
JOINT INSTITUTE FOR NUCLEAR RESEARCH

Bogoliubov Laboratory of Theoretical Physics

Proceedings

of the 2nd South Africa - JINR Symposium

”Models and Methods in Few- and Many-Body

Systems”

Edited by F Šimkovic
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Power-series expansion of the multi-channel Jost
matrix

S. A. Rakityansky∗ and N. Elander†

∗Dept. of Physics, University of Pretoria, South Africa
†Div.of Molecular Physics, Dept. of Physics, Stockholm University,

Stockholm, SE-106 91, Sweden

Abstract. For the Jost-matrix that describes the multi-channel scattering, the momentum dependen-
cies at all the branching points on the Riemann surface are factorized analytically. The remaining
single-valued matrix functions of the energy are expanded in the power-series near an arbitrary
point in the complex energy plane. A systematic and accurate procedure has been developed for
calculating the expansion coefficients. This makes it possible to obtain an analytic expression for
the Jost-matrix (and therefore for the S-matrix) near an arbitrary point on the Riemann surface and
thus to locate the spectral points (bound and resonant states) as the S-matrix poles.

Keywords: scattering, multi-channel, resonances, Jost matrix, effective-range expansion
PACS: 03.65.Nk, 03.65.Ge, 24.30.Gd

INTRODUCTION

Taylor-type power-series expansions are very common in physics. In quantum scattering
theory, the most frequently used expansion of this kind is known as the effective-range
expansion. In the case of a short-range potential, it represents the cotangent function of
the scattering phase shift δ`(k) in the form

k2`+1 cotδ`(k) =
∞

∑
n=0

c`nk2n (1)

where the right-hand side is a sum of terms proportional to even powers of the collision
momentum k, and c`n are energy independent expansion coefficients. Originally (see,
for example, Ref. [1] and Ref. [2] for a historical review), this expansion was suggested
in nuclear physics for the S-wave nucleon-nucleon scattering in the form

k cotδ0(k) =−1
a

+
1
2

r0k2−Pr3
0k4 +Qr5

0k6 + · · · , (2)

where the first two parameters on the right-hand side, namely, a and r0, were called the
scattering length and the effective radius. The parameters in the higher terms of this
expansion (P, Q, etc.) were known as the shape parameters. Such a name was given
to them because they depended on the shape of a chosen NN-potential, while a and r0
were determined mainy by the strength of the interaction and the range of the force.

Originally, some rather inconvenient integral formulae (see, for example, Ref. [2])
for calculating the parameters on the right hand side of Eq. (2) were suggested. The
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expansion, however, was mainly used to parametrize the experimental data by choosing
appropriate values for the first few coefficients. It is still frequently used for such pur-
poses not only in nuclear physics but also for parametrizing the low-energy collisions
between atoms and molecules (see, for example, Refs. [9, 10, 11, 12, 13, 14]). The
expansion is also useful for simple analytical description of the scattering near the
threshold energy. For example, in one of the latest works of this type the effective-range
expansion is used to study the causality constraints on low-energy universality [15].

The traditional approach has one significant limitation, namely, the effective-range
expansion is only applicable near the point k = 0, i.e. when the energy is close to the
threshold. In Ref. [16], the expansion (1) was generalized in such a way that it was
written as a series of powers of (k− k0) with an arbitrary complex k0. In other words,
instead of making the expansion around the threshold, one can do it around any point
in the complex plane. By doing this, it is possible, for example, explore the complex
k-plane in search for resonances. When k0 6= 0, the effective-range expansion is no
longer a low-energy approximation.

Another limitation of the expansion (1) consists in the fact that it is written for
a single-channel problem. For multi-channel problems, something similar was also
suggested [17, 18, 19, 20, 21, 22]. In these papers, the authors tried to keep as much
similarity with the single-channel case as possible. Their adherence to the functions of
the type cotδ limited the flexibility and clarity of the suggested equations.

In the present paper, we suggest a different approach to generalizing the effective-
range expansion for multi-channel problems. Instead of considering the channel phase
shifts and their cotangents, we look at the problem from a more general point of view.
We obtain an expansion of the Jost matrix as a power series of (E −E0), where E is
the energy and E0 is an arbitrary point on the Riemann surface of energy. In other
words, we are not limited to the threshold points, but can do the expansion of the
Jost matrix practically anywhere on the Riemann surface. When the Jost matrix is
obtained in an analytic form (first several terms of the expansion), the S matrix and
all the observables can be easily calculated. Although it is possible, there is no need
in introducing the generalized scattering length and other parameters. The Jost matrix
expansion coefficients are more simple, clear, and convenient for this purpose.

MULTI-CHANNEL SCHRÖDINGER PROBLEM

Consider a quantum mechanical two-body problem which, after separation of the motion
of its center of mass, is reduced to an effective problem of one body whose dynamics is
governed by the Hamiltonian

H = H0 +U +h (3)

consisting of the free-motion part H0, the interaction operator U , and the Hamiltonian
h that describes the internal dynamics in the body (for example, the internal states of
colliding atoms). Each internal state of the body corresponds to a different channel of
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the scattering process. In general, there are infinite number of the internal states, i.e. the
eigenstates of h,

h|n〉= En|n〉 , n = 1,2,3, . . . ∞ (4)

We assume that only N internal states are important. In other words, we approximate the
internal Hamiltonian by the N terms

h≈
N

∑
n=1

|n〉En〈n| . (5)

The total Hamiltonian taken in the representation of the relative coordinate~r and sand-
wiched between 〈n| and |n′〉, becomes the N×N matrix

Hnn′ =−δnn′
h̄2

2µn
∆~r +Unn′(~r)+Enδnn′ , (6)

where µn is the reduced mass in the channel n. An eigenstate of this Hamiltonian,
corresponding to the eigenvalue E, is a column-matrix

Ψ(E,~r) =




ψ1(E,~r)
ψ2(E,~r)

...
ψN(E,~r)


 (7)

where each row describes the relative motion in the corresponding channel. Therefore
the eigenvalue equation HΨ = EΨ is reduced to a set of coupled differential equations
for the channel wave functions

[
h̄2

2µn
∆~r +(E−En)

]
ψn(E,~r) =

N

∑
n′=1

Unn′(~r)ψn′(E,~r) . (8)

The eigenenergies En of the internal Hamiltonian are the thresholds for the correspond-
ing channels.

To avoid unnecessary complicated notation, we assume that the relative motion in
each channel has a single value `n of the angular momentum. This does not compromise
the generality of our consideration. Indeed, we can always treat the states with different
values of angular momentum (or of any other quantum number) as different channels,
but perhaps with the same threshold energies.

Therefore the angular dependence of the channel wave function can be factorized in
the simple way

ψn(E,~r) =
un(E,r)

r
Y`nmn(θ ,ϕ) (9)

Substituting Eq. (9) into (8), then multiplying by Y ∗`nmn
(θ ,ϕ) and integrating over the

angles, we obtain the system of coupled equations for the radial parts of the channel
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wave functions,
[

∂ 2
r + k2

n−
`n(`n +1)

r2

]
un(E,~r) =

N

∑
n′=1

Vnn′(r)un′(E,~r) , (10)

where
Vnn′(r) =

2µn

h̄2

∫
Y ∗`nmn

(θ ,ϕ)Unn′(~r)Y`n′mn′ (θ ,ϕ)dΩ~r (11)

and the channel momentum is defined as

kn =
√

2µn

h̄2 (E−En) . (12)

In what follows, we assume that the interaction potential is non-singular and of the short
range, i.e. ∫ ∞

0
|Vnn′(r)|r dr < ∞ for all n,n′ . (13)

This condition means that all matrix elements of the potential are less singular than 1/r2

at the origin and vanish faster than 1/r2 at infinity.

The boundary conditions for Eqs. (10) are derived from the requirement that any
physical solution must be regular at the point r = 0 and have special behaviour when
r→∞, which is different for bound, resonant, and scattering states. In Sect. , we consider
these conditions in more detail.

MULTI-CHANNEL JOST MATRIX

A system of N linear second-order differential equations of the type (10) has 2N linearly
independent column-solutions and only half of them are regular at the origin (see, for
example, Ref. [23]). Combining these regular columns in a square matrix, we obtain the
so called fundamental matrix of the regular solutions,

Φ(E,r) =




φ11(E,r) φ12(E,r) · · · φ1N(E,r)
φ21(E,r) φ22(E,r) · · · φ2N(E,r)

...
...

...
...

φN1(E,r) φN2(E,r) · · · φNN(E,r)


 . (14)

Any other regular solution can only be a linear combination of the columns of this fun-
damental matrix. In particular, any physical solution of Eqs. (10) is a linear combination
of the columns of the corresponding fundamental matrix,




u1
u2
...

uN


 = C1




φ11
φ21

...
φN1


+C2




φ12
φ22

...
φN2


+ · · ·+CN




φ1N
φ2N

...
φNN


 (15)
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This guaranties its correct behaviour when r → 0. As far as the asymptotic behaviour
(r → ∞) is concerned, its correct form can be achieved by proper choice of the combi-
nation coefficients Cn.

