
A few-body method for many-body systems
S.A. Sofianos∗, R.M. Adam† and V.B. Belyaev∗∗

∗Physics Department, University of South Africa, P.O. Box 392, Pretoria 0001, South Africa
†South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001, South Africa

∗∗Joint Institute for Nuclear Research, Dubna 141980, Russia

Abstract. We used the Faddeev expansion of the potential in pairwise acting forces and the ex-
pansion of the resulting amplitudes in Potential Harmonics to obtain an integrodifferential equation
valid for A boson systems. By introducing suitable transformation and taking limits A → ∞ this
equation is reduced into an Integro–Differential Equation suitable for handling bound states of large
number of bosons. The new equation depends only on the input two-body interaction, it is quite
simple, and the kernel has a simple analytic form. We employ the new equation to obtain results for
A ∈ (10−100) 87Rb atoms interacting via a semi-realistic inter-atomic interactions and confined by
an externally applied trapping potential Vtrap(r). Our results are in excellent agreement with those
previously obtained using the Potential Harmonic Expansion Method (PHEM) and the Diffusion
Monte Carlo (DMC) method.
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INTRODUCTION

The study the A-boson bound state problem for systems up to A = 4 can be achieved us-
ing several methods. Among these methods those based on Faddeev-type equations and
on Hyperspherical Harmonics Expansion (HHE) methods were extensively used during
the last few decades to study in a rigorous way not only bosonic but fermionic systems as
well. Going beyond the A=4 system, however, is not at present practical within the Fad-
deev scheme as the resulting equations (either in momentum or configuration space) are
too complicated while in the HHE schemes, apart from the complexity of the equations,
one faces also the question of convergence in the expansion especially when the inter-
particle forces have a short range repulsive core. Therefore alternative methods have to
be used instead.

One such method is the Integro–Differential Equation Approach (IDEA) valid for
A–body systems suggested by Fabre de la Ripelle and collaborators [1, 2]. It is based
on the expansion of the Faddeev amplitudes in terms of Potential Harmonics (PH)
[3, 4, 5] and it has been successfully applied in few–body calculations [6, 7], in realistic
fermion systems [8], in unequal mass particle systems [9, 10, 11, 12] as well as in model
calculations for the A = 16 system [13]. In all applications, the binding energies obtained
are in good agreement with other results in the literature obtained by other methods.

When however the number of particles increases, the number of degrees of freedom
also increases and the numerical complexity becomes intractable and one has no alter-
native but to use methods suitable for handling many-body systems. The typical number
of atoms involved in the Bose-Einstein condensation (BEC), for example, is 103− 106
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[14] and consequently studies of the BEC phenomenon are naturally based on quantum
Monte Carlo type methods, such as, the Diffusion Monte Carlo (DMC) [15, 16], the
Variational Monte Carlo (VMC) [17] and the practically exact Green Function Monte
Carlo (GFMC) [18] methods.

A different approach to Monte Carlo methods is the one based directly on the PH
expansion and it has been employed by Das and collaborators [19, 20, 21] to study
the BEC phenomenon for 87Rb atoms using repulsive inter-boson interactions. This
Potential Harmonics Expansion Method (PHEM) requires the solution of a large number
of differential equations which in turn requires the evaluation of Jacobi polynomials
Pα ,β

K (z) with α = (D− 5)/2, β = 1/2 + `, D being the dimensionality of the A-boson
system, D = 3(A−1), ` is the partial wave for the system, and z is an angular variable.
Furthermore, it requires the use of the so-called weight function W (z)≡ (1−z)α(1+z)β .
It is clear that the accuracy in calculating the relevant quantities suffers with increasing
A and the W (z) has a spike similar to a δ -function for z ∼−1 which is difficult to treat
numerically.

