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Abstract. The status of calculation of the neutrinoless double beta decay (0νββ -decay) nuclear
matrix elements (NMEs) is reviewed. The spread of published values of NMEs is discussed. The
main attention is paid to the recent progress achieved in the evaluation of the 0νββ -decay NMEs in
the framework of the quasiparticle random phase approximation (QRPA). The obtained results are
compared with those of other nuclear structure approaches. The problem of reliable determination
of the 0νββ -decay NMEs is addressed. It is manifested that the uncertainty associated with the
calculation of the 0νββ -decay NMEs can be diminished by suitable chosen nuclear probes.
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INTRODUCTION

The fundamental importance of the search for 0νββ -decay,

(A,Z)→ (A,Z +2)+2e−, (1)

is widely accepted. After 70 years the brilliant hypothesis of Ettore Majorana is still
valid and is strongly supported by the discovery of neutrino oscillations and by the
construction of the Grand Unified Theories. The 0νββ -decay is currently the most
powerful tool to clarify if the neutrino is a Dirac or a Majorana particle. This issue
is intimately related with the origin of neutrino masses having a strong impact also on
astrophysics and cosmology.

The main aim of the experiments on the search for 0νββ -decay is the measurement
of the effective Majorana neutrino mass mββ . Under the assumption of the mixing of
three massive Majorana neutrinos the effective Majorana neutrino mass mββ takes the
form

mββ = U2
e1 m1 +U2

e2 m2 +U2
e3 m3. (2)

Here, Uei and mi (i = 1,2,3) are elements of Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix and masses of neutrinos, respectively.

Experimental searches for the 0νββ -decay, of ever increasing sensitivity, are being
pursued worldwide. However, interpreting existing results as a measurement of the
Majorana neutrino effective mass and planning new experiments, depends crucially on
the knowledge of the corresponding nuclear matrix elements that govern the decay rate.
Accurate determination of the nuclear matrix elements, and a realistic estimate of their
uncertainty, is of great importance.
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CURRENT STATUS OF THE 0νββ -DECAY NMES

The inverse value of the 0νββ -decay half-life for a given isotope (A,Z) is a prod-
uct of the effective mass of Majorana neutrinos mββ , the known phase-space factor
G0ν(Qββ ,Z) (depending on nuclear charge Z and the energy release Qββ of the re-
action) and the nuclear matrix element M0ν , which depends on the nuclear structure of
the particular isotope under study [1]:

(T 0ν
1/2)

−1 = G0ν(Qββ ,Z) |M0ν |2 |mββ |2. (3)

From the measurement of half-life of the 0νββ -decay only the product
|mββ | |M0ν(A,Z)| of effective neutrino mass and nuclear matrix element can be
determined. Clearly, the accuracy of the determination of |mββ | from the measured
0νββ -decay half-life is mainly given by our knowledge of nuclear matrix elements.
Without accurate calculation of the 0νββ -decay NMEs, it is not possible to reach
qualitative conclusions about neutrino masses, the type of neutrino mass spectrum and
CP violation.

The nuclear matrix elements for 0νββ -decay must be evaluated using tools of nuclear
structure theory. Unfortunately, there are no observables that could be directly linked
to the magnitude of 0νββ -decay nuclear matrix elements and that could be used to
determine them in an essentially model independent way. The calculation of the 0νββ -
decay matrix elements is a difficult problem because ground and many excited states of
open-shell nuclei with complicated nuclear structure have to be considered.

The main two basic approaches used for evaluation of double beta decay NMEs are
the Quasiparticle Random Phase Approximation (QRPA) [2, 3] and the Large Scale
Shell Model (LSSM) [5]. Both methods have the same starting point, namely a Slater
determinant of independent particles. However, there are substantial differences between
both approaches, namely the kind of correlations they include are complementary. The
QRPA treats a large single particle model space, but truncates heavily the included
configurations [2]. The LSSM, by a contrast, treats a small fraction of this model space,
but allows the nucleons to correlate in arbitrary ways [4].