Under the condition (13), far away from the origin the right hand sides of Eqs.(10)
vanish and these equations decouple,

[
∂ 2

r + k2
n−

`n(`n +1)
r2

]
un(E,~r)≈ 0 , when r → ∞ . (16)

In addition to the fact that for different n Eqs. (16) are independent from each other,
their solutions are known. Indeed, these are the Riccati-Bessel equations. As a pair
of linearly independent solutions of each of them, we can take the Riccati-Hankel
functions h(±)

`n
(knr).

The system (16) consists of N linear second-order differential equations and thus has
2N linearly independent column-solutions which can be chosen in many different ways.
The most convenient choice is the following set of 2N columns grouped in two square
matrices

W (in) =




h(−)
`1

(k1r) 0 · · · 0

0 h(−)
`2

(k2r) · · · 0
...

...
...

...

0 0
... h(−)

`N
(kNr)




(17)

W (out) =




h(+)
`1

(k1r) 0 · · · 0

0 h(+)
`2

(k2r) · · · 0
...

...
...

...

0 0
... h(+)

`N
(kNr)




(18)

that represent the in-coming and out-going spherical waves in all the channels. These
2N columns form a basis in the space of solutions. In other words, any column-solution
of Eq. (16) is a linear combination of these 2N columns. In particular, each column of
matrix (14) at large distances becomes such a combination. The combination coefficients
have two subscripts: one to indicate which column of (14) is expanded and the other is
the summation subscript. Similarly to Eqs. (17, 18), we can group these coefficients in
square matrices which do not depend on r. Thus we have

Φ(E,r) −→
r→∞

W (in)(E,r)F(in)(E)+W (out)(E,r)F(out)(E) , (19)

where, by analogy with the single-channel case (see, for example, Ref. [24]), the energy-
dependent matrices F(in/out)(E) can be called Jost matrices. It is not difficult to show that
they determine the S-matrix

S(E) = F(out)(E)
[
F(in)(E)

]−1
(20)
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and thus give complete description of the underlying physical system. The spectral
points E = En (bound states and resonances) are those where the inverse matrix[
F(in)(E)

]−1
does not exist, i.e. the points where

detF(in)(En) = 0 . (21)

TRANSFORMATION OF THE SCHRÖDINGER EQUATION

At large distances, the fundamental regular matrix Φ(E,r) is the linear combination
(19) with the r-independent coefficient matrices F(in/out)(E). We can, however, look for
Φ(E,r) in the same form at any point r, but with the coefficient matrices depending on
r,

Φ(E,r)≡W (in)(E,r)F (in)(E,r)+W (out)(E,r)F (out)(E,r) . (22)

Now, instead of one unknown function Φ(E,r), we have two unknown functions,
F (in)(E,r) and F (out)(E,r), which therefore cannot be independent of each other. In
principle, we can arbitrarily impose any (reasonable) additional condition relating them.
The most convenient is to demand that

W (in)(E,r)
∂
∂ r

F (in)(E,r)+W (out)(E,r)
∂
∂ r

F (out)(E,r) = 0 , (23)

which is standard in the theory of differential equations, and is known as the Lagrange
condition within the variation parameters method [25]. Looking at Eq. (19), we see that
the Lagrange condition is certainly satisfied at large distances. Therefore, by imposing
it, we do not change the asymptotic behaviour of the solution.

Starting from the coupled-channel radial Schrödinger equation (10), it is not difficult
to obtain the corresponding equations for the new unknown matrices F (in/out)(E,r). To
this end, the ansatz (22) is simply substituted into Eq. (10). After the substitution, the
equation is transformed and simplified, using the following: firstly, the fact that matri-
ces W (in/out)(E,r) solve Eq. (16) (i.e. Eq. (10) without the right-hand side); secondly,
the Lagrange condition (23); thirdly, introducing the diagonal matrix of the channel mo-
menta

K =




k1 0 · · · 0
0 k2 · · · 0
...

...
...

...
0 0 · · · kN


 ; (24)

and finally using known Wronskian of the Riccati-Hankel functions,

W (in)
[
∂rW (out)

]
−

[
∂rW (in)

]
W (out) = 2iK . (25)

The derivation can be found in Ref. [26].
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As a result, we obtain the following system of first-order differential matrix-equations

∂rF
(in) = − 1

2i
K−1W (out)V

[
W (in)F (in) +W (out)F (out)

]
, (26)

∂rF
(out) =

1
2i

K−1W (in)V
[
W (in)F (in) +W (out)F (out)

]
, (27)

which are equivalent to the initial second-order Schrödinger equation (10). Since these
equations are of the first order, the boundary conditions for them can only be imposed at
a single point. The natural way of doing this is to demand that matrix (22) is regular at
the origin, then

F (in)(E,0) = F (out)(E,0) (28)

because both h(+)
` (z) and h(−)

` (z) are singular at z = 0, but their singularities exactly
cancel each other in the combination

h(+)
` (z)+h(−)

` (z)≡ 2 j`(z) . (29)

The choice of the common value for the functions in Eq. (28) determines the overall
normalization of the fundamental matrix (22), because Eqs. (26,27) are linear and
homogeneous. In the single-channel case, the regular solution is usually normalized in
such a way that it coincides with the Riccati-Bessel function when r → 0 [24]. From
Eq. (29), it is clear that if we want that our approach gives the traditional single-channel
solution when N = 1, we should use the following boundary conditions for Eqs. (26,27)

F (in)(E,0) = F (out)(E,0) =
1
2

I , (30)

where I is the diagonal unit matrix.

Thanks to the fact that the in-coming and out-going waves in the fundamental matrix
(22) are factorized, it is easy to construct the physical solutions with proper asymptotics.
For example, the bound states at large distances can have only the out-going waves. This
is achieved by finding such combination coefficients in Eq. (15), i.e. in

un = ∑
n′

Φnn′Cn′ = ∑
n′n′′

[
W (in)

nn′′ F
(in)
n′′n′ +W (out)

nn′′ F
(out)
n′′n′

]
Cn′ (31)

that all the columns involving the in-coming waves, disappear when r → ∞. In other
words, for the physical wave function of a bound state, we have

∑
n′

F
(in)
nn′ (E,r)Cn′ −→r→∞ ∑

n′
F(in)

nn′ (E)Cn′ = 0 . (32)

The last equation is a system of linear homogeneous equations for the unknown com-
bination coefficients Cn. It has a non-trivial solution if and only if the corresponding
determinant is zero. This results in Eq. (21) which can have solutions at discrete values
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of the energy. Actually, the resonant states are found in the same way, i.e. by solving
the same Eq. (21), but at complex values of En. This approach therefore offers a unified
way of finding both the bound and resonant states as well as the S-matrix (20) for the
scattering states. The corresponding physical wave functions are obtained with correct
asymptotic behaviour (analytically factorized Riccati-Hankel functions).

RIEMANN SURFACE

For a fixed (generally speaking, complex) value of the energy E, each of the N channel
momenta (12) can have two different values

kn =±
√

2µn

h̄2 (E−En) , n = 1,2, . . . ,N , (33)

depending on the choice of the sign in front of the square root. On the other hand, all
these momenta are involved as papameters in Eqs. (26, 27). This means that the Jost
matrices F(in/out)(E) are not single-valued functions of E. At each point E, the Jost
matrices have 2N different values.

In complex analysis, the multi-valued functions are treated as single-valued, but de-
fined on a multi-layered complex surface which is called Riemann surface. In our case,
each layer (sheet) of this surface corresponds to a different combination of the signs
of N channel momenta, and thus the Riemann surface of the energy consists of 2N sheets.

When we move around a threshold point, we go from one layer to another. Indeed, a
point on a circle centered at the threshold En, can be parametrized as E = En +ρ exp(iϕ),
where ρ is the distance from En and ϕ is the polar angle. The corresponding channel
momentum

kn =
√

2µnρ
h̄2 eiϕ/2 (34)

changes its sign after one full circle (ϕ = 2π) and comes back to its initial value
after two full circles (ϕ = 4π). This means that the sheets of the Riemann surface are
connected to each other and thus form a united multi-layer manifold. The threshold
points En (n = 1,2, . . . ,N) are the branching points on this manifold. By moving around
these points, we can continuously reach any of the 2N sheets.

In principle, we can construct the Riemann surface rather arbitrarily by making
cuts and appropriate connections of the layers. In quantum theory, it is standard that
each layer is cut along the real energy axis. The cut starts at the branching point and
goes to infinity in the positive direction. The edges of the cuts of different layers are
interconnected in such a way that the corresponding channel momenta appropriately
change their signs.

The simplest two-layer Riemann surface for the single-channel case is easy to vi-
sualize (see, Fig. 1). The two-channel problem with two branching points and four
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R
e
E

Im E
s

FIGURE 1. Riemann surface of the energy for a single-channel problem.

interconnected layers is much more involved. These connections for the three intervals,
E < E1, E1 < E < E2, and E > E2 are schematically shown in Fig. 2) [27]. When N > 2,

(++)

(−+)

(−−)

(+−)

E < E1 E1 < E < E2 E > E2

FIGURE 2. Schematically shown interconnections of the layers of the Riemann surface for
a two-channel problem at three different energy intervals. The layers correspond to different
combinations of the signs (indicated in brackets) of Imk1 and Imk2.

the surface is so complicated that it is not worthwhile even trying to visualize it.

