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Motivation and history

The goal is to construct N' = 4 supersymmetric Calogero—Moser
system. Motivation:

@ Conjectural relation to Reissner-Nordstrom black hole
(Gibbons, Townsend’'99)

@ Relation of conformal blocks with Calogero-Moser-Sutherland
theory (Isachenkov, Schomerus'16)

Ansatz for N' = 4 supercharges:

Q* = p? + Wi + Fima¥'™, 2=1,2,

where WM is cubic in fermionic variables 2%, ¢k (b = 1,2), and
W = W(x), F = F(x) are some functions.



Preliminaries History

D(2, 1; o) superalgebra
Root systems

Some previous works:

e Wyllard'00, su(1,1|2) symmetry. Supercharges depend on two
potentials W, F. Calogero—Moser system at a particular
coupling parameter when W =0

@ Bellucci, Galajinsky, Latini’05 F satisfies WDVV; study of 2-3
particles systems

@ Galajinsky, Lechtenfeld, Polovnikov'07,’09 Extension of ansatz
for other root systems; study of 3-4 particle systems, W =0
solutions

e Fedoruk, Ivanov, Lechtenfeld'10 D(2,1; a)-symmetry, one
particle spin system

@ Krivonos, Lechtenfeld'1l N particles; extra bosonic variables

e F, Silantyev'12 A class of algebraic solutions with W # 0

@ Krivonos, Lechtenfeld, Sutulin’18 Supercharges for any N/-
Calogero-Moser system with many fermionic variables
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Ansatz

Consider N quantum particles on a line with coordinates and
momenta {x;, pj|j = 1,..., N}. To each particle we associate four
fermionic variables

(¥, Pla=1,2,j=1,...N}.

We impose the following (anti)-commutator relations:
: aj 7, L a aj N
[vapk] = 15Jk7 {¢ val[;} = _§5Jk5b7 {¢ Jawbk} = {1/){371/};;} =0.

One can think of px as px = —i%.
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Let A/ = 4 supercharges be
Q? = prp® + W + iFimn (PP,
Qa = pibh — iWDh + iFimn (P ™p3),
3
where W = W(x), F = F(x), W; = G, Fimp = 55551 a=1,2,

(,) is the Weyl anti-symmetrisation, w’g = epap?K, PPk = bagk

with €12 = —€21 = 621 = —612 = ]., €11 = €20 = 611 = 622 =0.



Preliminaries History

D(2, 1; o) superalgebra
Root systems

Let A/ = 4 supercharges be

Q% = prp® + W™ + iFin (VP 50",

Qs = prbl — Wi} + iFimn (0™ 5).

ow o .

where W = W(x), F = F(x), Wi = G, Fimn = ax_,TFa a=1.2,
(,) is the Weyl anti-symmetrisation, w’g = epap?K, PPk = bagk
with €10 = —e01 = €2l = =2 =1,€e1; = e = el =2 = 0.
Imposing N = 4 supersymmetry one obtains:

o (generalised) Witten—Dijkgraaf—Verlinde—Verlinde (WDVV)
equations for F,

Frijkmn:Frmkajnv (r).jakamvn:]-a""N)'
o twisted period equations for W/,
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D(2, 1; o) superalgebra

Root systems

Let A/ = 4 supercharges be
Q% = o + W + iFima (Y] 0),
Qs = prbl — Wi} + iFimn (0™ 5).
3
where W = W(x), F = F(x), W = G, Fimy = aXfTFa a=12,
(,) is the Weyl anti-symmetrisation, w’g = epap?K, PPk = bagk
with €10 = —e01 = €2l = —e? = 1,611 = epp = €l = 22 = 0.
Imposing N = 4 supersymmetry one obtains:
o (generalised) Witten—Dijkgraaf—Verlinde—Verlinde (WDVV)
equations for F,
Frijkmn:Frmkajnv (r).jakamvn:]-a""N)'
o twisted period equations for W/,

ak/W—i-Fk/jajW:O, (k,/,jzl,,N)
We set W = 0.



