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Motivation and history

The goal is to construct N = 4 supersymmetric Calogero–Moser
system. Motivation:

Conjectural relation to Reissner-Nordström black hole
(Gibbons, Townsend’99)

Relation of conformal blocks with Calogero-Moser-Sutherland
theory (Isachenkov, Schomerus’16)

Ansatz for N = 4 supercharges:

Qa = plψ
al + Wlψ

al + FlmnΨlmn, a = 1, 2,

where Ψlmn is cubic in fermionic variables ψbk , ψ̄k
b (b = 1, 2), and

W = W (x),F = F (x) are some functions.
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Some previous works:

Wyllard’00, su(1, 1|2) symmetry. Supercharges depend on two
potentials W ,F . Calogero–Moser system at a particular
coupling parameter when W = 0

Bellucci, Galajinsky, Latini’05 F satisfies WDVV; study of 2-3
particles systems

Galajinsky, Lechtenfeld, Polovnikov’07,’09 Extension of ansatz
for other root systems; study of 3-4 particle systems, W = 0
solutions

Fedoruk, Ivanov, Lechtenfeld’10 D(2, 1;α)-symmetry, one
particle spin system

Krivonos, Lechtenfeld’11 N particles; extra bosonic variables

F, Silantyev’12 A class of algebraic solutions with W 6= 0

Krivonos, Lechtenfeld, Sutulin’18 Supercharges for any N -
Calogero-Moser system with many fermionic variables
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Ansatz

Consider N quantum particles on a line with coordinates and
momenta {xj , pj |j = 1, . . . ,N}. To each particle we associate four
fermionic variables

{ψaj , ψ̄j
a|a = 1, 2, j = 1, . . .N}.

We impose the following (anti)-commutator relations:

[xj , pk ] = iδjk , {ψaj , ψ̄k
b} = −1

2
δjkδab, {ψaj , ψbk} = {ψ̄j

a, ψ̄
k
b} = 0.

One can think of pk as pk = −i ∂
∂xk

.
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Let N = 4 supercharges be

Qa = plψ
al + iWlψ

al + iFlmn〈ψblψm
b ψ̄

an〉,
Q̄a = pl ψ̄

l
a − iWl ψ̄

l
a + iFlmn〈ψ̄l

d ψ̄
dmψn

a 〉,

where W = W (x), F = F (x), Wl = ∂W
∂xl

, Flmn = ∂3F
∂xl∂m∂n

; a = 1, 2,

〈, 〉 is the Weyl anti-symmetrisation, ψk
b = εbaψ

ak , ψ̄bk = εbaψ̄k
a

with ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0.

Imposing N = 4 supersymmetry one obtains:

(generalised) Witten–Dijkgraaf–Verlinde–Verlinde (WDVV)
equations for F ,

FrjkFkmn = FrmkFkjn, (r , j , k ,m, n = 1, . . . ,N).

twisted period equations for W ,

∂klW + Fklj∂jW = 0, (k, l , j = 1, . . . ,N).

We set W = 0.
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D(2, 1;α) superalgebra

[Frappat, Sorba, Sciarrino “Dictionary on Lie superalgebras”, 1996]

D(2, 1;α) has 8 odd generators Qabc , and 9 even ones Jab, I ab,
T ab (a, b, c = 1, 2). The latter form mutually commuting sl(2)
subalgebras; [T ab, I cd ] = [I cd , Jef ] = [T ab, Jef ] = 0.
The (anti)-commutation relations of D(2, 1;α) read

{Qace ,Qbdf } = −2
(
εef εcdT ab + αεabεcdJef − (1 + α)εabεef I cd

)
,

[T ab,T cd ] = −i
(
εacT bd + εbdT ac

)
,

[Jab, Jcd ] = −i
(
εacJbd+εbdJac

)
, [I ab, I cd ] = −i

(
εac I bd+εbd I ac

)
,

[T ab,Qcdf ] = iεc(aQb)df , [Jab,Qcdf ] = iεf (aQ |cd |b),

[I ab,Qcdf ] = iεd(aQ |c|b)f ,

where we symmetrise over two indices inside (. . . ) with indices
inside | . . . | being unchanged.
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Root systems

Let V = RN , u, γ ∈ V and ( , ) the standard bilinear form in V .

Definition

Let R be a set of non-zero vectors in V s.t

1 R ∩ Rγ = {−γ, γ},
2 sγR = R,

∀γ ∈ R. The set R is called a (Coxeter) root system with
associated finite Coxeter group W = 〈sγ |γ ∈ R〉.