In the present paper, we construct the Jost matrices in such a way that in their
matrix elements the dependences on odd powers of all channel momenta are factorized
analytically (see Sec. ). The remaining matrices depend only on even powers of all the
momenta kn and thus are single-valued functions of variable E. This saves us the trouble
of dealing with the complicated multi-layered manifold. Moreover, using the analytically
factorized dependence on kn, we can establish some of the symmetry properties of Jost
matrices, i.e. we can relate their values at some points belonging to different layers of
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the Riemann surface (see Sec. ).

COMPLEX ROTATION

When the potential is cut off at certain radius R, the right-hand sides of Eqs. (26,27)
vanish for r > R and the derivatives ∂rF (in/out) become zero, i.e. these functions do not
change beyond this point. Therefore, in the spirit of the variable phase approach, the
functions F (in/out)(E,r) are the Jost matrices for the potential which is cut off at the
point r. In general, when the potential asymptotically vanishes at large distances, we
have

F (in/out)(E,r) −→
r→∞

F(in/out)(E) . (35)

Therefore, the Jost matrices can be calculated by numerical integration of the differen-
tial equations (26,27) from r = 0 up to a sufficiently large radius R where the limit (35)
is reached within a required accuracy.

This works perfectly for real values of the energy E. However, when we consider
complex energies (for example, in search for resonances), a technical difficulty arises.
This difficulty is caused by the asymptotic behaviour of the Riccati-Hankel functions
[28],

h(±)
` (kr) −→

|kr|→∞
∓iexp

(
±ikr∓ i

`π
2

)
. (36)

As is seen, when k is complex, either h(+)
` (kr) or h(−)

` (kr) exponentially diverges,
depending on the sign of Imk. As a result, either the first or the second of the equations
(26,27) does not give a numerically convergent solution. This difficulty is circumvented
by using the deformed integration path shown in Fig. 3. Instead of integrating the
differential equations along the real axis from r = 0 to r = R, we can reach the final
point via the intermediate point r = R′ in the complex plane. Moreover, we can safely
ignore the arc R′R since the potential is practically zero at that distance.

θ

O R

R
′

Re r

Im r

FIGURE 3. A deformed path for integrating the differential equations.

Why does this complex rotation help? The answer can be found by looking at Eq. (36).
Indeed, the asymptotic behaviour (divergent or convergent) of the functions h(±)

` (kr) is
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determined by the sign of Im(kr). If k = |k|eiϕ , we can always find such a rotation angle
θ in r = |r|eiθ that the product

kr = |kr|ei(ϕ+θ)

has either positive or negative (or even zero) imaginary part. Various technical details of
using complex rotation in calculating the Jost functions and Jost matrices can be found
in Refs. [29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

FACTORIZATION

Eqs. (26,27) are very convenient for numerical calculation of the Jost matrices. However,
for the purpose of power-series expansion of these matrices, we need to further transform
them. The idea of such a transformation is based on the relation between the two pairs
of linearly independent solutions of the Riccati-Bessel equation, namely, between the
Riccati-Hankel functions h(±)

` and the pair of Riccati-Bessel j` and Riccati-Neumann y`

functions,
h(±)

` (z) = j`(z)± iy`(z) . (37)

Introducing the diagonal matrices

J =
1
2

[
W (in) +W (out)

]
=




j`1(k1r) 0 · · · 0
0 j`2(k2r) · · · 0
...

...
...

...

0 0
... j`N (kNr)


 , (38)

Y =
i
2

[
W (in)−W (out)

]
=




y`1(k1r) 0 · · · 0
0 y`2(k2r) · · · 0
...

...
...

...

0 0
... y`N (kNr)


 , (39)

as well as the new unknown matrices

A (E,r) = F (in)(E,r)+F (out)(E,r) , (40)

B(E,r) = i
[
F (in)(E,r)−F (out)(E,r)

]
, (41)

we obtain another (equivalent) representation of the fundamental matrix of regular
solutions,

Φ(E,r) = J(E,r)A (E,r)−Y (E,r)B(E,r) . (42)

Combining Eqs. (26,27), it is easy to obtain an equivalent system of differential equa-
tions for the new unknown matrices,

∂rA = −K−1YV (JA −YB) , (43)

∂rB = −K−1JV (JA −YB) , (44)
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with the boundary conditions

A (E,0) = I , B(E,0) = 0 , (45)

which immediately follow from (30). Similarly to the limit (35), these matrices also
should converge to their asymptotic values

A (E,r) −→
r→∞

A(E) , B(E,r) −→
r→∞

B(E) , (46)

from which the Jost matrices can be obtained,

F(in)(E) =
1
2

[A(E)− iB(E)] , F(out)(E) =
1
2

[A(E)+ iB(E)] . (47)

Now, we use the fact that the Riccati-Bessel and Riccati-Neumann functions can be
represented by absolutely convergent series,

j`(kr) =
(

kr
2

)`+1 ∞

∑
n=0

(−1)n√π
Γ(`+3/2+n)n!

(
kr
2

)2n

= k`+1 j̃`(E,r) , (48)

y`(kr) =
(

2
kr

)` ∞

∑
n=0

(−1)n+`+1

Γ(−`+1/2+n)n!

(
kr
2

)2n

= k−`ỹ`(E,r) , (49)

where we factorize the the functions j̃` and ỹ`, which do not depend on odd powers of k
and thus are single-valued functions of the energy E.

Let us look for the matrices A and B in the form

Ai j =
k` j+1

j

k`i+1
i

˜Ai j , Bi j = k`i
i k` j+1

j B̃i j , (50)

where certain powers of the channel momenta are factorized in each individual matrix
element. When the representations (48, 49, 50) are substituted into Eqs. (43,44), all the
channel-momenta factors cancel out, and we remain with the equations for the tilded
functions,

∂r ˜A = −ỸV
(
J̃ ˜A − ỸB̃

)
, (51)

∂rB̃ = −J̃V
(
J̃ ˜A − ỸB̃

)
, (52)

where the matrices J̃ and Ỹ differ from (38) and (39) by the diagonal factors,

J =




k`1+1
1 0 · · · 0
0 k`2+1

2 · · · 0
...

...
...

...

0 0
... k`N+1

N




J̃ , Y =




k−`1
1 0 · · · 0
0 k−`2

2 · · · 0
...

...
...

...

0 0
... k−`N

N




Ỹ . (53)
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The main advantage of Eqs. (51,52) is that they do not involve any coefficients or
functions depending on odd powers of the channel momenta. This means that their
solutions, i.e. the matrices ˜A (E,r) and B̃(E,r), are single-valued functions of the
energy. The multi-valuedness of the initial matrices A (E,r) and B(E,r) as well as
the fact that they are defined on a complicated Riemann surface, are determined by the
momentum-factors separated in Eqs. (50).

SYMMETRY OF THE JOST MATRICES

As an example of usefulness of the analytic structure of the Jost matrices, established in
the previous section, let us consider the relation between F(in) and F(out). If Ã(E) and
B̃(E) are the asymptotic values of ˜A (E,r) and B̃(E,r), respectively, then according to
Eqs. (47, 50), we have the following semi-analytic expressions for the Jost matrices

F(in)
mn =

k`n+1
n

2k`m+1
m

Ãmn− ik`m
m k`n+1

n
2

B̃mn , (54)

F(out)
mn =

k`n+1
n

2k`m+1
m

Ãmn +
ik`m

m k`n+1
n

2
B̃mn . (55)

If we change the signs of all the channel momenta to the opposite, the matrices Ã(E)
and B̃(E) remain unchanged while the factorized momenta generate a common factor
(−1)`m+`n = (−1)`m−`n and the sign between the two terms in Eqs. (54, 55) is also
changed to the opposite. In other words,

F(in)
mn (−k1,−k2, . . . ,−kN) = (−1)`m+`nF(out)

mn (k1,k2, . . . ,kN) , (56)

where for the sake of clarity, we replaced the single independent variable E with the
set of channel momenta. This means that the two Jost matrices F(in) and F(out) are not
completely independent. Their values at different points on the Riemann surface are the
same. The S matrix can be re-written as

Smn = (−1)`m+`nF(in)
mn (−k1,−k2, . . . ,−kN)

[
F(in)

mn (k1,k2, . . . ,kN)
]−1

, (57)

which is well known in the case of a single-channel problem. The symmetry property
(56) is the simplest one (but perhaps the most important) and can be established in a
different way (see, for example, Ref. [24]). Its simple proof is given here to merely
demonstrate how the factorized semi-analytic expressions (54, 55) can be used. Estab-
lishing the other symmetry properties is beyond the scope of the present paper.

