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Abstract. The electrodisintegration of the deuteron for the kinematic conditions of the JLab exper-
iment E-94-019 is considered. The calculations are performed within the covariant Bethe-Salpeter
approach with the separable kernel of interaction. The results are obtained within the relativistic
plane wave impulse approximation and compared with the experimental data and other models. The
influence of nucleon electromagnetic form factors is investigated.
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FORMALISM

The deuteron electrodisintegraton is considered within the Bethe-Salpeter (BS) approach
[1] with a separable kernel of NN interactions. It is based on the solution of the BS
equation:

ΦJM(k;K) =
i

(2π)4 S2(k;K)
∫

d4 pV (p,k;K)ΦJM(p;K) (1)

for the bound state of the neutron-proton (np) system with the total angular momentum
J and its projection M which is described by the BS amplitude ΦJM. Here the total
K = kp + kn and the relative k = (kp− kn)/2 momenta are used instead of the proton
kp and neutron kn momenta. In general, the BS amplitude can be decomposed by the
partial-wave states through the generalized spherical harmonic Y and the radial part φ
[2] as:

ΦJM
αβ (k;K(0)) = ∑

a
(YaM(k)UC)αβ φa(k0, |k|;K2

(0)), (2)

where K(0) = (Md,0) is the total momentum of the NN system in its rest frame (here it is
the deuteron rest frame called the laboratory system, LS); Md is a mass of the deuteron;
UC is the charge conjugation matrix; α , β denote matrix indices; a is a short notation
of the partial-wave state 2S+1Lρ

J with spin S, orbital L and total J angular momenta, ρ
means positive- or negative-energy partial-wave state. S2(k;K) is the free two-particle
Green function:

S−1
2 (k;K) =

(1
2 K · γ + k · γ−m

)(1)(1
2 K · γ− k · γ−m

)(2)
.
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In calculations, it is more convenient to use the BS vertex function ΓJM which is
connected with the BS amplitude by the following relation:

ΦJM(k;K) = S2(k;K)ΓJM(k;K). (3)

After using the decomposition of type (2) for the vertex function the relation between
ΦJM and ΓJM radial parts can be deduced:

φa(k0, |k|) = ∑
b

Sab(k0, |k|;s)gb(k0, |k|), (4)

where Sab is the one-nucleon propagator [2]. To solve the BS equation (1) we use the
separable ansatz for the interaction kernel

Vab(p0, |p|;k0, |k|;s) =
N

∑
i, j=1

λi j(s)g
[a]
i (p0, |p|)g[b]

j (k0, |k|), (5)

where N is a rank of the kernel, gi are model functions; λ is a parameter matrix satisfying
the symmetry property λi j(s) = λ ji(s); k [p] is the relative momentum of the initial
[final] nucleons; s = (pp + pn)2 where pp is the outgoing proton and pn is the neutron
momentum, respectively. If the radial part of the vertex function ΓJM is written in the
following form:

ga(p0, |p|) =
N

∑
i, j=1

λi j(s)g
[a]
i (p0, |p|)c j(s), (6)

the initial integral BS equation (1) is transformed into a system of linear homogeneous
equations for the coefficients ci(s):

ci(s)−
N

∑
k, j=1

hik(s)λk j(s)c j(s) = 0, (7)

where

hi j(s) =− i
4π3 ∑

a

∫
dk0

∫
k2d|k| g[a]

i (k0, |k|)g[a]
j (k0, |k|)

(
√

s/2−Ek + iε)2− k2
0

(8)

and Ek =
√

k2 +m2. Using (4) and taking into account only positive-energy partial-wave
states for the deuteron 3S+

1 , 3D+
1 the radial part of the BS amplitude can be written as:

φa(k0, |k|) =
ga(k0, |k|)

(Md/2−Ek + iε)2− k2
0
. (9)

Thus, using the separable functions g we can calculate observables describing the np
system.
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CROSS SECTION