In the present work we also start by expanding the wave function for the A-body
system system in to Faddeev components which in turn are expanded in terms of
PH. The resulting system is then projected on the space of the pair (i j) resulting in
the aforementioned IDEA equation which depend on two variables only, namely, the
hyperradius r and the angular variable z while the corresponding kernel is expressed in
terms of Jacobi polynomials Pα ,β

K (z) and the weight function W (z) and therefore one
faces similar difficulties as in the PHEM. However, these difficulties can be removed
by obtaining appropriate limits for A → ∞. The new equation thus obtained, are quite
simple, and the kernel depends on the much simpler Associated Laguerre polynomials
L1/2

K which are independent of α [22]. The kernel can be even further simplified to have
an analytic form, which does not depend on any polynomial, is independent from α , and
only depends linearly on the number of particles A.

In what follows, we describe, in Sect. , how one can obtain from the IDEA, the new
integro-differential equation suitable for large number of particles A. We then apply it,
in Sect. , to obtain results, first, for the hybrid nuclear model for 16O system where the
particles are assumed to interact via short range strong forces of Wigner type; second,
we apply it to 87Rb atoms for various A and the results obtained are compared to those
of the PHEM and the DMC methods. Our conclusions are summarized in Sect. .

THE FADDEEV-HHE FORMALISM

In the IDEA formalism the A-body wave function can be written as

Ψ(x) = H[Lm](x) ∑
i< j≤A

F(ri j,r) (1)

where H[Lm](x) is a harmonic polynomial of minimal degree Lm for the ground state,
x is the coordinate vector x = (x1,x2, · · · ,xA), ri j = xi − x j, in terms of the particle

coordinates xi while r is the hyperradius, r =
[
2/A∑i< j≤A r2

i j

]1/2
. The functions F(ri j,r)
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are two–body amplitudes obeying the Faddeev-type equation
[

T +
A(A−1)

2
V[Lm](r) − E

]
H[Lm](x)F(ri j,r)

= −
[
V (ri j)−V [Lm]

0 (r)
]

H[Lm](x) ∑
k<l≤A

F(rkl,r) . (2)

The hypercentral potential V [Lm]
0 (r) is the average potential V (ri j) taken over the [Lm]

state on the unit hypersphere r = 1 of surface element dΩ

V [Lm]
0 (r) =

∫
H∗

[Lm](x)V (ri j)H[Lm](x)dΩ
∫ |H[Lm](x)|2 dΩ

. (3)

We note that for ground states, the pairs are in an S–state and the amplitude F is a
function of the hyperradius and ri j = |xi−x j| only.

The amplitudes can be expanded in terms of any set of harmonic polynomials such as
the Hyperspherical Harmonics (HH). Expansion in terms of HH, however, results in a
system of coupled differential equations which is impractical for numerical calculations
especially when hard core potentials are employed or the number of particles considered
is large. In addition it gives rise to degeneracy for a given grand orbital L and thus
converged solutions are difficult to obtain.

A more efficient expansion can be made in terms of Potential Harmonics (PH)
P`,m

2K+`(Ωi j) [3, 4, 5] which form a complete basis for expanding continuous functions
depending only on the relative coordinate ri j. For systems in which the pair (i j) is in an
`-state while the other pairs are in an S-state, these polynomials are given by

P`,m
2K+`(Ωi j) = NK,`Y`m(ωi j)

(ri j

r

)`
Pα ,β+`

K (2
r2

i j

r2 −1) (4)

Here Y`m(ωi j) is the spherical harmonic, Pα ,β
K (z) is a Jacobi polynomial, and NK,` is a

normalization constant which can be obtained from
∫

(r=1)
P`,m∗

2K+`′(Ωi j)P
`′,m′
2K′+`′(Ωi j)dΩ = δKK′δ``′δmm′. (5)

The P`,m
2K+`(Ωi j) are eigenfunctions of the operator L̂2(Ω)

[
L̂2(Ω)+L(L+D−2)

]
P`,m

2K+`(Ωi j) = 0 , L = 2K + ` , (6)

where L2(Ω) is given by [3]

L̂2(Ω) =
4

W (z)
∂
∂ z

(1− z2)W (z)
∂
∂ z

+2
ˆ̀2(ωi j)
1+ z

+2
L̂2(ΩN−1)

1− z
. (7)