POWER-SERIES EXPANSION

Eqs. (51,52) define the matrices ˜A (E,r) and B̃(E,r) that are single-valued functions
of the parameter E, i.e. they are defined on a single sheet of the complex E-plane.
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Moreover, since the matrices J̃(E,r) and Ỹ (E,r) are holomorphic, the solutions of these
equations are holomorphic as well (Poincare theorem [39]). This means that ˜A (E,r)
and B̃(E,r) can be expanded in the power series around an arbitrary point E0 on the
complex plane of the energy,

˜A (E,r) =
∞

∑
n=0

(E−E0)nαn(E0,r) , (58)

B̃(E,r) =
∞

∑
n=0

(E−E0)nβn(E0,r) , (59)

where the unknown expansion coefficients αn and βn are (N×N)-matrices depending
not only on variable r but also on the choice of the point E0.

Eqs. (51,52) involve matrices J̃ and Ỹ for which we can obtain the expansions of the
same kind but with known coefficients,

J̃(E,r) =
∞

∑
n=0

(E−E0)nγn(E0,r) , (60)

Ỹ (E,r) =
∞

∑
n=0

(E−E0)nηn(E0,r) . (61)

Simple recurrency relations for calculating the expansion coefficients (matrices)
γn(E0,r) and ηn(E0,r) are derived in the Appendix .

Substituting the expansions (58, 59, 60, 61) into Eqs. (51,52), and equating the coef-
ficients of the same powers of (E−E0), we obtain the following system of differential
equations for the unknown matrices αn and βn

∂rαn = − ∑
i+ j+k=n

ηiV (γ jαk−η jβk) , (62)

∂rβn = − ∑
i+ j+k=n

γiV (γ jαk−η jβk) , n = 0,1,2, . . . (63)

The boundary conditions (45) are independent of E. As is easy to see, this implies that

αn(E0,0) = δn0I , βn(E0,0) = 0 . (64)

In other words, all these matrices vanish at the origin, except for the matrix α0 which
becomes a diagonal unit matrix at r = 0.

If we denote the asymptotic values of the matrices αn and βn as

αn(E0,r) −→r→∞
an(E0) , and βn(E0,r) −→r→∞

bn(E0) , (65)
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then in vicinity of any chosen point E0 on the Riemann surface, we can obtain semi-
analytic expressions for the Jost matrices in the form

F(in)
mn =

M

∑
j=0

(E−E0) j
[

k`n+1
n

2k`m+1
m

(a j)mn− ik`m
m k`n+1

n
2

(b j)mn

]
, (66)

F(out)
mn =

M

∑
j=0

(E−E0) j
[

k`n+1
n

2k`m+1
m

(a j)mn +
ik`m

m k`n+1
n

2
(b j)mn

]
, (67)

where M is the maximal power of our expansion. The non-analytic quantities in Eqs.
(66, 67), i.e. the matrices a j and b j, are obtained by numerical integration of differential
equations (62, 63) with the boundary conditions (64) from r = 0 to certain large value
r = R (in some cases, this should be done along the deformed contour shown in Fig.
3). For a given energy E, the choice of the sheet of the Riemann surface, where the
Jost matrices are considered, is done by appropriately choosing the signs in front of the
square roots (33) for calculating the channel momenta used in Eqs. (66, 67). The central
point E0 of the expansion as well as the numerically obtained matrices a j and b j are the
same for all the layers of the Riemann surface.

In principle, the power-series expansions (66, 67) includes infinite number of terms.
In practice, however, we may take into account just a few terms (M < ∞) and therefore
have to solve certain number of equations in the infinite system (62, 63). It should be
emphasized that not all equations of this system are coupled to each other. Indeed, due
to the condition i+ j +k = n on their right-hand sides, the equations for αM and βM (for
any M > 0) are only linked to the corresponding equations with n < M. For example,
the first pair of equations,

∂rα0 = −η0V (γ0α0−η0β0) , (68)

∂rβ0 = −γ0V (γ0α0−η0β0) , (69)

is self-contained and is not linked to any other equation of the system. The second pair
is linked only to the first one, and so on. This means that by considering a finite number
of equations of this system, we do not introduce an additional truncation error.

CONSTRUCTING POTENTIALS WITH GIVEN SPECTRUM

There are many possible applications of the expansions (66, 67). An example where
they undoubtedly are very convenient, is the problem of adjusting the parameters of a
multi-channel potential in such a way that it generates a bound or a resonant state at a
given energy E0. Indeed, for this purpose it is needed to find such parameters that

detF(in)(E0) = 0 . (70)

If we perform the expansion around the given point E0 then the sum on the right-hand
side of Eq. (66) includes only one non-zero term ( j = 0). Therefore to put a spectral
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point at the energy E0, we need to minimize the function

f (x1,x2, . . . ,xL) =
∣∣∣∣det

[
k`n+1

n

2k`m+1
m

(a0)mn− ik`m
m k`n+1

n
2

(b0)mn

]∣∣∣∣ , (71)

where x1,x2, . . . ,xL are the parameters of the adjusted potential. For each choice of the
parameters, we need to solve the system of two differential equations (68, 69) only once,
which is not difficult to do.

NUMERICAL EXAMPLE

In order to demonstrate the efficiency and accuracy of the proposed method, we do
numerical calculations for a well-studied model. For this purpose, we use the two-
channel potential suggested by Noro and Taylor [40]

V (r) =
(−1.0 −7.5
−7.5 7.5

)
r2e−r , (72)

which is given in arbitrary units such that µ1 = µ2 = h̄c = 1. The threshold energies
for the two channels of the Noro and Taylor model are E1 = 0 and E2 = 0.1, and
the angular momentum is zero in both channels, `1 = `2 = 0. This potential has an
attractive well in the first channel, a repulsive barrier in the second, and rather strong
coupling between the channels. As a result, it generates a rich spectrum of bound and
resonant states (see Fig. 4) as well as a non-trivial energy dependence of the channel
and transition cross sections (see Figs. 5, 6, and 7) [26]. This model is therefore a diffi-
cult testing ground for any new method designed for describing multi-channel processes.

As a first test, we do the power series expansions of the Jost matrices (66, 67)
around the point E0 = 5 + i0 on the real axis and with six terms, i.e. with M = 5.
The central point of the expansion was chosen to be not far from the first resonance,
where the channel cross sections have some non-trivial energy dependence. As is seen
in Figs. 5, 6, and 7, the thin curves representing the approximate cross sections, re-
produce the corresponding exact cross sections rather well within a wide energy interval.

Since the approximate Jost matrices (66, 67) coincide with the exact matrices on a
segment of the real axis, they must be valid also at the nearby points of the complex
energy surface. Comparing the exact and approximate values of detF(in)(E) at complex
E around the point E0 on the third sheet (−−) of the Riemann surface (see Fig. 2), we
found the domains within which the relative accuracy is better than 1%, 5%, and 10%.
These domains are shown in Fig. 8.

It is seen that the first resonance is within the domain of 1% accuracy and there-
fore must be reproduced by the approximate Jost matrix. And indeed, its determi-
nant has zero at E = 4.768178− i0.000686 which is very close to the exact value
E = 4.768197− i0.000710. With more terms in the expansion, the difference becomes
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FIGURE 4. Spectral points generated by the potential (72) and given in Table 1.

smaller, and with M = 10 all the digits are the same.

The other place where we tested the expansion, was the point E0 = 7.5− i2.0 on the
third sheet (−−) of the Riemann surface. This point is almost in the middle between the
second and the third resonances. Fig. 9 shows how the domain of 1% accuracy increases
with increasing number of terms (M = 5,7,10) in the expansions (66, 67). As is seen
in Fig. 9, even with M = 5 both resonances are reproduced relatively well (the filled
and open circles represent the exact and approximate positions of the resonances). The
zeros of the exact Jost matrix determinat are at E = 7.241200− i0.755956 and E =
8.171217− i3.254166 while the expansion with M = 5 gives E = 7.131204− i0.768670
and E = 8.241795− i2.982867. We deliberately chose the point E0 far away from both
resonances. If it is close to any of them, the resonance can be found very accurately.

CONCLUSION

In the present paper, we show that each matrix element of multi-channel Jost matrix can
be written as a sum of two terms, and each term can be factorized in such a way that it
assumes the form of a product of certain combination of the channel momenta kn times
an analytic single-valued function of the energy E. This means that all the branching
points of the Riemann energy-surface are given in the Jost matrix explicitly via the
channel-momentum factors. The remaining energy-dependent factors in all its matrix
elements are defined on single energy plane which does not have any branching points
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TABLE 1. Spectral points E = Er − iΓ/2 generated
by the potential (72) and shown in Fig. 4.

Er Γ Γ1 Γ2

-2.314391 0 0 0

-1.310208 0 0 0

-0.537428 0 0 0

-0.065258 0 0 0

4.768197 0.001420 0.000051 0.001369

7.241200 1.511912 0.363508 1.148404

8.171217 6.508332 1.596520 4.911812

8.440526 12.562984 3.186169 9.376816

8.072643 19.145630 4.977663 14.167967

7.123813 26.025337 6.874350 19.150988

5.641023 33.070140 8.816746 24.253394

3.662702 40.194674 10.768894 29.425779

1.220763 47.339350 12.709379 34.629971

-1.657821 54.460303 14.624797 39.835506

-4.949904 61.523937 16.507476 45.016461

-8.635366 68.503722 18.352084 50.151638

-12.696283 75.378773 20.155213 55.223560

-17.117760 82.129712 21.915313 60.214399

anymore.

