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Abstract. The negative parity bands with different values of K in 220Th are analyzed within the
dinuclear system model which was previously used for description of the ground state alternating-
parity bands with K = 0 in deformed actinides. The model is based on the assumption that the
cluster type shapes are produced by the collective motion in the mass-asymmetry coordinate. To
describe the reflection-asymmetric collective modes characterized by the nonzero values of K, the
intrinsic excitations of clusters are taken into account. The observed excitation spectrum, angular
momentum dependence of the parity splitting and of the staggering behavior of the B(E1)/B(E2)
ratios are explained.
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INTRODUCTION

In the even-even isotopes of actinides and also in the heavy Ba and Ce isotopes the
low-lying negative parity states are observed together with the usually presented collec-
tive positive-parity states combined into rotational or quasirotational ground-state bands.
Formation of the positive-parity rotational or quasirotational bands is connected in gen-
eral to the quadrupole collective motion, while the lowering of the negative-parity states
is a signature of the presence of the reflection asymmetric collective mode. There are
several approaches to treat the collective motion related to the reflection asymmetric
degrees of freedom. One of them is based on the concept of the nuclear mean field [1]
which has a static mirror asymmetric deformation or is characterized by a large am-
plitude of reflection asymmetric vibrations around the equilibrium shape. Another ap-
proach is based on the assumption that the reflection asymmetric shape is a consequence
of the α-clustering in nuclei [2]. It is also known from the Nilsson-Strutinsky type cal-
culations for light nuclei that nuclear configurations corresponding to the minima of the
potential energy contain particular symmetries which are related to certain cluster struc-
tures [3, 4]. Several calculations performed for heavy nuclei [5, 6, 7] have shown that
configurations with large equilibrium quadrupole deformations and low-lying collective
negative parity states are strongly related to clustering. We mention also a different ap-
proach to description of the properties of the alternating parity bands which is based on
the idea of the aligned octupole phonons [8, 9].

The main idea of the cluster model developed in [7, 10, 11] is that a dynamics of a
reflection asymmetric collective motion can be treated as a collective motion of nucleons
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between two clusters or as a motion in a mass-asymmetry coordinate. Such collective
motion simultaneously creates deformations with even and odd-multipolarities. The
choice of the collective coordinates and the procedure of the calculation of the potential
energy and of the inertia coefficients for the Hamiltonian of the model are based on the
concept of the dinuclear system (DNS). This concept was first introduced to explain the
experimental data on deep inelastic and fusion reactions. Later on it was applied to the
description of the nuclear structure phenomena, like alternating parity bands, mentioned
above, and superdeformed states [12, 13]. The dinuclear system (A,Z) consists of two
fragments (A1,Z1) and (A2,Z2) with A = A1 + A2 and Z = Z1 + Z2 kept in touching
configuration by a a molecular-type nucleus-nucleus potential. As it was shown by our
calculations, the α-cluster DNS AZ →(A−4) (Z−2)+4He gives a significant contribution
to the formation of the low-lying nuclear states. This is also in agreement with the fact
that these nuclei are good alpha-emitters.

Within this approach the existing experimental data on the angular momentum de-
pendence of the parity splitting in the excitation spectra and the multipole transition
moments (E1,E2,E3) of the low-lying alternating parity states in odd and even actinides
220−228Ra, 223,225,227Ac, 222−224,226,228−232Th, 231Pa, 232−234,236,238U and 240,242Po and
the medium mass nuclei 144,146,148Ba, 151,153Pm, 146,148Ce 153,155Eu and 146,148Nd are
well described. The good agreement between the results of calculations and the experi-
mental data support a cluster interpretation of the reflection-asymmetric states.

However, previously we have considered in the even-even nuclei only the low-lying
collective negative parity states with K=0. At the same time, there are experimental data
which indicate on a presence of the low-lying collective states related to the reflection-
asymmetric modes which are characterized by nonzero values of K. It can happens
also that K is not a good quantum number if nuclei are located in a transitional region
between deformed and spherical ones. A good example is 220Th [14] whose energy
spectra is a challenge for the theoretical approaches. To describe in the framework of the
cluster approach the properties of the low-lying collective states related to the reflection-
asymmetric collective mode and characterized by nonzero values of K we should take
into account intrinsic excitations of the clusters forming a nucleus under consideration.
It is the aim of the present investigation to extend the dinuclear system model to take
into account such excitations.

