

B1— azfr — a1y
B3 + Pry -3 : 3
266 — H(a, B,7) fdx
B1 — azfs — ary ij iy (o, B,7)
The series includes the canonical Ostrogradski action (81 =1, 5, = = 0),
Sost. = / {(@1mA; +205F; +2m72 G)eyAj — m ey FiF; — Ag® — How, b
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Stable interactions

a) with spinor field

(aimxd+az*xdxd+mtxdxdxd)A=Jy, Jyp = ey,
(iv*Dy —m)y =0, D, = 0, — ie(B1A+ B2 x dA),, (26)
E(e;a, B) = E(a, B) +/d2x$(i7,-o,- —m)y.

Abakumova, DK, Lyakhovich, 2018
b) with Einstein’s gravity

(axm*d+ay*xdxd+mPxd+d*d)A=0,

1
R — 28" R=T"(A g a,5),

1
E(A gia,B)=R" - EgOOR —T%A, g;0,8).

DK, Karataeva, Lyakhovich, 2018
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@ Extended Chern-Simons of third order admits a two-parameter series of con-
served quantities. This series can include bounded representatives.

@ Two-parameter series of Hamiltonian formulations exists such that any
bounded quantity can serve as Hamiltonian.

@ Canonical Ostrogradski's formulation is included in the series. The canonical
Hamiltonian is unbounded.

@ There are interactions such that stability of free theory is preserved. The
interaction vertices are non-Lagrangian but Hamiltonian.
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Thank you for your attention
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