For these energy-dependent functions, we derive a system of first-order differential
equations. Then, using the fact that the functions are analytic, we expand them in the
power series and obtain a system of differential equations that determine the expan-
sion coefficients. A systematic procedure developed in the present paper, allows us to
accurately calculate the power-series expansion of the Jost matrices practically at any
point on the Riemann surface of the energy. Actually, the expansion is done for the
single-valued functions of the energy, while the choice of the sheet of the Riemann
surface is done by appropriately choosing the signs of the channel momenta in the
momentum-dependent factors.

The expansion suggested in the present paper, makes it possible to obtain a semi-
analytic expression for the Jost-matrix (and therefore for the S-matrix) near an arbitrary
point on the Riemann surface and thus to locate the spectral points (bound and resonant
states) as the S-matrix poles. Alternatively, the expansion can be used to parametrise
experimental data, where the unknown expansion coefficients are the fitting parameters.
Such a parametrisation will have the correct analytic properties. The efficiency and
accuracy of the suggested expansion is demonstrated by an example of a two-channel
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FIGURE 5. Energy dependence of the elastic scattering cross section in channel 1 for the
potential (72). Few of the S-matrix poles (see Table 1 and Fig. 4) are shown in the lower part of
the Figure. The thick curve represents the exact cross section, while the thin curve shows the
cross section obtained with the expansions (66, 67) where E0 = 5+ i0 and M = 5.

model.

APPENDIX: EXPANSION OF THE RICCATI FUNCTIONS

As is given by Eqs. (48, 49), the Riccati-Bessel and Riccati-Neumann functions can be
factorized as

j`(kr) = k`+1 j̃`(E,r) , y`(kr) = k−`ỹ`(E,r) , (73)

where the tilded functions depend on k2, i.e. on the energy. These functions are holo-
morphic and thus can be expanded in Taylor series at an arbitrary point E = E0,

j̃`(E,r) =
∞

∑
n=0

(E−E0)ng`n(E0,r) , ỹ`(E,r) =
∞

∑
n=0

(E−E0)nt`n(E0,r) , (74)

where the coefficients are given by the derivatives

g`n(E0,r) =
1
n!

[
dn

dEn j̃`(E,r)
]

E=E0

=
1
n!

[
dn

dEn
j`(kr)
k`+1

]

E=E0

, (75)
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FIGURE 6. Cross section energy dependence of the inelastic transition (1→ 2) for the potential
(72). The thick curve represents the exact cross section, while the thin curve shows the cross
section obtained with the expansions (66, 67) where E0 = 5+ i0 and M = 5.
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FIGURE 7. Energy dependence of the elastic scattering cross section in channel 2 for the
potential (72). The thick curve represents the exact cross section, while the thin curve shows the
cross section obtained with the expansions (66, 67) where E0 = 5+ i0 and M = 5.

t`n(E0,r) =
1
n!

[
dn

dEn ỹ`(E,r)
]

E=E0

=
1
n!

[
dn

dEn k`y`(kr)
]

E=E0

. (76)

In order to find these derivatives, we use the following relations [28]

d
dz

[
j`(z)
z`+1

]
=− j`+1(z)

z`+1 and
d
dz

[
z`y`(z)

]
= z`y`−1(z) . (77)
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FIGURE 8. The domains within which the Jost matrix determinant for the potential (72) is
reproduced, using the first five terms (M = 5) of the expansion (66), with the accuracy better
than 1%, 5% and 10%. The expansion was done around the point E0 = 5 on the real axis.
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FIGURE 9. Growth of the 1% accuracy domain with the increase of the number M of terms in
expansions (66), which were done around E0 = 7.5− i2.0 for the potential (72). Filled circles
indicate the exact position of two resonances, while the open circles are their approximate
positions obtained with M = 5.
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After a simple but lengthy algebra, we finally obtain

g`n(E0,r) =
1
n!

[(
−µr

h̄2

)n j`+n(kr)
k`+n+1

]

E=E0

, (78)

t`n(E0,r) =
1
n!

(
µr
h̄2

)n [
k`−ny`−n(kr)

]
E=E0

. (79)

The matrices γn and ηn of Eqs. (60, 61) are diagonal with each row having the functions
(78, 79) with µ and k for the corresponding channel. These functions should be the
same for all sheets of the Riemann surface, i.e. for any choice of the signs of channel
momenta. This is so indeed since j`(−z) = (−1)`+1 j`(z) and y`(−z) = (−1)`y`(z).
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Abstract. We present an illustration of using a quantum three-body code being prepared for public
release. The code is based on iterative solving of the three-dimensional Faddeev equations. The
code is easy to use and allows users to perform highly-accurate calculations of quantum three-body
systems. The previously known results for He3 ground state are well reproduced by the code.
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INTRODUCTION

The quantum few-body problem is important for investigating physical processes at
practically all possible length and energy scales. For instance, three-body models can
be employed for describing nuclear reactions [1, 2, 3, 4], electron- and positron-atom
collisions [5, 6], and chemical reactions [7]. The developments of the last decade demon-
strated the importance of three-body processes for understanding the dynamics of ultra-
cold gases [8]. An ability to solve a few-body problem directly would also be beneficial
to theorists for testing, for instance, effective-field theories [9, 10].

The three-body problem, however, has sufficient intrinsic complexity that it often in-
hibits or prevents non-experts in few-body calculations from considering realistic three-
body models and from employing physically correct representations [11]. Accordingly,
a standard, easily operable and rigorously constructed tool for three-body calculations
will be beneficial for a broad physical community. Such a tool should be tested indepen-
dently to ensure its usability and applicability. This work is a result of a collaboration
between the authors of this tool, developed at the University of Kentucky, and a research
group in JINR performing independent tests.

In the following sections we describe the equations being solved and report the results
of the tests we have performed.

FORMALISM

The three-body code being tested is based on solving Faddeev equations in configuration
space. The complete and mathematically rigorous theory of Faddeev equations can be

32



found in books on the topic [12, 13, 14]. Here we only sketch out the gross features
important for understanding and using the code.

We start by describing the physical model from the three-body Hamiltonian

H = H0 +V3b(xi,yi)+∑
i

Vi(xi) , (1)

where H0 stands for the kinetic energy of the three particles, Vi(xi) is the interaction
potential acting in the pair i, and V3b(xi,yi) is a short-range three-body interaction.
(In the following description the latter will be omitted only for simplicity. Taking into
account the three-body interactions, however, does not produce any practical or principal
difficulties.) The configuration space of the three particles is described in terms of 3 sets
of Jacobi coordinates

xi =
(

2m jmk

m j +mk

)1/2

(r j− rk)

yi =
(

2mi(m j +mk)
mi +m j +mk

)1/2 (
ri− m jr j +mkrk

m j +mk

) (2)

The set of coordinates i describes a partitioning of the three particles into a pair ( jk) and
a separate particle i. Faddeev decomposition represents the wave function Ψ in terms of
a sum over all possible partitioning of the three-body system

Ψ = ∑
i

Φi(xi,yi) . (3)

Faddeev components, Φi, satisfy the following set of equations [12]

(−∆x−∆y +Vi(xi)−E)Φi(xi,yi) = Vi(xi)∑
k 6=i

Φk(xk,yk) , (4)

where xi and yi are mass-weighted Jacobi coordinates, Vi is the interaction potential
in the i-th pair and E is the total energy of the system. It is not difficult to prove that
the exact wave function of the three body system can be uniquely constructed from the
Faddeev components by means of Eq. (3).

The equations in six-dimensional space can hardly be solved directly, and some partial
analysis is necessary. We consider the states with zero total angular momentum. The
angular degrees of freedom corresponding to collective rotation of the three-body system
can be separated [15] and the kinetic energy operator reduces to

H0 =− ∂ 2

∂x2 −
∂ 2

∂y2 − (
1
x2 +

1
y2 )

∂
∂ z

(1− z2)
1
2

∂
∂ z

, (5)

where x, y and z are so called intrinsic coordinates

x = |x|, y = |y|, z =
(x,y)

xy
, x,y ∈ [0,∞), z ∈ [−1,1] . (6)
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In the case of identical bosons Faddeev components take identical functional form,
which makes it possible to reduce the system of three equations (4) to one equation

(H0 +V (x)−E)φ(x,y,z) =−V (x)Pφ(x,y,z) , (7)

where

Pφ(x,y,z)≡ xy(
φ(x+,y+,z+)

x+y+ +
φ(x−,y−,z−))

x−y−
)

and x±(x,y,z), y±(x,y,z), and z±(x,y,z) are

x±(x,y,z) = (
1
4

x2 +
3
4

y2∓
√

3
2

xyz)1/2 ,

y±(x,y,z) = (
3
4

x2 +
1
4

y2±
√

3
2

xyz)1/2 ,

z±(x,y,z) =
±
√

3
4

x2∓
√

3
4

y2− 1
2

xyz

x±(x,y,z)y±(x,y,z)
.