MODEL

Hamiltonian

As illustrated in Fig. 1, the degrees of freedom chosen to characterize a dinuclear
system with nearly spherical heavy cluster are related to description of the rotation of
the DNS as a whole, the quadrupole oscillations of the heavy fragment, and the transfer
of nucleons between the fragments. The Hamiltonian of the model can be presented in
the form

Ĥ = Ĥ0 +V̂int , (1)
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FIGURE 1. Schematic picture illustrates degrees of freedom used in the model to describe dinuclear
system. Orientation of the vector of the relative distance R is defined by the angles Ω(θ ,φ) with respect
to the laboratory frame system.

where Ĥ0 describes independent fragments of the system and V̂int describes the interac-
tion between the fragments.

We assume that the heavy cluster is spherical and perform harmonic quadrupole
oscillations around the spherically symmetric shape with frequency h̄ω0, while the light
cluster stays in its ground state. This assumption is in agreement with the suggestion
made in [19] that some nuclei in the region of N=130 may have a shape with a significant
octupole deformation but a negligible quadrupole deformation.

Then for Ĥ we have the following expression

Ĥ = h̄ω0n̂+
h̄2

2µ(ξ )R2 L̂2− h̄2

2Bξ

1
ξ

∂
∂ξ

ξ
∂

∂ξ
+U(R,ξ ,α2µ), (2)

where, for convenience, we use positively-defined variable ξ instead of a usual definition
of the mass-asymmetry coordinate η = (A1−A2)/(A1 +A2)

ξ = 2A2/A = 1−η . (3)

In equation (2), µ(ξ ) is the reduced mass of the DNS, R(ξ ) is the distance between
the centers of mass of the fragments, n̂ is the operator of the number of the quadrupole
phonons of heavy cluster, α2µ describes quadrupole oscillations of the surface of the
heavy fragment and L̂2 is the operator of the square of angular momentum of the relative
rotations of the two fragments

L2 =−
[

1
sinθ

∂
∂θ

sinθ
∂

∂θ
+

1
sin2 θ

∂ 2

∂φ 2

]
. (4)

Angles Ω = (θ ,φ) (see Fig.1) describes the orientation of the relative distance vector R
with respect to the laboratory coordinate system.

Above, Bξ is a mass tensor and U(R,ξ ,α2µ) is a potential energy. The potential
energy of the dinuclear system is determined as

U(R,ξ ,α2µ) = B1 +B2−B12 +V (R,ξ ,α2µ). (5)
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Here, B1, B2 and B12 are the binding energies of the fragments and the compound
nucleus, respectively. The nucleus-nucleus potential in (5)

V (R,ξ ,α2µ) = VCoul(R,ξ ,α2µ)+Vnucl(R,ξ ,α2µ) (6)

is the sum of the Coulomb potential

VCoul(R,ξ ,α2µ) =
e2Z1Z2

R
+

3
5

e2Z1Z2
R3 R2

01 ∑
µ

α∗2µY2µ(θ ,φ)+ ... (7)

and the nuclear interaction potential

Vnucl(R,ξ ,α2µ) =
∫

ρ1(r1)ρ1(R− r2)F(r1− r2)d3r1d3r2, (8)

where F(r1−r2) is a Skyrme-type density dependent effective nucleon-nucleon interac-
tion. Vnucl can be expanded in degrees of α2µ . The procedure of calculation used in this
paper is described in [17]. Since in our case the amplitude of the quadrupole oscillations
is small only the terms linear in α2µ in the expansion of V (R,ξ ,α2µ) are considered.
Thus, V (R,ξ ,α2µ) can be presented as

V (R,ξ ,α2µ) = V (R,ξ )+V0(ξ )∑
µ

α∗2µY2µ(θ ,φ), (9)

where V0 is determined by the nuclear and Coulomb parts of the nucleus-nucleus inter-
action potential. For the H0 and Vint we obtain

Ĥ0 = h̄ω0n̂+
h̄2

2µ(ξ )R2 L̂2− h̄2

2Bξ

1
ξ

∂
∂ξ

ξ
∂

∂ξ
+V (R,ξ ), (10)

and

Vint = V0(ξ )∑
µ

α∗2µY2µ(θ ,φ). (11)

In this paper h̄ω0 is considered as a free parameter which is fixed by the description
of the energy of 2+

1 state. The numerical calculation have shown that E(2+
1 ) is described

if we take h̄ω0=0.47 MeV. Below we assume that the value of R is fixed and corresponds
to the touching configuration of two clusters forming a dinuclear system with mass
asymmetry ξ . Thus, R = R(ξ ).