The angular variable z is defined by

z = cos2ϕ = 2
r2

i j

r2 −1 , cosϕ =
ri j

r
. (8)
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Letting
F(ri j,r) = P(z,r)/rLm+1 , (9)

where Lm = Lm +(D−3)/2, and projecting on the ri j–space one gets the IDEA equation
for an A–particle system (see, for example, [2])

− h̄2

m

[
∂ 2

∂ r2 − Lm(Lm +1)
r2 +

4
r2 T (z)+

A(A−1)
2

V [Lm]
0 (r)−E

]
P(z,r)

= −
[
V (ri j)−V [Lm]

0 (r)
][

P(z,r)+
∫ +1

−1
F (z,z′) P(z′,r) dz′

]
. (10)

where T (z) is the kinetic energy operator

T (z) =
1

W[Lm](z)
∂
∂ z

(1− z2)W[Lm](z)
∂
∂ z

(11)

and W[Lm](z) is the weight function which, for bosonic systems, is given by

W[Lm](z) = (1− z)α(1+ z)β (12)

where α = (D−5)/2+Lm−2`m and β = 1/2+`m. The kernel F (z,z′) is the projection
function which is expressed in terms of the Jacobi polynomials Pα,β

K (z),

F (z,z′) = W[Lm](z
′)∑

K

( f 2
K−1)
hK

Pα ,β
K (z)Pα,β

K (z′) . (13)

The normalization hK is given by

hK =
∫ +1

−1

(
Pα,β

K (z)
)2

W[Lm](z)dz , (14)

and the constant f 2
K−1 by

f 2
K−1 =

2(A−2)Pα ,β
K (−1/2)+ [(A−2)(A−3)/2]Pα,β

K (−1)

Pα ,β
K (+1)

. (15)

When the number of particles A is large, the calculations with the above formalism
becomes time consuming and cumbersome. There are two main reasons for this, the
first one being the evaluation of the Jacobi polynomials Pα ,β

K since the value of α
becomes huge and the polynomials are highly oscillatory; the second reason stems from
the behavior of the weight function which for z→−1 is peaked at 2α .

In our approach we consider first the factorization

rij = rζ/
√

α . (16)
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with z = 2ζ 2/α−1. Then for α → ∞ we have the following limits,

Pα ,β
K (2r2

i j/r2−1)−→
α→∞

(−1)KL1/2
K (αr2

i j/r2)≡ (−1)KL1/2
K (ζ 2) (17)

and

W (z) = CW
2α+1/2+`

α1/2+`
ζ `+1e−ζ 2

(18)

where CW is the normalization constant for the weight function. For ` = 0

hK −→
α→∞

∫ √
α

0

[
L1/2

K (ζ 2)
]2

e−ζ 2
ζ 2 dζ

' 1
2

∫ ∞

0

[
L1/2

K (x)
]2

e−x√xdx

=
1
2

Γ(K +3/2)
K!

. (19)

In order to evaluate the kinetic energy T̂ P(z,r), we consider first the factorization

P(ζ ,r) =
eζ 2/2

ζ
Q(ζ ,r) . (20)

Then

T̂ P =
1

W
∂
∂ z

(1− z2)W
∂
∂ z

P (21)

≡ α
4

eζ 2/2

ζ

[
d2

dζ 2 +3+2`m−ζ 2− 2`m

ζ 2

]
Q(ζ ,r) (22)

Therefore, Eq. (10) (we consider here the case where Lm = 0, Lm = L ≡ (D− 3)/2,
and `m = 0) becomes

h̄2

m

[
Hr +

α
r2 Hζ +

A(A−1)
2

V0(r)−E
]

Q(ζ ,r)

= −[
V (ri j)−V0(r)

][
Q(ζ ,r)+

∫ √
α

0
FE(z,z′) Q(ζ ′,r) dζ ′

]
. (23)

where

Hr =− ∂ 2

∂ r2 +
L (L +1)

r2 , (24)

and

Hζ =
α
4

[
− ∂ 2

∂ζ 2 +ζ 2−3
]

. (25)

The kernel FE is given by

FE(ζ ,ζ ′) = ζ e−ζ 2/2 ∑
K

2K!
Γ(K +3/2)