(8)

Assuming that in each two-body subsystem only one bound state exists, we can write
the asymptotic boundary conditions for the Faddeev component φ as follows

φ(x,y,z)∼ ϕ2(x)e−kyy +A(x/y,z)
e−k3(x2+y2)1/2

(x2 + y2)1/4 , (9)

where ϕ2(x) stands for the wave function of the two-body subsystem bound state,
ky =

√
E2−E3, k3 =

√−E3, E2 is the two-body bound state energy, and E3 the energy
of the three-body system. For three-body bound states the first term corresponds to
virtual decay into a particle and a two-body bound system, while the second term
corresponds to a virtual decay with an amplitude A(x/y,z) into three single particles.
The term corresponding to the latter configuration can generally be neglected for the
states below the three-body threshold. Therefore, at sufficiently large distances Rx and
Ry, the asymptotic boundary conditions for the Faddeev component are

∂
∂x

lnφ(x,y,z)
∣∣∣∣
x=Rx

=−kx ≡ i
√

E2 ,
∂
∂y

lnφ(x,y,z)
∣∣∣∣
y=Ry

=−ky . (10)

For bound state calculations Dirichlet or Neumann boundary conditions can also be
employed.

The important property of the Faddeev components which makes them suitable for
numerical solution is their simple asymptotic form. For instance, each of the Faddeev
components holds only bound states of the corresponding two-body subsystem. In
this respect the xi coordinate is the internal coordinate of the corresponding two-body
cluster and the yi coordinate plays the role of a reaction coordinate for all the states
below the 3-body (break-up) threshold. This simple physical meaning of the coordinates
suggest a natural requirement for discretizing the corresponding degrees of freedom: the
discrete analogs of the xi coordinate should reproduce the spectrum of the i-th cluster
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correctly, and discrete analogs of the yi coordinate must describe the scattering states
reasonably well. These necessary requirements are easy to check prior to performing
actual calculations, and they also provide a solid ground for a reasonable degree of
automation for choosing the parameters of the numerical scheme. Another advantage of
the Faddeev equations is the asymptotic decoupling of the components. The right-hand
side of the equation (4) is, roughly speaking, exponentially small if the third particle is
at larger distance than the typical size of the two-body bound state. This means that at
longer distances |yi|> ymax the Faddeev components rapidly decouple, and calculations
can be performed in the regions as small as the size of the largest two-body subsystem
bound state.

The advantages of the Faddeev approach can be exploited even further when dealing
with short-range interactions; i.e. assuming that the potentials Vi are zero (or negligi-
ble) outside the region |xi| < xmax. To clarify this, consider the component Φi in the
asymptotic region |yi| → ∞, xi ∈ supVi, where it satisfies a Schrödinger equation with
the corresponding channel Hamiltonian

(H0 +Vi(xi)−E)Φi(xi,yi)≈ 0 ,

where H0 is the free three-body Hamiltonian. This property of Φi suggests that, rather
than calculate Φi directly, we instead calculate τi (Eq. 11), which is better localized in
configuration space

τi ≡ (H0 +Vi(xi)−E)Φi(xi,yi) . (11)

These τi are non-zero only for small xi ≡ |xi|< xmax and small yi ≡ |yi|< ymax. Accord-
ingly, they are localized to a region that can be much smaller than the typical size of a
two-body bound state. This feature leads to substantial computational savings [16]. The
τi satisfy the following integral equations

τi =−Vi ∑
j 6=i

R2 j(E)τ j , (12)

where R2 j(E) are the resolvents of the corresponding channel Hamiltonians. Since
supτi ⊂ supVi, the τi are more suitable for numerical approximation than the original
Faddeev components. Furthermore, if the equation is being solved using an iterative
technique, then no explicit representation for the integral operators R2 j(E) is required. In
this case we only need to calculate the action of the integral operator on the τi, which can
be done with high computational efficiency by numerically solving the corresponding
differential equation with appropriate boundary conditions. We call this computational
scheme a Localized Component Method (LCM).

COMPUTER CODE

In order to construct a discrete analogue of the system of equations (12) we employ
quintic Hermite splines together with the orthogonal collocations method [17]. A de-
tailed description of the procedure is given in [18]. This high-order method guarantees
fast convergence with respect to the number of grid points, sparse matrix structure for the
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FIGURE 1. A screenshot of the configurator.

discrete analog of the equation (4), and fast calculation of matrix elements that makes it
possible to avoid storing big matrices in computer memory.

The code is written in Java and consists of two parts. The first part is a configurator
that simplifies composing the necessary configuration files. The configurator allows the
user to set masses of the interacting atoms, to specify identical particles in the system, to
choose a potential model, to set the cutoff distances Rx and Ry and to set the number of
grid points to be employed in the calculation. It also generates a mesh with L2-optimal
point distribution which ensures the best possible approximation of the three-body wave
function in the asymptotic region. In Fig. 1 we show an example of the configurator
screenshot.

The second part is the three-body computational kernel based on the LCM approach.
The kernel is currently capable of three-body calculations below the three-body thresh-
old with a limitation of no more than one two-body bound state contributing to each
asymptotic channel. This includes bound states, elastic scattering and chemical reac-
tions below the first vibrational excitation threshold. Typical computational time can
take from minutes to hours, depending on the physical system and the size of the grid.

RESULTS

We apply the code to the calculation of binding energies of the Helium trimer 4He3
three-atomic system, to verify that we can reproduce the known calculated properties
of helium trimer ground and excited states. This system is very particular about the
approach being used, as the trimer binding energy is extremely small and a large volume
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of the configuration space should be treated, but the interaction features very strong
repulsion at short distances, which requires very precise numerical methods to be used.
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FIGURE 2. Convergence of the Helium trimer ground state energy on the grids of Nx = Ny points;
Nz = 5.

Experimentally, helium dimers have been observed for the first time in 1993 by the
Minnesota group [19], and in 1994 by Schöllkopf and Toennies [20]. Later on, Grisenti
et al. [21] measured a bond length of 52±4 Å for 4He2, which indicates that this dimer
is the largest known diatomic molecular ground state. Based on this measurement they
estimated a scattering length of 104+8

−18 Å and a dimer energy of 1.1+0.3
−0.2 mK [21]. In the

latter investigation [22] the trimer pair distance is found to be 1.1+0.4
−0.5 nm in agreement

with theoretical predictions for the ground state.

TABLE 1. Dimer energy εd , 4He−4He scattering length `
(1+1)
sc , bond

length < R > and root mean square radius
√

< R2 > for the potentials used,
as compared to the experimental values of Ref. [21].

Potential model εd (mK) `
(1+1)
sc (Å) < R > (Å)

√
< R2 > (Å)

LM2M2 [23] −1.30348 100.23 52.001 70.926

Exp. [21] −1.1+0.3
−0.2 104+8

−18 52+4
−4 -

Many theoretical calculations of these systems were performed for various inter-
atomic potentials [23, 24]. Variational [26, 25], hyperspherical [8, 27, 28] and Faddeev
techniques [16, 18, 29, 30, 31, 32] have been employed in this context. It was found that
the Helium trimer has two bound states of total angular momentum zero: a ground state
of about 126 mK and an excited state of Efimov-type of about 2.28 mK. Experimentally
this Efimov-type[33] excited state has not yet been observed (see, e.g., [34] and refs.
therein). It should be mentioned, however, that the year 2006 is noticeable due the first
convincing experimental evidence for the Efimov effect in an ultracold gas of Caesium
atoms [35, 36].

In present calculations we employed the code based on the Faddeev differential
equations (5) with boundary conditions (10). As He-He interaction we used the semi-
empirical LM2M2 potential [23]. We use m4He

= 4.0026032197 a.u.m for the mass of
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the 4He atom and h̄2

m4He
kB

= 12.11928 K Å2, unlike many three-body calculations, see,

e.g., [34], where a rounded value of the coefficient has been used.
Investigation of the bound state energy convergence with respect to the number of

grid points demonstrates that even a moderate number of points in variables x and y is
sufficient to get up to six accurate figures for the energy of the ground state (Fig. 2).

The 4He dimer binding energies, 4He–4He scattering lengths and mean values of the
radius < R > and

√
< R2 > obtained with the LM2M2 potential [23] are shown in Table

1 in comparison with experimental data [21]. All the values agree with an experimental
estimation of Ref.[21] within quoted errors. The scattering length `

(1+1)
sc of the system

is bigger than the range of the potential by an order of magnitude. All these features
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characterize the Helium dimer as the weakest, as well as the biggest, diatomic molecule
found so far. Due to the fact that the energy of the dimer is so small, one should expect
that the E4He3

trimer indeed possesses the theoretically predicted state of the Efimov type
(see, [33, 34]).

In Table 2 the results of trimer binding energies calculations obtained with LM2M2
potential are summarized. The binding energies of the 4He trimer ground (E4He3

) and
exited (E∗4He3

) states are presented. These results demonstrate good agreement between
different methods and show that the code competes well even against variational meth-
ods. It should be mentioned that the energy estimates obtained with the code are non-
variational, and further variational improvements of the results are possible.