Our analysis of the mass-asymmetry motion in 220Th have shown that the motion in
coordinate ξ can be separated from the other degrees of freedom and the system is in its
lowest state with respect to the mass-asymmetry. The reason for this is that the energy
of the first exited state related to the mass-asymmetry degree of freedom is high enough
to neglect its influence on the low-energy part of the spectra. Neglecting the excitations
in the variable ξ we average Hamiltonian Ĥ over Ψ0(ξ ) which describes motion in ξ in
the ground-state. As a result we obtain

Ĥ0 = h̄ω0n̂+
h̄2

2µ(ξ0)R(ξ0)2 L̂2 +E0(ξ0). (12)
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Averaging over Ψ0(ξ ), yield the effective value of ξ , namely, ξ0 located between ξ =0,
which corresponds to the mononucleus configuration and ξ = ξα = 8/A. In equation
(12) E0(ξ0) is the zero-point energy of the motion in ξ , which is unimportant for further
consideration. The calculation have been performed with ξ0=0.2ξα . Using this value of
ξ0 we can calculate the interaction energy of the dinuclear system as described in [17].
This gives V0(ξ0)=11 MeV for the interaction between vibrational and rotational degrees
of freedom (see Eq.(11)).

The collective quadrupole coordinate α2µ can be expressed in terms of the creation
and annihilation operators of the quadrupole bosons

α̂2µ = β0(d+
2µ + d̃2µ), (13)

with β0 =
√

h̄/2Bω0. Again, as in the case of h̄ω0, the mass parameter of the quadrupole
motion B is not fixed in the model. The value of B and, respectively, β0 can be retrieved
by fitting the experimental value B(E2,2+ → 0+). According, to [18], the reduced
transition probabilities for the lowest levels of 220Th satisfy the rotor model expression
with quadrupole model Q0=540 e fm2. This yields β0=0.12.

If we neglect the interaction term V̂int in (1) the eigenfunctions of the Hamiltonian can
be constructed as

ΨIM
(nτn∆I1)I2

= [|nτn∆I1)×YI2](IM) , (14)

where |nτn∆I1) represents the n-boson wave function of the heavy nucleus, with the
seniority τ and angular momentum I1. Since the quadrupole oscillations have positive
parity, the parity of the states (14) is determined by the angular momentum of the relative
rotation of the fragments p = (−1)I2 . The energies of the states (14) are given in this
approximation by the expresssion

EnI1I2I =
[

h̄ω0n+
h̄2

2µR2 I2(I2 +1)
]
. (15)

The set of the wave functions (14) can be used as a basis to construct the eigenfunction
of the Hamiltonian Ĥ in the form

ΨIM,p = ∑
I1I2

∑
nI1τI1

a(I,p)
nI1τI1 I1I2

[|nI1τI1I1)×YI2](IM) , (16)

where coefficients a(I,p)
nI1 τI1 I1I2

should be obtained by a diagonalization of Ĥ. The matrix

elements of V̂int between the states (14) have the following form

〈ΨIM
(n′τ ′I′1)I

′
2
|V̂int |ΨIM

(nτI1)I2
〉 = (−1)I1+I′2+IV0β0

√
5

4π
(2I2 +1)(I2020|I′20)

×
(

I′2 I′1 I
I1 I2 2

)
(n′τ ′I′1||(d+ + d̃)||nτI1), (17)
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where the reduced matrix elements of the boson operators can be calculated using the
boson fractional parentage coefficients

[
dn−1(α1I1)dI|}dnαI

]
=

1√
n

1√
2I +1

(dnαI||d+||dn−1α1I1)

[
dn−1(α1I1)dI|}dnαI

]
= (−1)I−I1

1√
n

1√
2I +1

(dn−1α1I1||d̃||dnαI). (18)