( f 2
K−1)L1/2

K (ζ 2)L1/2
K (ζ ′2)ζ ′e−ζ ′2/2 , (26)
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We see that equation (23) is free from the δ -function type peak and, apart from the easily
evaluable constant f 2

K−1, the kernel FE does not depend on α .
Equation (23) can be even further simplified by noting that

∑
K

( f 2
K−1)

K!
Γ(K +3/2)

L1/2
K (ζ 2)L1/2

K (ζ ′2)

−→
α→∞

2(A−2)∑
K

(
1
4

)K

L1/2
K (ζ 2)L1/2

K (ζ ′2)/hK

−2(A−2)
1
4

L1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1−L1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1

−2(A(A−2)/h0 +[A(A−1)/2−1]/h0 (27)

and thus by making use of the relation [23]

∞

∑
K=0

(
1
4

)K K!
Γ(K +3/2)

L1/2
K (ζ 2)L1/2

K (ζ ′2) =
4√
3π

e(ζ 2+ζ ′2)/3 sinh(3
4ζζ ′)

ζ ζ ′
. (28)

we obtain

h̄2

m

{
Hr +

4
r2 Hζ +

A(A−1)
2

V0(r)−E

}
Q(ζ ,r)

= −
[
V (ri j)−V0(r)

][
Q(ζ ,r)+

∫ √
α

0
FI(ζ ,ζ ′)Q(ζ ′,r)dζ ′

]
(29)

The new form of the kernel FI is

FI(ζ ,ζ ′) =
2(A−2)√

3

{[
A−3− 2

3
(ζ 2− 3

2
)(ζ ′2− 3

2
)
]

ζζ ′e−(ζ 2+ζ ′2)/2

+
4√
3

[
e−[(5(ζ−ζ ′)2+2ζ ζ ′)/6]− e−[(5(ζ+ζ ′)2−2ζζ ′)/6]

]}
(30)

The kernel (30) has a simple form and its computation is straightforward.
In the presence of a trapping potential Vtrap(r) which depends on the hyperradius only,

the modifications needed are trivial and consists of replacing Hr by

Hr =− ∂ 2

∂ r2 +
L (L +1)

r2 +Vtrap(r) (31)

The solution of the two-dimensional equations (23) and (29) can be readily obtained.
However, the Adiabatic Approximation can also be employed. In this case we may write,
as usual, Q(ζ ,r) = Qλ (ζ ,r)uλ (r) to obtain

h̄2

m

[
4
r2 Hζ + Uλ (r)]Qλ (ζ ,r) =−

[
V (

r√
α

ζ )−V0(r)
]

×
[

Qλ (ζ ,r)+
∫ √

α

0
Fn(ζ ,ζ ′)Qλ (ζ ′,r)dζ ′

]
, n = E, I (32)
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and
u
′′
λ (r)+

[
k2

λ +Veff(r)
]

uλ (r) = 0 (33)

where the effective potential Veff is given by

Veff(r) =
L (L +1)

r2 +
A(A−1)

2
V0(r)−Uλ (r)+Vtrap(r) (34)

It is noted that the hypercentral potential V0 contains effects from the higher partial
waves, albeit in an approximate way, and can be omitted in which case the results are
S-projected. It is further noted that the L (L + 1)/r2 or the Vtrap(r) can be included in
the first equation (32) without affecting the final results.

RESULTS

We first analyze the behavior of the term f 2
K − 1 as α → ∞. In table 1 we present the

results for A = 20 and A = 1000 for the two terms, T1 = (A−2)2Pα,1/2
K (−1/2)/Pα ,1/2