Preliminaries History
D(2, 1; o) superalgebra
Root systems

D(2,1; ) superalgebra

[Frappat, Sorba, Sciarrino “Dictionary on Lie superalgebras”, 1996]

D(2,1; @) has 8 odd generators Q2°¢, and 9 even ones J°, /b,
T2b (a,b,c = 1,2). The latter form mutually commuting s/(2)
subalgebras; [T, /9] = [1¢9, J¢f] = [T 2P, J¢] = 0.
The (anti)-commutation relations of D(2,1; «) read

{Qace def} — (EefECd Tab + ozeab chef (1 + a)eabeeflcd)’
[Tab, Tcd] — _I-(Eac de + 6bd Tac)7
[Jaijcd] — —i(GaCde—f—EdeaC), [Iab’ lcd] — —i(EaC/bd-f-Ebd/aC),
[Tab7 chf] _ iec(aQb)df’ [Jab chf] _ I'Ef(aQ‘Cd‘b),
[Iab chf] aQ|c|b

where we symmetrise over two indices inside (...) with indices
inside | ... | being unchanged.
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Root systems

Let V =RN, u,v € V and (,) the standard bilinear form in V.

Let R be a set of non-zero vectors in V s.t

@ RNRy ={-7,7},

Q@ s,R=R,
Vv € R. The set R is called a (Coxeter) root system with
associated finite Coxeter group W = (s,|y € R).
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Root systems

Let V =RN, u,v € V and (,) the standard bilinear form in V.

Let R be a set of non-zero vectors in V s.t

Q@ RNRy={-7,7},
@ s, R=R,

Vv € R. The set R is called a (Coxeter) root system with
associated finite Coxeter group W = (s,|y € R).

Let W be irreducible: Ay, By, Dy, E6,7,81 Fq, H374, /g(m).
We fix (y,7) =2 for all v € R.
For example,

By = {£(ei+¢), (1 <i<j<N),£V2e,(1<i<N)}.
Let also R = Ry U(—Ry).
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1°* representation of D(2,1; «)

Let
A

_ 2
F= E Z (’Yax) |og(’y,x), reC.
YER+

Let {ek}f(vzl be the standard basis of V' with the corresponding
coordinates {xx ;.
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1°* representation of D(2,1; «)

Let

F=2Y (7.x)log(y,x), AeC.
YER+

Let {ek}f(vzl be the standard basis of V' with the corresponding
coordinates {xx}*_,. Recll the following

Lemma

For any irreducible Coxeter root system R in a Euclidean space V/
and for any u,v € V

> (v, u)(y,v) = h(u, v),
YERY

where h is the Coxeter number of W .
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1°* representation of D(2,1; «)

F=2Y (7.x)log(y,x), AeC.
YER+

Let {ek}f(vzl be the standard basis of V' with the corresponding
coordinates {xx}*_,. Recll the following

Lemma

For any irreducible Coxeter root system R in a Euclidean space V/
and for any u,v € V

> (v, u)(y,v) = h(u, v),
YERY

where h is the Coxeter number of W .

Xka/m = \h (5/,,,.
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onian

relation

Re-denote generators:

Qa — _QZla Qa — _Q22a S — Qlla 53 — Ql2a

K=T" H=T%2 D=-TR=T7%
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1st ansatz

Consider the following anzatz for the supercharges:
Q? = prwar + iFrjk(d’br%lEak)y
Qc = PI"Zé + iFlmn<1/_}zIﬂ/_}dmwg>7
where Weyl anti-symmetrization can be simplified to
. . 1 .
Frjk<wbr%¢ak> — Frjk(wbr%wak _ §¢ardjk),
and

- - - - 1-
Flmn<wéwdm¢g> = Flmn(wilwdmwg - Ewéénm)



1° representation

Hamiltonian
N = 4 Calogero—Moser systems related to root systems 2"