Two-level solution

Although our calculations have been performed using a sufficiently large basis pro-
viding convergence the calculations have shown that the ground-state band and the first
excited negative parity band can be presented with a good accuracy as a superposition of
two basis states of the form (14). For the ground state band the two level approximation
yields the wave function of the form (I can have only even values)

Ψg.s.
I = sin[γ0(I)]

[
| I
2

I
2

I)×Y0

]

(IM)
− cos[γ0(I)]

[
|I−2

2
I−2

2
(I−2))×Y2

]

(IM)
,(19)

where

sin[γ0(I)] =
1√
2


1+

1√
1+

(
V0β0√

2π∆

)2
I

)




1/2

(20)

and for the energy we obtain

εg.s.
I = h̄ω

I
2

+
∆
2


1−

√
1+

(
V0β0√

2π∆

)2

I


 . (21)

In the last expressions ∆ = 3h̄2

µR2 − h̄ω .
For the first excited negative parity band we have

Ψn.p.
I = sin[γ1(I)]

[
|I−1

2
I−1

2
(I−1))×Y1

]

(IM)
+

cos[γ1(I)]
[
|I +1

2
I +1

2
(I +1))×Y1

]

(IM)
, (22)
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where

sin[γ1(I)] =
1√
2




1+
1√

1+
(√

12
5π

V0β0
h̄ω

)2
(I+1)(2I+3)

(2I+1)




1/2

(23)

and the energy is given as

εn.p.
I = h̄ω

(I−1)
2

+
h̄2

ℑ
+ h̄ω


1−

√√√√1+

(√
12
5π

V0β0

h̄ω

)2
(I +1)(2I +3)

(2I +1)


 . (24)

Angular momentum I can take only odd values.

Multipole Moments

Electric multipole operators are given by the expression

Q̂λ µ =
∫

ρ(r)rλY ∗λ µdτ. (25)

For the dinuclear system we assume that

ρ(r) = ρ1(r)+ρ2(r), (26)

where ρi (i = 1,2) are the densities of the DNS fragments. Using (26) we can rewrite
the expression of the electric multipole moments for the DNS in the following form

Q̂λ µ = ∑
λ1,λ1+λ2=λ

√
4π(2λ +1)!

(2λ1 +1)!(2λ2 +1)!

[
q̂(λ1λ2)

λ1
×Yλ2(Ω)

]
λ µ

, (27)

where

q̂(λ1λ2)
λ1

=

[(
A1

A

)λ2

Q(2)
λ1

+(−1)λ2

(
A2

A

)λ2

Q(1)
λ1

]
Rλ2 . (28)

In the last expression Q(i) (i = 1,2) are the intrinsic multipole moments of the DNS
fragments.

Since we assume that the light fragment is spherical and can not be excited in the
considered energy range the only nonzero moment for the first fragment is Q(1)

0 =
Z1/

√
4π . The second fragment is assumed to perform the quadrupole oscillations around
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the spherical shape. Thus, in the linear approximation with respect to the deformation,
we have two nonzero moments for the second fragment: Q(2)

0 = Z2/
√

4π and Q(2)
2 =

3Z2R2
2

4π α∗2µ . Therefore, we can write the explicit expressions for the dipole and quadrupole
moment of the DNS in the form

Q1µ = e
A1Z2−A2Z1

A
R ·Y1µ(Ω) (29)

for the dipole moment and

Q2µ = e
A2

1Z2 +A2
2Z1

A2 R2 ·Y2µ(Ω)+Q2µ
(2) (30)

for the quadrupole moment.

Reduced transition probabilities

Using expression (16) for the wave function and (27) for the multipole operators we
can calculate the reduced transition probabilities as the

B(Eλ , Ii → I f ) =
|< I f ||Qλ ||Ii > |2

2Ii +1
(31)

The reduced matrix elements for the multipole operator Qλ between the initial state i
and the final state j has the following form

< I j p j||Qλ ||Ii pi >=

∑
λ1λ2

∑
{i}{ j}

a(I j p j)∗
nI1τI1 I1I2

a(Ii pi)
nI′1

τI′1
I′1I′2

(nI1τI1I1||q(λ1λ2)
λ1

||nI′1τI′1I′1)C
I20
I′20λ20

√
(2λ +1)!