The exclusive d(e,e′n)p process when all particles are unpolarized can be described by
the cross section in LS:

d3σ
dQ2d|pn|dΩn

=
σMottπp2

n
2(2π)3MdEeE ′e

×

×[
l0
00W00 + l0

++(W++ +W−−)+ l0
+− cos2φ 2ReW+− − l0

+− sin2φ 2ImW+−
−l0

0+ cosφ 2Re(W0+−W0−)− l0
0+ sinφ 2Im(W0+ +W0−)

]
, (10)

where σMott = (α cos θ
2 /2Ee sin2 θ

2 )2 is the Mott cross section, α = e2/4π is the fine
structure constant; Ee [E ′e] is the energy of the initial [final] electron; Ω′

e is the outgoing
electron solid angle; θ is the electron scattering angle; Q2 =−q2 =−ω2 +q2, where q =
(ω ,q) is the momentum transfer. The outgoing neutron is described by the momentum
pn and the solid angle Ωn = (θn,φ) with the zenithal angle θn between q and pn momenta
and azimuthal angle φ between (ee′) and (qpn) planes. The photon density matrix
elements have the following form:

l0
00 =

Q2

q2 , l0
0+ =

Q
|q|√2

√
Q2

q2 + tan2 θ
2

,

l0
++ = tan2 θ

2
+

Q2

2q2 , l0
+− =− Q2

2q2 . (11)

The hadron density matrix elements W can be calculated using Cartesian components of
the hadron tensor

Wµν =
1
3 ∑

sdsnsp

∣∣< np : SMS| jµ |d : 1M >
∣∣2

, (12)

where S is a spin of the np pair and MS is its projection, and the photon polarization
vectors ε according to the relation

Wλλ ′ = Wµνεµ
λ ελ ′

ν , (13)

here λ , λ ′ are photon helicity components [3]. The hadron current jµ in (12) can be
written according to the Mandelstam technique [4] and, within the relativistic impulse
approximation, has the following form:

< np : SMS| jµ |d : 1M >=

i ∑
r=1,2

∫ d4 p
(2π)4 Sp

{
Λ(L −1)ψ̄SMS(P

CM, pCM)Λ(L ) ×

Γ(r)
µ (q)S(r)

(
K(0)

2
− (−1)r p− q

2

)
ΓM

(
K(0), p+(−1)r q

2

)}
, (14)
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the sum over r = 1,2 corresponds to the interaction of the virtual photon with the proton
and with the neutron in the deuteron, respectively. The total PCM and the relative pCM

momenta of the outgoing nucleons are considered in the final np pair rest frame (center-
of-mass system, CM) and can be written in LS using the Lorenz-boost transformation
along the q direction. The Lorenz transformation of the np pair wave function ψSMS from
CM to LS is:

Λ(L ) =
(

1+
√

1+η
2

) 1
2
(

1+
√ηγ0γ3

1+
√

1+η

)
. (15)

where η = q2/s. The interaction vertex is chosen in the on-mass-shell form:

Γµ(q) = γµF1(q2)− 1
4m

(
γµ/q−/qγµ

)
F2(q2), (16)

here F1(q2) is the Dirac form factor, F2(q2) - Pauli form factor. The form factors are
described by the dipole fit model [5] or modified dipole fit [6, 7]. If the outgoing nucleons
are supposed to be non-interacting it is the so-called plane-wave approximation. In this
case the np pair wave function can be written in the following form:

ψ̄SMS(P, p; p∗) → ψ̄(0)
SMS

(P, p; p∗) = (2π)4χ̄SMSδ (p− p∗), (17)

where p∗ = (0,p∗) is the relative momentum of on-mass-shell nucleons, χSMS describes
spinor states of the pair. Taking into account the representation (17), the hadron current
(14) can be transformed into a sum:

< np : SMS| jµ |d : 1M >= i ∑
r=1,2

{
Λ(L −1)χ̄SMS

(
PCM, pCM∗)Λ(L )Γ(r)

µ (q) ·

·S(r)
(

K(0)

2
− (−1)r p∗− q

2

)
ΓM

(
K(0), p∗+(−1)r q

2

)}
. (18)

In the paper the cross section of the exclusive electrodisintegration of the deuteron
d2σ/dQ2d|pn| [8] is calculated. It can be obtained from (10) after integration over the
neutron solid angle:

d2σ
dQ2d|pn| =

∫

Ωn

d3σ
dQ2d|pn|dΩn

dΩn. (19)

According to [8] the integration is performed over Ωn: 20◦ 6 θn 6 160◦, 0◦ 6 φ 6 360◦.
Four different Q2 are considered. The obtained results are discussed in the next section.