Let W be irreducible: AN , BN , DN , E6,7,8, F4, H3,4, I2(m).
We fix (γ, γ) = 2 for all γ ∈ R.
For example,
BN = {±(ei ± ej), (1 ≤ i < j ≤ N),±

√
2ei , (1 ≤ i ≤ N)}.

Let also R = R+ ∪ (−R+).
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1st representation of D(2, 1;α)

Let

F =
λ

2

∑
γ∈R+

(γ, x)2 log(γ, x), λ ∈ C.

Let {ek}Nk=1 be the standard basis of V with the corresponding
coordinates {xk}Nk=1.

Recll the following

Lemma

For any irreducible Coxeter root system R in a Euclidean space V
and for any u, v ∈ V∑

γ∈R+

(γ, u)(γ, v) = h(u, v),

where h is the Coxeter number of W .

Corollary

xkFklm = λh δlm.
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Re-denote generators:

Qa = −Q21a, Q̄a = −Q22a, Sa = Q11a, S̄a = Q12a,

K = T 11, H = T 22, D = −T 12 = T 21.

21 / 44



Preliminaries
N = 4 Calogero–Moser systems related to root systems

Supersymmetric ∨-systems

1st representation
Hamiltonian
2nd representation
Hamiltonian
Gauge relation

1st ansatz

Consider the following anzatz for the supercharges:

Qa = prψ
ar + iFrjk〈ψbrψj

bψ̄
ak〉,

Q̄c = pl ψ̄
l
c + iFlmn〈ψ̄l

d ψ̄
dmψn

c 〉,
where Weyl anti-symmetrization can be simplified to

Frjk〈ψbrψj
bψ̄

ak〉 = Frjk(ψbrψj
bψ̄

ak − 1

2
ψarδjk),

and

Flmn〈ψ̄l
d ψ̄

dmψn
c 〉 = Flmn(ψ̄l

d ψ̄
dmψn

c −
1

2
ψ̄l
cδ

nm).

Note that under Hermitian conjugation † defined by

ψj
a
†

= ψ̄aj , ψaj † = ψ̄j
a, pj

† = −pj , xj † = xj , i
† = −i , (AB)† = B†A†

we have Qa† = Q̄a.
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Let also

K = x2, D = −1

4
{xj , pj} = −1

2
xjpj +

iN

2
,

Jab = Jba = iψaj ψ̄bj + iψbj ψ̄aj ,

I 11 = −iψj
aψ

aj , I 22 = iψ̄aj ψ̄j
a, I 12 = − i

2
[ψj

a, ψ̄
aj ],

Sa = −2xjψ
aj , S̄a = −2xj ψ̄

j
a.

Remark

If α = −1 then this ansatz for su(1, 1|2) subalgebra generated by
Q,S , J,K ,D is a particular case of ansatz from [Galajinsky,
Lechtenfeld, Polovnikov’09].
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Hamiltonian

Theorem

For any a, b ∈ {1, 2} we have {Qa, Q̄b} = −2Hδab, where the Hamiltonian H
is given by

H =
p2

4
− ∂rFjlk

2
(ψbrψj

bψ̄
l
d ψ̄

dk − ψr
bψ̄

bjδlk +
1

4
δrjδlk) +

1

16
FrjkFlmnδ

nmδjlδrk .

Theorem

Let

λ = −2α + 1

h
,

where h is the Coxeter number of the root system R. Then
D(2, 1;α) relations are satisfied.
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Proposition

The Hamiltonian H has the following form:

4H = −∆ +
∑
γ∈R+

λ(λ+ 1)(γ, γ)

(γ, x)2
+ Ψ,

where

Ψ = 2λ
∑
γ∈R+

γrγjγkγl
(γ, x)2

ψbrψj
bψ̄

l
d ψ̄

dk − 4λ
∑
γ∈R+

γrγj
(γ, x)2

ψr
bψ̄

bj

with γk = (γ, ek).

The bosonic part is Olshanetsky-Perelomov generalised
Calogero-Moser Hamiltonian associated with R. E.g. for R = BN

we have −∆ +
∑

i<j
2λ(λ+1)
(xi±xj )2

+
∑

i
λ(λ+1)

x2i
28 / 44
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2nd ansatz

Now let the supercharges be of the form (no antisymmetrisation in
the third order terms)

Qa = prψ
ar + iFrjkψ

brψj
bψ̄

ak ,

Q̄c = pl ψ̄
l
c + iFlmnψ̄

l
d ψ̄

dmψn
c .