(2λ1 +1)!(2λ2 +1)!

×
√

(2i+1)(2 j +1)(2λ +1)(2i2 +1)(2λ2 +1)





I1 I2 I j
I′1 I′2 Ii
λ1 λ2 λ



 , (32)

where λ1 = λ −λ2, and {i}({ j}) stands for the set of quantum numbers of the initial
(final) states.

Using the two-level solutions for the ground-state and the first excited negative parity
bands we can easily calculate the B(E2)-values for the intraband transitions and the
values of B(E1) for the transitions between these bands.

In the case of the quadrupole transitions we have for the transitions between the states
of the ground state band

B(E2, Ig.s. → (I−2)g.s.) =

(−q(2,0)
0 sin [γ0(I)]cos [γ0(I−2)]+q(0,2)

2

√
I
2

sin [γ0(I)]sin [γ0(I−2)]

+q(0,2)
2

√
(I−2)

2
cos [γ0(I)]cos [γ0(I−2)])2 (33)
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and for the transition between the negative parity states

B(E2, In.p. → (I−2)n.p.) =

(−q(2,0)
0

√
6(2I−3)
5(2I−1)

sin [γ0(I)]cos [γ0(I−2)]+q(0,2)
2

√
I−1

2
sin [γ0(I)]sin [γ0(I−2)]

+q(0,2)
2

√
(2I−3)(2I +3)(I +1)

2(2I−1)(2I +1)
cos [γ0(I)]cos [γ0(I−2)])2. (34)

In the last two expressions we have

q(2,0)
0 = ee f f

A2
1Z2 +A2

2Z1

A2 R2,

q(0,2)
2 = ee f f

3
4π

Z1R2
1β0. (35)

For the dipole transitions between the two bands our calculations yields

B(E1, Ig.s. → (I−1)n.p.) =

q2
0

2I +1

{
√

2I−1sin [γ0(I)]cos [γ1(I−1)]+

√
6(2I +1)

5
cos [γ0(L)]sin [γ1(I−1)]

}2

,

B(E1, In.p. → (I−1)g.s.) = q2
0 sin2 [γ1(I)]sin2 [γ0(I−1)], (36)

where
q0 = ee f f

A1Z2−A2Z1

A
R .

RESULTS OF CALCULATIONS

The results of calculations of the energy spectra of the ground state band and the two
lowest negative parity bands for the 220Th are presented in Fig.2 together with the avail-
able experimental data. the The Hamiltonian (1) has been diagonalized numerically.
One can see the overall good agreement between the calculated and experimental spec-
tra.As a consequence of the harmonic quadrupole oscillations of the heavy fragment, the
ground-state band and the first negative parity bands exhibit approximately an equidis-
tant spectra.

The calculation shows that mainly two eigenvectors of Ĥ0 are present in the
wave function of the states of the ground state band. Namely,

[| I
2

I
2(I))×Y0

]
(IM) and[| I−2

2
I−2

2 (I−2))×Y2
]
(IM). The contribution of the first of them is predominant at low

angular momenta. As a consequence at low angular momenta the ground state band has
an equidistant spectrum with the energy differences determined mainly by the frequency
of the harmonic quadrupole oscillations of the heavy fragment. With increase of the
angular momentum, the distance between the levels is slightly increased, due to the
growing admixture of the component

[| I−2
2

I−2
2 (I−2))×Y2

]
(IM) to the wave function.

135



0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

21-

19-

18-

20+

18+

16+

14+

21-

19-

17-

15-

13-

17-

16-

15-

13-
14-

220Th exp.           calc.                   

12-

11-

4-

11-

12+

10+

8+

6+

4+

10-

9-

8-

7-

6-

5-

3-

1-

9-

7-

5-

3-

10+

8+

6+

4+

0+

M
eV

2+

1-

2-

2+

23-

21-

19-

21-

17-

16-

15-

14-

13-

12-

17-

15-

13-

11-

9-

7-

5-

22+

20+

18+

16+

14+

12+

0+

FIGURE 2. Calculated and experimental level scheme of 220Th. Experimental energies, spin and parity
assignments are taken from [14].

This introduces a small nonlinear dependence of the γ-transition energies on the angular
momentum.