We are planning to continue testing the code within current applicability limits,
including scattering calculations, systems of distinguishable particles and modeling
clusters of other rare gas atoms.
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Abstract. We used the Faddeev expansion of the potential in pairwise acting forces and the ex-
pansion of the resulting amplitudes in Potential Harmonics to obtain an integrodifferential equation
valid for A boson systems. By introducing suitable transformation and taking limits A → ∞ this
equation is reduced into an Integro–Differential Equation suitable for handling bound states of large
number of bosons. The new equation depends only on the input two-body interaction, it is quite
simple, and the kernel has a simple analytic form. We employ the new equation to obtain results for
A ∈ (10−100) 87Rb atoms interacting via a semi-realistic inter-atomic interactions and confined by
an externally applied trapping potential Vtrap(r). Our results are in excellent agreement with those
previously obtained using the Potential Harmonic Expansion Method (PHEM) and the Diffusion
Monte Carlo (DMC) method.

Keywords: static properties of condensates, hyperspherical methods, many-body theory
PACS: 03.75.Hh, 31.15.Ja, 24.10.Cn

INTRODUCTION

The study the A-boson bound state problem for systems up to A = 4 can be achieved us-
ing several methods. Among these methods those based on Faddeev-type equations and
on Hyperspherical Harmonics Expansion (HHE) methods were extensively used during
the last few decades to study in a rigorous way not only bosonic but fermionic systems as
well. Going beyond the A=4 system, however, is not at present practical within the Fad-
deev scheme as the resulting equations (either in momentum or configuration space) are
too complicated while in the HHE schemes, apart from the complexity of the equations,
one faces also the question of convergence in the expansion especially when the inter-
particle forces have a short range repulsive core. Therefore alternative methods have to
be used instead.

One such method is the Integro–Differential Equation Approach (IDEA) valid for
A–body systems suggested by Fabre de la Ripelle and collaborators [1, 2]. It is based
on the expansion of the Faddeev amplitudes in terms of Potential Harmonics (PH)
[3, 4, 5] and it has been successfully applied in few–body calculations [6, 7], in realistic
fermion systems [8], in unequal mass particle systems [9, 10, 11, 12] as well as in model
calculations for the A = 16 system [13]. In all applications, the binding energies obtained
are in good agreement with other results in the literature obtained by other methods.

When however the number of particles increases, the number of degrees of freedom
also increases and the numerical complexity becomes intractable and one has no alter-
native but to use methods suitable for handling many-body systems. The typical number
of atoms involved in the Bose-Einstein condensation (BEC), for example, is 103− 106
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[14] and consequently studies of the BEC phenomenon are naturally based on quantum
Monte Carlo type methods, such as, the Diffusion Monte Carlo (DMC) [15, 16], the
Variational Monte Carlo (VMC) [17] and the practically exact Green Function Monte
Carlo (GFMC) [18] methods.

A different approach to Monte Carlo methods is the one based directly on the PH
expansion and it has been employed by Das and collaborators [19, 20, 21] to study
the BEC phenomenon for 87Rb atoms using repulsive inter-boson interactions. This
Potential Harmonics Expansion Method (PHEM) requires the solution of a large number
of differential equations which in turn requires the evaluation of Jacobi polynomials
Pα ,β

K (z) with α = (D− 5)/2, β = 1/2 + `, D being the dimensionality of the A-boson
system, D = 3(A−1), ` is the partial wave for the system, and z is an angular variable.
Furthermore, it requires the use of the so-called weight function W (z)≡ (1−z)α(1+z)β .
It is clear that the accuracy in calculating the relevant quantities suffers with increasing
A and the W (z) has a spike similar to a δ -function for z ∼−1 which is difficult to treat
numerically.

In the present work we also start by expanding the wave function for the A-body
system system in to Faddeev components which in turn are expanded in terms of
PH. The resulting system is then projected on the space of the pair (i j) resulting in
the aforementioned IDEA equation which depend on two variables only, namely, the
hyperradius r and the angular variable z while the corresponding kernel is expressed in
terms of Jacobi polynomials Pα ,β

K (z) and the weight function W (z) and therefore one
faces similar difficulties as in the PHEM. However, these difficulties can be removed
by obtaining appropriate limits for A → ∞. The new equation thus obtained, are quite
simple, and the kernel depends on the much simpler Associated Laguerre polynomials
L1/2

K which are independent of α [22]. The kernel can be even further simplified to have
an analytic form, which does not depend on any polynomial, is independent from α , and
only depends linearly on the number of particles A.

In what follows, we describe, in Sect. , how one can obtain from the IDEA, the new
integro-differential equation suitable for large number of particles A. We then apply it,
in Sect. , to obtain results, first, for the hybrid nuclear model for 16O system where the
particles are assumed to interact via short range strong forces of Wigner type; second,
we apply it to 87Rb atoms for various A and the results obtained are compared to those
of the PHEM and the DMC methods. Our conclusions are summarized in Sect. .

THE FADDEEV-HHE FORMALISM

In the IDEA formalism the A-body wave function can be written as

Ψ(x) = H[Lm](x) ∑
i< j≤A

F(ri j,r) (1)

where H[Lm](x) is a harmonic polynomial of minimal degree Lm for the ground state,
x is the coordinate vector x = (x1,x2, · · · ,xA), ri j = xi − x j, in terms of the particle

coordinates xi while r is the hyperradius, r =
[
2/A∑i< j≤A r2

i j

]1/2
. The functions F(ri j,r)
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are two–body amplitudes obeying the Faddeev-type equation
[

T +
A(A−1)

2
V[Lm](r) − E

]
H[Lm](x)F(ri j,r)

= −
[
V (ri j)−V [Lm]

0 (r)
]

H[Lm](x) ∑
k<l≤A

F(rkl,r) . (2)

The hypercentral potential V [Lm]
0 (r) is the average potential V (ri j) taken over the [Lm]

state on the unit hypersphere r = 1 of surface element dΩ

V [Lm]
0 (r) =

∫
H∗

[Lm](x)V (ri j)H[Lm](x)dΩ
∫ |H[Lm](x)|2 dΩ

. (3)

We note that for ground states, the pairs are in an S–state and the amplitude F is a
function of the hyperradius and ri j = |xi−x j| only.

The amplitudes can be expanded in terms of any set of harmonic polynomials such as
the Hyperspherical Harmonics (HH). Expansion in terms of HH, however, results in a
system of coupled differential equations which is impractical for numerical calculations
especially when hard core potentials are employed or the number of particles considered
is large. In addition it gives rise to degeneracy for a given grand orbital L and thus
converged solutions are difficult to obtain.

A more efficient expansion can be made in terms of Potential Harmonics (PH)
P`,m

2K+`(Ωi j) [3, 4, 5] which form a complete basis for expanding continuous functions
depending only on the relative coordinate ri j. For systems in which the pair (i j) is in an
`-state while the other pairs are in an S-state, these polynomials are given by

P`,m
2K+`(Ωi j) = NK,`Y`m(ωi j)

(ri j

r

)`
Pα ,β+`

K (2
r2

i j

r2 −1) (4)

Here Y`m(ωi j) is the spherical harmonic, Pα ,β
K (z) is a Jacobi polynomial, and NK,` is a

normalization constant which can be obtained from
∫

(r=1)
P`,m∗

2K+`′(Ωi j)P
`′,m′
2K′+`′(Ωi j)dΩ = δKK′δ``′δmm′. (5)

The P`,m
2K+`(Ωi j) are eigenfunctions of the operator L̂2(Ω)

[
L̂2(Ω)+L(L+D−2)

]
P`,m

2K+`(Ωi j) = 0 , L = 2K + ` , (6)

where L2(Ω) is given by [3]

L̂2(Ω) =
4

W (z)
∂
∂ z

(1− z2)W (z)
∂
∂ z

+2
ˆ̀2(ωi j)
1+ z

+2
L̂2(ΩN−1)

1− z
. (7)

The angular variable z is defined by

z = cos2ϕ = 2
r2

i j

r2 −1 , cosϕ =
ri j

r
. (8)
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Letting
F(ri j,r) = P(z,r)/rLm+1 , (9)

where Lm = Lm +(D−3)/2, and projecting on the ri j–space one gets the IDEA equation
for an A–particle system (see, for example, [2])

− h̄2

m

[
∂ 2

∂ r2 − Lm(Lm +1)
r2 +

4
r2 T (z)+

A(A−1)
2

V [Lm]
0 (r)−E

]
P(z,r)

= −
[
V (ri j)−V [Lm]

0 (r)
][

P(z,r)+
∫ +1

−1
F (z,z′) P(z′,r) dz′

]
. (10)

where T (z) is the kinetic energy operator

T (z) =
1

W[Lm](z)
∂
∂ z

(1− z2)W[Lm](z)
∂
∂ z

(11)

and W[Lm](z) is the weight function which, for bosonic systems, is given by

W[Lm](z) = (1− z)α(1+ z)β (12)

where α = (D−5)/2+Lm−2`m and β = 1/2+`m. The kernel F (z,z′) is the projection
function which is expressed in terms of the Jacobi polynomials Pα,β

K (z),

F (z,z′) = W[Lm](z
′)∑

K

( f 2
K−1)
hK

Pα ,β
K (z)Pα,β

K (z′) . (13)

The normalization hK is given by

hK =
∫ +1

−1

(
Pα,β

K (z)
)2

W[Lm](z)dz , (14)

and the constant f 2
K−1 by

f 2
K−1 =

2(A−2)Pα ,β
K (−1/2)+ [(A−2)(A−3)/2]Pα,β

K (−1)

Pα ,β
K (+1)

. (15)

When the number of particles A is large, the calculations with the above formalism
becomes time consuming and cumbersome. There are two main reasons for this, the
first one being the evaluation of the Jacobi polynomials Pα ,β

K since the value of α
becomes huge and the polynomials are highly oscillatory; the second reason stems from
the behavior of the weight function which for z→−1 is peaked at 2α .