Due to its simplicity the QRPA is a popular technique to calculate the 0νββ -decay
NMEss. One of the most important factors of the QRPA calculation of the 0νββ -
decay NMEs is the way how the particle-particle strength of the nuclear Hamiltonian
gpp is fixed. It has been shown that by adjusting gpp to the 2νββ -decay rates the
uncertainty associated with variations in QRPA calculations of the 0νββ -decay NMEs
can be significantly eliminated [2]. In particular, the results obtained in this way are
essentially independent of the size of the basis, the form of different realistic nucleon-
nucleon potentials, or on whether QRPA or renormalized QRPA (take into account Pauli
exclusion principle) is used.

Matrix elements for the double beta decay are calculated also by angular momentum
projected (with real quasi-particle transformation) Hartree-Fock-Bogoliubov (P-HFB)
wave functions [6] and by the Interacting Boson Model (IBM) [7]. The P-HFB allows
only, that neutron pairs with angular momenta 0+, 2+, 4+, · · · are transformed into two
protons in the 0νββ -decay. In addition the pairs different from 0+ are strongly sup-
pressed compared to the results of the LSSM and the QRPA. The approaches LSSM and
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FIGURE 1. The 0νββ -decay NMEs calculated within different nuclear structure approaches: Large
Scale Shell Model (LSSM) [5], (Renormalized) Quasiparticle Random Phase Approximation (R)QRPA
[3], Projected Hartree-Fock Bogoliubov approach (P-HFB) [6] and Interacting Boson Model (IBM) [7].
The Miller-Spencer Jastrow two-nucleon short-range correlations are taken into account.

QRPA show also, that other neutron pairs contribute strongly, which can not be included
into real P-HFB. One would need to extend the P-HFB approach to complex quasi-
particle transformations and probably also to several orthogonal P-HFB configurations.
IBM is even more restrictive: It allows only that 0+ and 2+ neutron pairs are changed
into proton pairs.

The calculated 0νββ -decay NMEs within these approaches are presented in Fig.
1. It is surpricing that the IBM results agree well with the QRPA ones. Results of
these aproaches exhibit some dependence on A unlike the LSSM values, which are
practically the same except for 48Ca. The value of the 0νββ -decay NME for this isotope
is suppressed as 48Ca is a magic nucleus.

REDUCING THE UNCERTAINTY IN NMES

The improvement of the calculation of double beta decay nuclear matrix elements is a
very important and challenging problem. The uncertainty associated with the calcula-
tion of the 0νββ -decay NMEs can be diminished by suitable chosen nuclear probes. A
complementary experimental information from related processes like charge-exchange
reactions, muon capture and charged current (anti)neutrino-nucleus reactions is highly
required. A direct confrontation of nuclear structure models with data from these pro-
cesses might improve quality of nuclear structure models. The constrained parameter
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space of nuclear models is a promising way to reduce uncertainty in the calculated
0νββ -decay NMEs.

As a practice, knowledge of the 2νββ -decay rate and of the ordinary decay f t
values were used to constrain the nuclear model parameters, in particular when the
quasiparticle random phase approximation (QRPA) was employed [3]. Clearly, when
other relevant data become available, and the nuclear model is constrained to reproduce
them, confidence in the deduced 0νββ -decay NMEs is increased. Recently, a set of such
data, the occupation numbers of neutron valence orbits in the initial 76Ge and final 76Se
nuclei, were determined in a series of measurements of cross sections for neutron and
proton adding and removing transfer reactions [8].

The occupancies of valence neutron and proton orbits determined experimentally in
Refs. [8], represent important constraints for nuclear models used in the evaluation of
the 0νββ -decay NMEs. In Ref. [9] the input mean field has been modified in such a
way that the valence orbits in the model obey these constraints. Within QRPA and its
generalizations it was found that it is important to also choose the variant of the basic
method that makes such comparison meaningful by conserving the average particle
number in the correlated ground state. When following this procedure, but otherwise
keeping the same steps as in evaluation of M0ν within QRPA before, the conclusion was
that for the 76Ge →76 Se transition the matrix element is smaller by 25%, reducing the
previously bothersome difference with the shell model prediction noticeably. Clearly,
having the experimental orbit occupancies available and adjusting the input to fulfill the
corresponding constraint makes a difference. It would be very useful to have similar
constraints available also in other systems, in particular for 130Te and/or 136Xe.