DISCUSSION AND CONCLUSION

In this paper the exclusive cross section of the electrodisintegration (19) for the kine-
matic conditions of the JLab experiment [8] is calculated within the Bethe-Salpeter
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FIGURE 1. The cross section (19) for Q2 = 2±0.25 GeV2 depending on the neutron momentum pn is
considered. Calculations with Graz II (NR) [11] (purple dash-dot-dotted line), Graz II [12] (brown dash-
dotted line), MY6 [9] (red solid line) and Paris [10] (pink dotted line) are present. The dipole fit [5] (on
the left) and modified dipole fit [5, 6, 7] (on the right) models for nucleon electromagnetic form factors
are considered.
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FIGURE 2. As in Fig.1, but for Q2 = 5±0.5 GeV2.

approach with the rank-six separable kernel MY6 [9]. The calculations are performed
within the relativistic plane-wave impulse approximation. The obtained results are com-
pared with the experimental data and other theoretical models, the Paris potential [10],
the nonrelativistic Graz II (NR) [11] and relativistic Graz II [12] separable interaction
kernels.

In Fig.1, the cross section depending on the outgoing neutron momentum pn is present
for Q2=2 GeV2. The dipole fit [5] (figure on the left) and modified dipole fit [6, 7] (figure
on the right) models for the nucleon electromagnetic form factors are considered. From
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FIGURE 3. The wave function (9) at k0 = Md/2−Ek for the 3S+
1 partial-wave state in the deuteron rest

frame for the MY6 model in comparison with those of Graz II (NR) [11], Graz II [12], and Paris [10].

the figure, a good agreement with the experimental data can be seen at low neutron
momenta |pn| 60.25 GeV/c. The discrepancy between the theoretical calculations and
the experiment increases with the increase of |pn| for the nonrelativistic separable Graz
II (NR) [11] and Paris [10] potential models. For the relativistic MY6 [9] and Graz II
[12] separable models, a good agreement with the experimental data can be seen not
only at low pn but also at high |pn|>1.5 GeV/c.

In Fig.2, the cross section for Q2=5 GeV2 is present. As in previous figure, two models
of nucleon electromagnetic form factors are considered. The relativistic MY6 and Graz
II models agree with the experimental data much better than for Q2=2 GeV2 whereas the
nonrelativistic Graz II (NR) and Paris potentials deviate from the experimental points
at |pn|>0.25 GeV/c increasingly more than in previous case (Fig.1). Therefore, it can
be concluded that the influence of relativistic effects increases with the increase of the
energy of the nucleons and the momentum transfer.

It should be noticed that the behavior of the calculated cross section is similar to the
behavior of the corresponding wave function for the deuteron 3S+

1 partial-wave state
which is shown in Fig.3. From the comparison of Figs.1, 2 and Fig.3, it is seen that the
cross section at high |pn| is similar to the asymptotic form of the 3S+

1 wave function.
From Figs.1,2, it is seen that results obtained within the dipole fit model [5] for

nucleon electromagnetic form factors are similar to those obtained with modified form
factors [6, 7]. Thus, we can summarize that the choice of nucleon electromagnetic form
factors does not play an important role in the description of the cross section at high
momentum transfer. It is interesting that the results calculated within the dipole fit
model, which does not describe the behavior of the electric form factor of the proton
at high Q2, is virtually undistinguishable from those obtained with the modified proton
electric form factor [6]. However, the final conclusion which model gives the best result
can be made only when negative-energy partial-wave states (P waves) and final state
interaction effects will be taken into account.
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