K (1)
and T2 = (A− 2)(A− 3)/2 Pα,1/2

K (−1)/Pα,1/2
K (1) for K = 0,1, · · · ,7. We see that both

TABLE 1. Comparison of the two terms T1 and T2 of f 2
K −1 (see text) for K = 0, · · · ,7. for A = 20

and A = 1000.
A = 20 A = 1000

K T1 T2 f 2
K −1 T1 T2 f 2

K −1

0 36. 153 189 1996.0000000 497503. 499499.
1 7.5 -8.5 -1 497.5000000 -498.5000000 -1.0000000
2 1.1004464 0.7589286 1.8593750 123.5018775 0.8319426 124.3338201
3 0.0729391 -0.0915948 -0.0186557 30.5345323 -0.0019425 30.5325898
4 -0.0086754 0.0137392 0.0050638 7.5185722 0.0000058 7.5185780
5 -0.0016333 -0.0024376 -0.0040709 1.8437195 -0.0000000 1.8437195
6 0.0002636 0.0004951 0.0007588 0.4502550 0.0000000 0.4502550
7 0.0000479 -0.0001125 -0.0000646 0.1095002 -0.0000000 0.1095002

terms as well as the total term f 2
K − 1 become very small as K increases. Consequently

only few terms in the expansion (26) are required to achieved convergence. Furthermore,
the behavior of the second term (only the K = 0,1 are significant for large α) justifies
our approximation (27).

We next present, in Fig. 1, the kernel FI(ζ ,ζ ′) for A = 20 and A = 1000 particles.
We see that, apart from the strength, its shape and spread is not drastically changed and
in both cases the kernel becomes insignificant beyond ζ ∼ 4.

We employed the new equation, Eq. (29), to solve first, as a model problem, the 16O
system where results exist in the literature. To obtain the solution, we use the Galerkin
method and B-splines to reduce the problem, as usual, to an eigenvalue one. In this model
nuclear problem, the particles are assumed to interact via Wigner-type forces. The results
obtained using the analytic expression (30) and designated as IDEA-I, are given in Table
I. Despite the fact that the A = 16 case corresponds to a rather small number of particles,
the accuracy achieved by the new equation for strong nuclear forces is less than 1% of the
exact values obtained by solving the IDEA [13] or using the Hyperspherical Harmonics
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FIGURE 1. The kernel FI(ζ ,ζ ) for A = 20 and A = 1000.

TABLE 2. Binding energies (in MeV) obtained for A =
16 with nuclear forces and by using the kernel (30).

Potential IDEA-I IDEA(exact) HHEM [27]

Volkov [24] 1643 1640 –
S3[25] 1247 1246 1235
MT-V [26] 1377 1376 1363

Expansion Method (HHEM) [27]. The slightly higher deviation from the results of the
HHEM can be attributed to the slow convergence rate of the HHE expansion for the S3
[25] potential having a practically repulsive hard core and for the semi-realistic Yukawa
type MT-V [26] potentials.

We turn now our attention to the case where A bosons are confined in a magnetic trap
which is approximated by a spherically symmetric harmonic oscillator potential

Vtrap(r) =
A

∑
i=1

1
2

mω2x2
i =

1
4

mωr2 (35)

In our calculations we use oscillator units (o.u) in which the energy and length are h̄ω
and

√
h̄/mω respectively, where ω is the harmonic oscillator circular frequency. In these

units h̄2/m = 1.
As a first example we employ a Gaussian potential

V (ri j) = V0 exp[−r2
i j/r2

0] (36)

with V0 = 3.1985× 106 o.u and r0 = 0.005 o.u which corresponds to the Joint Institute
for Laboratory Astrophysics (JILA) 87Rb experiment [28] with asc = 100 bohr and trap
frequency ν = 200 Hz. The results obtained by employing the kernel (26), designated as
IDEA-E, and the kernel (30), are shown in Table 3. The ground state energy for A = 3
differs, as expected, from the corresponding value obtained within the PHEM [19] by
25%, for A = 5 by 3.26%. For A = 10, however, the agreement is already within 0.2%.
Going beyond A > 10, the differences from the results of PHEM are very small and
can be mainly attributed to the overall numerical inaccuracies. It should be noted here
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TABLE 3. Results (in o.u) obtained
with IDEA-E (Eq. (23)) and IDEA-I
(Eq. (29)) using the Gaussian potential
(36).

A IDEA-E IDEA-I PHEM

3 6.009 6.009 4.500
5 7.758 7.758 7.505
10 15.003 15.003 15.034
15 22.501 22.501 22.567
20 30.000 30.001 30.107
25 37.501 37.501 37.654
30 45.009 45.001 45.207
35 52.509 52.501 52.768

TABLE 4. Same as 3 using the sech poten-
tial (37).