Charge-exchange reactions of (p,n) and (n, p) type at intermediate energies and
at forward angles, i.e., low momentum transfers (qtr ∼ 0 and ∆L = 0), selectively
excite Gamow-Teller (GT) transitions owing to the dominance of the Vστ component
of the effective interaction. However, experiments which employ the elementary (p,n)
and (n, p) reactions have rather limited resolution and alternatives to them have now
successfully been established through the (n, p)-type (d,2He) or (t,3He) reactions and
the (p,n)-type (3He, t) reaction. Resolutions on the order of 100 keV in the case of
(d,2He), 190 keV for (t,3He) and 30 keV for (3He, t) have routinely been achieved
[10].

The connection between the two-neutrino double beta decay (2νββ -decay) half-life
and the GT transition strength B(GT) is as follows:

(
T 2ν

1/2

)−1
= G2ν(Q,Z)

∣∣M2ν
DGT

∣∣2
, (4)

where G2ν(Q,Z) is a phase-space factor depending on the Q-value of the reaction and
the Z-value of the decaying nucleus. It contains squared the weak interaction coupling
constant gA. The 2νββ -decay matrix element can be deduced by combining GT + and
GT− distributions in the following way:

M2ν
DGT = ∑

m

MGT+
m ·MGT−

m

Qββ /2+me +Ex(1+
m)−E0

,

B(GT±) =
1

2Ji +1

∣∣∣MGT±
∣∣∣
2
. (5)
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Here, (Ex(1+
m)−E0) is the energy difference between the mth intermediate 1+ state and

the initial ground state. Qββ is the Q-value of the ββ -decay, and the ∑m runs over all
states of the intermediate nucleus. In this approach the effect of a destructive interference
among contributions of different states of intermediate nucleus to M2ν

DGT is neglected.
The results of the charge-exchange reaction experiments therefore furnish important

information about the nuclear physics relevant for double β -decay [10]. This informa-
tion directly feed into model calculations, which are aimed at describing reliably the nu-
clear physics around both decay variants, the 2νββ -decay and the 0νββ -decay. A high
energy resolution of the order of 30 keV, which can presently only be obtained at the
RCNP facility in Osaka, allows a precise determination of the GT strength distribution.
The high resolution can give significant insight into the details of the nuclear structure.
It may be important to understand if the concentration of the low-energy B(GT) strength
within a single strong transition, as was observed in the case of 96Zr and 100Mo, is a
somewhat general feature of nuclei with masses A ∼ 100 or above [10]. An open ques-
tion is the 2νββ -decay half-life of 136Xe, which has been not measured yet. The reason
of suppression of this process is not known. Clearly, explanation of these effects has
significant bearing on the double β -decay rate.

we note that a possibility to study charge-changing and particle transfer reactions at
iThemba Labs in South Africa is under discussion.

CONCLUSION AND OUTLOOK

Many new projects for measurements of 0νββ -decay have been proposed, which hope
to probe effective neutrino mass mββ down to 10-50 meV. Nuclear matrix elements
need to be evaluated with uncertainty of less than 30% to establish the neutrino mass
spectrum and CP violating phases. The improvement of the calculation of the nuclear
matrix elements is a very important and challenging problem.

Recently, there has been significant progress in understanding the source of the spread
of calculated NMEs. Nevertheless, there is no consensus among nuclear theorists about
their correct values, and corresponding uncertainty. However, a recent development in
the field is encouraging. There is a reason to be hopeful that the uncertainty will be
reduced.

An important cross-check for nuclear models would be to explore the structure of the
intermediate odd-odd nuclei by the charge exchange reactions. There are possibilities for
improving the QRPA calculation of NMEs, e.g., by taking into account the deformation
of parent and daughter nuclei. Further progress in the NSM calculation will be possible
due to increasing computer speed and memory. This will allow to extend the considered
model spaces. The exactly solvable models can also help to find the ultimate solution
of this important problem. It is also clear that in order to have confidence in calculated
NMEs multiple 0νββ -decay experimental results are required.
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