The same equidistant structure with the frequency slightly growing with an-
gular momentum holds for the first negative parity band. Again, the calculation
shows that mainly two eigenstates of Ĥ0 are present in the wave function. Namely,[| I−1

2
I−1

2 (I−1))×Y1
]
(IM) and

[| I+1
2

I+1
2 (I +1))×Y1

]
(IM) . The contribution of the later

component while being small at I=0 is growing with angular momentum. The energy
differences between the states in the negative parity band at low angular momentum are
again determined mainly by the frequency of the quadrupole oscillations of the heavy
fragment.

The angular momentum dependence of the frequency ωvib = Eγ/2, defined as a half
of the energy difference between the energies of two neighborhood levels of the ground
state band and of the first excited negative parity band is illustrated in Fig.3. One can see
the sharp decrease of the experimental values of Eγ for the transition 10+ → 8+ in the
ground state band and for the transition 13−→ 11− in the negative parity band which can
be a consequence of the backbending phenomena. The backbending in these bands can
be related to a rotational alignment of the nucleonic orbitals as it is mentioned in [14].
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FIGURE 3. Calculated (line) and experimental (solid circles connected by lines) energies of γ tran-
sitions between subsequent levels of the ground state band (a) and the first negative parity band (b).
Experimental values are taken from [14].
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FIGURE 4. Calculated (lines) and experimental (solid squares connected by lines) values of parity
splitting (see Eq.(37)). Experimental values are taken from [14].

The model considered above does not provide a mechanism which could be responsible
for the experimentally observed behavior of the γ-transition energies. However, it is
seen from Fig. 3 that the interval of variation of ωvib with angular momentum observed
experimentally and obtained in calculations is not large. The frequencies vary from 185
keV to 240 keV. By taking into account the length of the spectra in both energy and
angular momentum, we see that the frequency can be treated with a good accuracy as a
constant.

Dependence of the experimental and calculated values of a parity splitting in the
ground state and the first negative parity bands, treated as a unified alternating parity
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band, on angular momentum is illustrated in Fig.4. The parity splitting is defined by the
expression [14]

S(I−) = E(I−)−
(I +1)E+

(I−1) + IE+
(I+1)

2I +1
. (37)

It is seen from the figure that for the low angular momenta the parity splitting is positive
and becomes negative with angular momentum increase. The possibility for the negative
values of the parity splitting is related to the fact that the ground-state band and the
first negative parity band are of the vibrational type. In this case the sign of the parity
splitting is determined by the difference in the energies characterizing the quadrupole
vibrations of the heavy fragment and the rotation of the light fragment around the heavy
one. Indeed, in the zero approximation E(I−) = 1

2ω(I− 1) + h̄2

2µR2 , E(I+) = 1
2ωI and

therefore S(I−)= h̄2

2µR2 − 1
2ω 2I

(2I+1) . Thus, for h̄2

2µR2 < 1
2ω , S(I−) can take negative values.

In the case of the rotational bands, the value S(I) must stay positive, achieving a zero
value for the ideal unperturbed rotational bands of a nucleus with a stable octupole
deformation.

The important feature of the spectra is an appearance at low energy of the second
excited negative parity band which contains the states of the even and odd angular mo-
menta. This band has an interesting features. The state with angular momentum I=2
is lower than the state with I=1. With increase of angular momentum the normal level
sequence is restored. The reason for such a behavior is related to a significant contri-
bution of the states

[| I+1
2

I+1
2 (I +1))×Y1

]
(I+1,M) and

[| I+1
2

I+1
2 (I +1))×Y1

]
(I+2,M) into

the wave functions for even and odd angular momenta, respectively. In the limit of V̂int
is going to zero these two states become degenerate.

It is assumed above that the intrinsic excitations of the heavy cluster are described
by the quadrupole harmonic oscillator model. We know that an excitation spectrum
generated by this model is characterized by a high degree of a degeneracy. So, it is
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FIGURE 6. B(E1)/B(E2) ratio as a function of the initial angular momentum for transitions in the
ground and the first negative parity bands. Experimental values (filled circles) are taken from [14].

interesting to know to what extent the traces of these degeneracies are seen in the
spectrum generated by the full Hamiltonian which contains also the interaction term.