A IDEA-I PHEM[21] DMC[29]

10 15.143 15.1490 15.1539
20 30.625 30.6209 30.639
50 78.701 78.8704
100 165.038 164.907

that the binding energy per particle is of the order of Eb/A ∼ 1.50. It should be further
noted that the IDEA-E and the IDEA-I results are, to all practical purposes, identical and
therefore we shall employ from now on only the kernel (30).

As a second example we use the semi-realistic potential

V (ri j) = V0 sech2(ri j/r0) (37)

Following Das et al. [21] we use V0 = 1.81847×109 o.u and r0 = 0.001 o.u.. We present
our results in Table 4 and compare them with those of the PHEM and of the DMC results
of Blume and Greene [29].

We endeavored to carry out calculations for up to A = 100 where a very good agree-
ment is achieved in all cases for A ≥ 10 with both the PHEM [21] DMC [29] methods.
Going beyond A = 100 requires more refine calculations and rather an exact solution of
Eq. (29), the reason being that the extreme adiabatic approximation give rise to a multi-
tude of eigenpotentials Uλ (r) very close to each other and the results, albeit not differing
much, depend nevertheless on which eigenpotential Uλ (r) is used. This is shown in Fig.
2 where two effective potentials, Eq. (34), corresponding to λ = 1 and λ = 20 are plot-
ted for the case A = 500. This multitude of eigenpotentials close to each other does not
appear in the case where forces having an attractive well are used.

CONCLUSIONS

Our conclusions can be summarized as follows:
i) Using the transformation rij = rζ/

√
α and using the asymptotic form of the Jacobi
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FIGURE 2. Two eigenpotentials Veff(r) corresponding to λ = 1 and λ = 20 for A = 500.

polynomials Pα,β
K (z) which for large A are approximated by the Laguerre polynomials

L1/2
K (ζ ) that do not depend on A, we obtained an integro-differential equation describing

bound states of large number of bosons. This transformation simplifies the kinetic energy
term, the weight function, and the corresponding projection function. As a result the new
integro-differential equation with a fully analytic and simple kernel can be easily applied
to A-body bosonic systems.
ii) The IDEA formalism is similar to the PHEM of Ref. [3] employed by Das and
collaborators [19, 20, 21]. In the PHEM one has to solve a large number of differential
equations which in the IDEA are transformed, with the help of Potential Harmonics,
into a single integro-differential equation. (Technical details on this transformation can
be found in Refs. [2, 5, 12].) Therefore, our equation for large A can also be considered
as a simplified version not only of the IDEA method but also of the traditionally used
PHEM.

iii) We tested the new equation by calculating the ground state binding energy of the
model nuclear problem for the 16O system where the short range nuclear force was of
Wigner type. The good agreement achieved, with the three different type forces having
a soft core, a hard core, and of Yukawa type, as compared to the results obtained using
the IDEA and the HHEM methods implies that the new equation can be safely used
to calculate binding energies of large number (A ≥ 10) particles interacting via strong
forces.

iv) Application of our scheme to Bose-Einstein condensates consisting of A-atoms
trapped by an external field, we obtained results which are in excellent agreement with
those of PHEM and the Diffusion Monte Carlo (DMC) method, at least up to A = 100.
Going beyond this number requires improved numerical methods or a direct solution of
the equation as a two-variable integro-differential equation without resorting to the EAA
approximation which give rise to a plethora of eigenpotentials that are very close to each
other.

v) When A increases, the centrifugal part L (L +1)/r2 becomes extremely large and
extends outwards while the inter-atomic potential is constant and restricted to smaller
distances. Therefore the main contribution in the effective potential stems from the
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centrifugal and the trapping potentials which generate a harmonic oscillator–type well
which moves outwards as the number of particles A increases.

vi) The overall good results obtained, indicate that the derived equation can be used
in studies of bound A-boson systems as an alternative to competing methods such as the
variational and hyperspherical harmonics methods. Our approximations should become
better with increasing A i.e for α → ∞.
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