Let also

K = x2, D = −1

2
xjpj +

i

2
(α + 1)N,

Jab = Jba = iψaj ψ̄bj + iψbj ψ̄aj ,

I 11 = −iψj
aψ

aj , I 22 = iψ̄aj ψ̄j
a, I 12 = − i

2
[ψj

a, ψ̄
aj ],

Sa = −2xjψ
aj , S̄a = −2xj ψ̄

j
a.
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Theorem

For any a, b ∈ {1, 2} we have {Qa, Q̄b} = −2Hδab, where the
Hamiltonian H is

H =
p2

4
−
∂rFjlk

2
(ψbrψj

bψ̄
l
d ψ̄

dk − ψr
bψ̄

bjδlk) +
i

4
δnmFrmnpr .

Note: This ansatz leads to the terms of the form 1
x p.

Theorem

Let

λ = −2α + 1

h
,

where h is the Coxeter number of the root system R. Then
D(2, 1;α) relations are satisfied.
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Theorem

For any a, b ∈ {1, 2} we have {Qa, Q̄b} = −2Hδab, where the
Hamiltonian H is

H =
p2

4
−
∂rFjlk

2
(ψbrψj

bψ̄
l
d ψ̄

dk − ψr
bψ̄

bjδlk) +
i

4
δnmFrmnpr .

Note: This ansatz leads to the terms of the form 1
x p.

Theorem

Let

λ = −2α + 1

h
,

where h is the Coxeter number of the root system R. Then
D(2, 1;α) relations are satisfied.
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Proposition

The Hamiltonian H has the form

4H = −∆ +
∑
γ∈R+

2λ

(γ, x)
∂γ + Ψ,

where ∂γ = (γ, ∂x) and

Ψ = 2λ
∑
γ∈R+

γrγjγlγk
(γ, x)2

ψbrψj
bψ̄

l
d ψ̄

dk − 4λ
∑
γ∈R+

γrγj
(γ, x)2

ψr
bψ̄

bj .

E.g. for R = BN the bosonic part is

−∆ +
∑
i<j

2λ

xi ± xj
(∂i ± ∂j) +

∑
i

2λ

xi
∂i

The fermionic term Ψ is the same as in the 1st representation.
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Gauge relation

Denote by H1 the Hamiltonian from the 1st representation and
denote by H2 the one from the 2nd representation (multiplied by 4):

H1 = −∆ +
∑
γ∈R+

λ(λ+ 1)(γ, γ)

(γ, x)2
+ Ψ,

H2 = −∆ +
∑
γ∈R+

2λ

(γ, x)
∂γ + Ψ.

Proposition

Let δ be the function δ =
∏
β∈R+

(β, x)λ. Then H1 and H2 are
related by the gauge transformation

δ−1 ◦ H2 ◦ δ = H1.
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∨-systems

Let V ∼= CN and A ⊂ V be a finite set of non-collinear covectors.
Define a bilinear form GA on V by

GA(u, v) =
∑
γ∈A

γ(u)γ(v), u, v ∈ V ,

and assume that GA is non-degenerate. Then V ∼= V ∗ and γ ∈ V ∗

corresponds to γ∨ ∈ V s.t GA(γ∨, u) = γ(u) for any u ∈ V .

Definition (Veselov ’99)

A is a ∨-system if for any γ ∈ A and π ⊂ V ∗, dimπ = 2∑
β∈A∩π

β(γ∨)β = µγ,

for µ = µ(γ, π) ∈ C. 34 / 44
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Proposition (Veselov ’99)

Any Coxeter system R+ is a ∨-system.

Consider the following function F = FA(x1, . . . , xN):

F =
λ

2

∑
γ∈A

γ(x)2 log γ(x), λ ∈ C∗.

Theorem (Veselov’99; FV’07)

F satisfies WDVV equations if and only if A is a ∨-system.
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Any Coxeter system R+ is a ∨-system.

Consider the following function F = FA(x1, . . . , xN):
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λ
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γ(x)2 log γ(x), λ ∈ C∗.
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Supersymmetric extension of ∨-systems
Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V :

GA(u, v) = (u, v), u, v ∈ V .