1st ansatz

Consider the following anzatz for the supercharges:
Q? = prwar + ’.Frjk<¢br%7ﬁak>,
Qc = PI"Zé + iFlmn<1/_}zIﬂ/_}dmwg>7
where Weyl anti-symmetrization can be simplified to
. . 1 .
Frjk<wbr%¢ak> — Frjk(wbr%wak _ §¢ar5]k),
and )
Flmn<w3wdm¢g> = Flmn(wélwdmwg - Ewéénm)
Note that under Hermitian conjugation } defined by

T Taj a'T i . .
P =¥ ¥ = pt = —pj Xt = x, i = —i,(AB)T = BTA!
we have Q?T = Q,.
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H
G

Let also
iN

1 1
K:X27 D:_Z{Xj7pj}:_7 Jpj+?7

2
g2 = b2 = g i,
M= i, P =i, 1 = S, 0]

S7= 2%, 5, = —2x.
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Hami
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Let also
iN

1 1
K:X27 D:_Z{Xj7pj}:_7 Jpj+?7

2
Jab — Jba — Iwajl/_)bj + I¢bJ1ZaJ7
1 _iw{;waj’ 22 _ hzjaj@, 12 — _é[¢£71;aj]7

S7= 2%, 5, = —2x.

If o = —1 then this ansatz for su(1,1|2) subalgebra generated by
Q,S,J,K, D is a particular case of ansatz from [Galajinsky,
Lechtenfeld, Polovnikov'09].
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Hamiltonian

For any a, b € {1,2} we have {Q?, @y} = —2H33, where the Hamiltonian H

is given by
-85 S, Loighy 4 L |
H= % Jlk (wbr%’(/)dwdk ¢tr)wbj(slk + Zyj(slk) + 16 rjk F/mn(sn’"&l/(grk.
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Hamiltonian

For any a, b € {1,2} we have {Q?, Q»} = —2H33, where the Hamiltonian H

is given by
- _ o e L 1 .
H = % Jlk (wbr%'(/)d'wdk ¢£¢b16'k -+ Z(SU(S”() —+ R il Flmnénmé"/(srk.

Let

20+ 1
P
where h is the Coxeter number of the root system R. Then
D(2,1; «) relations are satisfied.

A=—
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Proposition
The Hamiltonian H has the following form:

AA+1)
H=_A+ Z + (7 7)+\U,
YER+

where

— o)\ Z /Yr%’}lk%wbr%d}dwdk 4 Z YrYj wgd—}bj

2 2
YER+ ( ) YERL X)

with v = (7, ex).

The bosonic part is Olshanetsky-Perelomov generalised
Calogero-Moser Hamiltonian associated with R. E.g. for R = By

we have —A + 37, 25(‘;\:1 +> /\(/\H)
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2nd ansatz

Now let the supercharges be of the form (no antisymmetrisation in
the third order terms)

Q? = ™ + iF Pk,

Qc = PI&!: + ’.Flmnié&dmwg'
Let also
i

1
K:X2v D:_ijpj_‘_Z

2
Jab — Jba — Iwaj,&b_] + iwbjlzaj’

(e +1)N,

1 _i%waj’ 122 _ I-J}ajqz){;’ 12 _ _é[w{;’iaj],

ST = —2xp¥, S, = —2x.
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Hamiltonian

For any a, b € {1,2} we have {@?, Qy} = —2H62, where the
Hamiltonian H is
Pj Or ,:_jlk
4

. i
H = (wbr%¢d¢dk ¢£¢bj5lk) + ZCSanrmnPr-

Note: This ansatz leads to the terms of the form %p.
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Hamiltonian

For any a, b € {1,2} we have {Q?, Qp} = —2H42, where the
Hamiltonian H is

2 O,F L i
P Jlk (¢br%¢d¢dk ¢£¢b15/k) i Z5anrmnpr-

Note: This ansatz leads to the terms of the form %p.

Let

20 +1
h
where h is the Coxeter number of the root system R. Then
D(2,1; «) relations are satisfied.