First of all, it is interesting at what excitation energies appears the second excited 2+

state and the first excited 0+ state which has the same excitation energy as the 4+
1 state in

the case of the quadrupole harmonic oscillator. For 220Th we obtain E∗(2+
2 )=1161 keV

and E∗(0+
2 )=896 keV. For the E∗(4+

1 ) we have 717 keV.
Experimentally the excited bands of the positive parity have not been observed in

220Th. There are known 10+ and 8+ states with the excitation energies around 2 MeV.
However, it is not clear either these states are two-quasiparticle or they belong to the
excited rotational bands. Thus, the experimental information on the excitation energies
of the 2+

2 and 0+
2 states and on their characteristics is very important for the check of the

suggested model.
In Fig.5, the values of the ratio B(E2, I → I− 2)/B(E2,2+ → 0+) are presented as

a function of the initial angular momentum. As it should be in the case of harmonic
quadrupole oscillations of the heavy fragment the values of B(E2) increase linearly
with I. They does not show any changes in the behavior for transitions between the
members of the ground-state band and the first negative parity band since the underlying
quadrupole constituents in both bands are the same. Thus, the experimentally observed
staggering of the BE1/BE2 ratios can be attributed to the staggering of the B(E1) values
(see Fig. 6).

Such a staggering behavior of B(E1) can be qualitatively explained analyzing the
equation (36). We can see that the reduced transition probability B(E1) for the transition
from the state I of the ground state band to the state (I-1) of the first excited negative
parity band consist of two contributions, since both dipole transitions are allowed (see
Eqs.(19,22)): from the component

[| I
2

I
2(I))×Y0

]
(IM) to

[| I
2

I
2(I))×Y1

]
(I−1,M) and from
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the component
[| I−2

2
I−2

2 (I−2))×Y2
]
(IM) to

[| I−2
2

I−2
2 (I−2))×Y1

]
(I−1,M). In the op-

posite case of transition from the states of the negative parity band to the states of the
positive parity belonging to the ground state band, we have only one allowed transition,
namely, from the component

[| I
2

I
2(I))×Y1

]
(I+1,M) to the component

[| I
2

I
2(I))×Y0

]
(I,M).

The transition from
[| I+2

2
I+2

2 (I +2))×Y1
]
(I+1,M) to

[| I−2
2

I−2
2 (I−2))×Y2

]
(I,M) is for-

bidden because the dipole operator does not change a number of the quadrupole
phonons.

The B(E1)/B(E2) ratio as a function of an initial angular momentum is presented in
Fig.6. Calculated ratios for the odd initial angular momentum (i.e. for transitions from
the states of the negative parity) lie systematically lower than the ratios for the even
initial angular momentum (transitions from the state of the ground state band). This is
in agreement with the experimental data with the exception of two data points at 13−
and 14+ . As it is mentioned in [14] the large value of B(E1)/B(E2) ratio at 13− can be
attributed to the loss of E2 strength in the backbending. The rather small B(E1)/B(E2)
value for the 14+ attributed to the spread of E1 strength due to the presence of two 13−
final states.

CONCLUSION

We have suggested a cluster interpretation of the properties of the multiple negative par-
ity bands in 220Th. The collective motion related to the cluster degree of freedom leads
to the admixture of the very asymmetric cluster configurations to the intrinsic nucleus
wave function. To take into account the reflection asymmetric modes with nonzero val-
ues of K, the harmonic quadrupole oscillations of the heavy cluster is considered. The
resulting energy spectrum consists of the ground state band and several negative parity
bands which exhibit nearly equidistant behavior. The angular momentum dependence
of the parity splitting is described. The possibility for the negative values of the par-
ity splitting is related in the model to the interplay between the quadrupole vibrations
of the heavy fragment and the rotational motion of the light fragment. We describe the
observed staggering behavior of the B(E1)/B(E2)-rations as a function of the angular
momentum. The BE(1) transitions from the state of the negative parity to the state of the
positive parity is hindered, in this case in a contrast to the transitions from the positive to
the negative parity state the E1 transition operator relates only a part of the components
of the wave functions of the bands. The results of calculations are in overall agreement
with the experimental data. This work is a further development of the previously devel-
oped approaches [7, 10, 11].
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