We identify V and V ∗ so that γ(u) = (γ∨, u) = (γ, u) for any
γ ∈ A, u ∈ V .

Consider the 1st ansatz: Qa = prψ
ar + iFrjk〈ψbrψj

bψ̄
ak〉,

Q̄c = pl ψ̄
l
c + iFlmn〈ψ̄l

d ψ̄
dmψn

c 〉.
Theorem

We have {Qa, Q̄b} = −1
2H1δ

a
b, where the Hamiltonian H1 is

H1 = −∆ +
λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
+ Ψ,

where Ψ =
∑

γ∈A
2λγrγjγlγk

(γ,x)2
ψbrψj

bψ̄
l
d ψ̄

dk −
∑

γ∈A
2λγrγj (γ,γ)

(γ,x)2
ψr
bψ̄

bj .

All the relations of D(2, 1;α) are satisfied if λ = −(2α + 1).
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Supersymmetric extension of ∨-systems
Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V :

GA(u, v) = (u, v), u, v ∈ V .

We identify V and V ∗ so that γ(u) = (γ∨, u) = (γ, u) for any
γ ∈ A, u ∈ V .
Consider the 1st ansatz: Qa = prψ

ar + iFrjk〈ψbrψj
bψ̄

ak〉,
Q̄c = pl ψ̄

l
c + iFlmn〈ψ̄l

d ψ̄
dmψn

c 〉.

Theorem

We have {Qa, Q̄b} = −1
2H1δ

a
b, where the Hamiltonian H1 is

H1 = −∆ +
λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
+ Ψ,

where Ψ =
∑

γ∈A
2λγrγjγlγk

(γ,x)2
ψbrψj

bψ̄
l
d ψ̄

dk −
∑

γ∈A
2λγrγj (γ,γ)

(γ,x)2
ψr
bψ̄

bj .

All the relations of D(2, 1;α) are satisfied if λ = −(2α + 1).
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Supersymmetric extension of ∨-systems
Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V :

GA(u, v) = (u, v), u, v ∈ V .

We identify V and V ∗ so that γ(u) = (γ∨, u) = (γ, u) for any
γ ∈ A, u ∈ V .
Consider the 1st ansatz: Qa = prψ

ar + iFrjk〈ψbrψj
bψ̄

ak〉,
Q̄c = pl ψ̄

l
c + iFlmn〈ψ̄l

d ψ̄
dmψn

c 〉.
Theorem

We have {Qa, Q̄b} = −1
2H1δ

a
b, where the Hamiltonian H1 is

H1 = −∆ +
λ

2

∑
γ∈A

(γ, γ)2

(γ, x)2
+
λ2

4

∑
γ,β∈A

(γ, γ)(β, β)(γ, β)

(γ, x)(β, x)
+ Ψ,

where Ψ =
∑

γ∈A
2λγrγjγlγk

(γ,x)2
ψbrψj

bψ̄
l
d ψ̄

dk −
∑

γ∈A
2λγrγj (γ,γ)

(γ,x)2
ψr
bψ̄

bj .

All the relations of D(2, 1;α) are satisfied if λ = −(2α + 1). 40 / 44
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Consider the 2nd ansatz:

Qa = prψ
ar + iFrjkψ

brψj
bψ̄

ak ,

Q̄c = pl ψ̄
l
c + iFlmnψ̄

l
d ψ̄

dmψn
c .

Theorem

We have {Qa, Q̄b} = −1
2H2δ

a
b, where the Hamiltonian H2 is

H2 = −∆ + λ
∑
γ∈A

(γ, γ)

(γ, x)
∂γ + Ψ.

All the relations of D(2, 1;α) are satisfied if λ = −(2α + 1).
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Consider the 2nd ansatz:

Qa = prψ
ar + iFrjkψ

brψj
bψ̄

ak ,

Q̄c = pl ψ̄
l
c + iFlmnψ̄

l
d ψ̄

dmψn
c .

Theorem

We have {Qa, Q̄b} = −1
2H2δ

a
b, where the Hamiltonian H2 is

H2 = −∆ + λ
∑
γ∈A

(γ, γ)

(γ, x)
∂γ + Ψ.

All the relations of D(2, 1;α) are satisfied if λ = −(2α + 1).
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Proposition

We have gauge relation

δ−1 ◦ H2 ◦ δ = H1,

where δ =
∏
β∈A(β, x)

λ
2
(β,β).
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Thank you for your attention!
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