A=—
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Proposition
The Hamiltonian H has the form

——A+Z v,

YERL

where 0y = (y,0x) and

v =2\ Z ’Yr,Zﬂ/ Wl Bl — an Z er)zwbwbj

~YER, ( ’ ) ~YER,

E.g. for R = By the bosonic part is

—A+ZX (00 + 2

i

The fermionic term W is the same as in the 15 representation.
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Gauge relation

Denote by H; the Hamiltonian from the 15t representation and
denote by Hs the one from the 279 representation (multiplied by 4):

1)(
= -A+ Z A+ 77)+\U,
YERY

_—A+Z 2)\

YERL

Proposition

Let & be the function § = [cg, (8,x)*. Then Hy and H, are
related by the gauge transformation

8 loHyo0d =Hj.
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V-systems

Let V = CN and A C V be a finite set of non-collinear covectors.
Define a bilinear form G4 on V by

Ga(u,v) =Y Aup(v), wuveV,
yEA

and assume that G4 is non-degenerate. Then V = V* and v € V*
corresponds to v € V s.t Ga(v", u) = vy(u) for any u € V.

Definition (Veselov '99)
A is a V-system if for any v € A and 7 C V*, dim7w =2

> B(V)B=wr,

BeEANT

for p = p(v, ) € C.
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. Supersymmetric extension
Supersymmetric V-systems ;

Proposition (Veselov '99)

Any Coxeter system Ry is a \/-system.

Consider the following function F = F4(x1,...,xn):

A , .
FZEZw(X) logv(x), AeC".
yeA
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Supersymmetric extension

Supersymmetric V-systems

Proposition (Veselov '99)

Any Coxeter system Ry is a \/-system.

Consider the following function F = F4(x1,...,xn):

27 2logy(x), AeC*.

veA

Theorem (Veselov'99; FV'07)

F satisfies WDVV equations if and only if A is a \V-system.




-systems
. Supersymmetric extension
Supersymmetric V-systems persy

Supersymmetric extension of V-systems

Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V:

Ga(u,v) = (u,v), w,veV.

We identify V and V* so that v(u) = (v¥, u) = (v, u) for any
vye AueV.
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Supersymmetric extension of V-systems

Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V:

Ga(u,v) = (u,v), w,veV.

We identify V and V* so that v(u) = (v¥, u) = (v, u) for any
vye AueV. '

Consider the 1st ansatz: Q? = p, ™ + iFjx (Pl p?k),

Oc = PIT/_Jé + iFlmn<QZ(lj7»dewg>-
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Supersymmetric extension of V-systems

Let us apply a linear transformation to A so that the bilinear form
becomes the standard one in V:

Ga(u,v) = (u,v), w,veV.

We identify V and V* so that v(u) = (v¥, u) = (v, u) for any
vye AueV. '

Consider the 1st ansatz: Q? = p, ™ + iFjx (Pl p?k),

Oc — PIT/_Jé + iFlmn<QZ(lﬂzdmwg>-

Theorem

We have {Q?, Qb} = —7H153, where the Hamiltonian Hy is

_ A ()2 N (v 7)(B: B)(7: B)
S D DY v iy S0 Sy o (3 B

2NV YV, 22Xy,
where W = 3, PO bryl Bl gk — 5 20y b

All the relations of D(2,1; o) are satisfied if A\ = —(2a + 1).
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Supersymmetric V-systems

Consider the 2nd ansatz:

Q? = prwar + /.Frjkq/}brw{)lzak;

@c - P/T/_Jé + iFlmnnglzdml/Jg'
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Supersymmetric V-systems

Consider the 2nd ansatz:
Q7 = p™ + iF g%,
@c - plzl_}é + iF/mnngzzdml/Jg'

Theorem
We have {Q?, Qp} = —%Hzéa, where the Hamiltonian H> is

:—A+/\Z

All the relations of D(2,1; ) are satisfied if A\ = —(2a + 1).
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Proposition

We have gauge relation

5 loHyo08 = Hy,

where § = H,geA(B,X)%(B’B)-




Supersymmetric V-systems

Thank you for your attention!
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