In our approach we consider first the factorization

rij = rζ/
√

α . (16)
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with z = 2ζ 2/α−1. Then for α → ∞ we have the following limits,

Pα ,β
K (2r2

i j/r2−1)−→
α→∞

(−1)KL1/2
K (αr2

i j/r2)≡ (−1)KL1/2
K (ζ 2) (17)

and

W (z) = CW
2α+1/2+`

α1/2+`
ζ `+1e−ζ 2

(18)

where CW is the normalization constant for the weight function. For ` = 0

hK −→
α→∞

∫ √
α

0

[
L1/2

K (ζ 2)
]2

e−ζ 2
ζ 2 dζ

' 1
2

∫ ∞

0

[
L1/2

K (x)
]2

e−x√xdx

=
1
2

Γ(K +3/2)
K!

. (19)

In order to evaluate the kinetic energy T̂ P(z,r), we consider first the factorization

P(ζ ,r) =
eζ 2/2

ζ
Q(ζ ,r) . (20)

Then

T̂ P =
1

W
∂
∂ z

(1− z2)W
∂
∂ z

P (21)

≡ α
4

eζ 2/2

ζ

[
d2

dζ 2 +3+2`m−ζ 2− 2`m

ζ 2

]
Q(ζ ,r) (22)

Therefore, Eq. (10) (we consider here the case where Lm = 0, Lm = L ≡ (D− 3)/2,
and `m = 0) becomes

h̄2

m

[
Hr +

α
r2 Hζ +

A(A−1)
2

V0(r)−E
]

Q(ζ ,r)

= −[
V (ri j)−V0(r)

][
Q(ζ ,r)+

∫ √
α

0
FE(z,z′) Q(ζ ′,r) dζ ′

]
. (23)

where

Hr =− ∂ 2

∂ r2 +
L (L +1)

r2 , (24)

and

Hζ =
α
4

[
− ∂ 2

∂ζ 2 +ζ 2−3
]

. (25)

The kernel FE is given by

FE(ζ ,ζ ′) = ζ e−ζ 2/2 ∑
K

2K!
Γ(K +3/2)

( f 2
K−1)L1/2

K (ζ 2)L1/2
K (ζ ′2)ζ ′e−ζ ′2/2 , (26)
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We see that equation (23) is free from the δ -function type peak and, apart from the easily
evaluable constant f 2

K−1, the kernel FE does not depend on α .
Equation (23) can be even further simplified by noting that

∑
K

( f 2
K−1)

K!
Γ(K +3/2)

L1/2
K (ζ 2)L1/2

K (ζ ′2)

−→
α→∞

2(A−2)∑
K

(
1
4

)K

L1/2
K (ζ 2)L1/2

K (ζ ′2)/hK

−2(A−2)
1
4

L1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1−L1/2
1 (ζ 2)L1/2

1 (ζ ′2)/h1

−2(A(A−2)/h0 +[A(A−1)/2−1]/h0 (27)

and thus by making use of the relation [23]

∞

∑
K=0

(
1
4

)K K!
Γ(K +3/2)

L1/2
K (ζ 2)L1/2

K (ζ ′2) =
4√
3π

e(ζ 2+ζ ′2)/3 sinh(3
4ζζ ′)

ζ ζ ′
. (28)

we obtain

h̄2

m

{
Hr +

4
r2 Hζ +

A(A−1)
2

V0(r)−E

}
Q(ζ ,r)

= −
[
V (ri j)−V0(r)

][
Q(ζ ,r)+

∫ √
α

0
FI(ζ ,ζ ′)Q(ζ ′,r)dζ ′

]
(29)

The new form of the kernel FI is

FI(ζ ,ζ ′) =
2(A−2)√

3

{[
A−3− 2

3
(ζ 2− 3

2
)(ζ ′2− 3

2
)
]

ζζ ′e−(ζ 2+ζ ′2)/2

+
4√
3

[
e−[(5(ζ−ζ ′)2+2ζ ζ ′)/6]− e−[(5(ζ+ζ ′)2−2ζζ ′)/6]

]}
(30)

The kernel (30) has a simple form and its computation is straightforward.
In the presence of a trapping potential Vtrap(r) which depends on the hyperradius only,

the modifications needed are trivial and consists of replacing Hr by

Hr =− ∂ 2

∂ r2 +
L (L +1)

r2 +Vtrap(r) (31)

The solution of the two-dimensional equations (23) and (29) can be readily obtained.
However, the Adiabatic Approximation can also be employed. In this case we may write,
as usual, Q(ζ ,r) = Qλ (ζ ,r)uλ (r) to obtain

h̄2

m

[
4
r2 Hζ + Uλ (r)]Qλ (ζ ,r) =−

[
V (

r√
α

ζ )−V0(r)
]

×
[

Qλ (ζ ,r)+
∫ √

α

0
Fn(ζ ,ζ ′)Qλ (ζ ′,r)dζ ′

]
, n = E, I (32)
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and
u
′′
λ (r)+

[
k2

λ +Veff(r)
]

uλ (r) = 0 (33)

where the effective potential Veff is given by

Veff(r) =
L (L +1)

r2 +
A(A−1)

2
V0(r)−Uλ (r)+Vtrap(r) (34)

It is noted that the hypercentral potential V0 contains effects from the higher partial
waves, albeit in an approximate way, and can be omitted in which case the results are
S-projected. It is further noted that the L (L + 1)/r2 or the Vtrap(r) can be included in
the first equation (32) without affecting the final results.

RESULTS

We first analyze the behavior of the term f 2
K − 1 as α → ∞. In table 1 we present the

results for A = 20 and A = 1000 for the two terms, T1 = (A−2)2Pα,1/2
K (−1/2)/Pα ,1/2

K (1)
and T2 = (A− 2)(A− 3)/2 Pα,1/2

K (−1)/Pα,1/2
K (1) for K = 0,1, · · · ,7. We see that both

TABLE 1. Comparison of the two terms T1 and T2 of f 2
K −1 (see text) for K = 0, · · · ,7. for A = 20

and A = 1000.
A = 20 A = 1000

K T1 T2 f 2
K −1 T1 T2 f 2

K −1

0 36. 153 189 1996.0000000 497503. 499499.
1 7.5 -8.5 -1 497.5000000 -498.5000000 -1.0000000
2 1.1004464 0.7589286 1.8593750 123.5018775 0.8319426 124.3338201
3 0.0729391 -0.0915948 -0.0186557 30.5345323 -0.0019425 30.5325898
4 -0.0086754 0.0137392 0.0050638 7.5185722 0.0000058 7.5185780
5 -0.0016333 -0.0024376 -0.0040709 1.8437195 -0.0000000 1.8437195
6 0.0002636 0.0004951 0.0007588 0.4502550 0.0000000 0.4502550
7 0.0000479 -0.0001125 -0.0000646 0.1095002 -0.0000000 0.1095002

terms as well as the total term f 2
K − 1 become very small as K increases. Consequently

only few terms in the expansion (26) are required to achieved convergence. Furthermore,
the behavior of the second term (only the K = 0,1 are significant for large α) justifies
our approximation (27).

We next present, in Fig. 1, the kernel FI(ζ ,ζ ′) for A = 20 and A = 1000 particles.
We see that, apart from the strength, its shape and spread is not drastically changed and
in both cases the kernel becomes insignificant beyond ζ ∼ 4.

We employed the new equation, Eq. (29), to solve first, as a model problem, the 16O
system where results exist in the literature. To obtain the solution, we use the Galerkin
method and B-splines to reduce the problem, as usual, to an eigenvalue one. In this model
nuclear problem, the particles are assumed to interact via Wigner-type forces. The results
obtained using the analytic expression (30) and designated as IDEA-I, are given in Table
I. Despite the fact that the A = 16 case corresponds to a rather small number of particles,
the accuracy achieved by the new equation for strong nuclear forces is less than 1% of the
exact values obtained by solving the IDEA [13] or using the Hyperspherical Harmonics
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FIGURE 1. The kernel FI(ζ ,ζ ) for A = 20 and A = 1000.

TABLE 2. Binding energies (in MeV) obtained for A =
16 with nuclear forces and by using the kernel (30).

Potential IDEA-I IDEA(exact) HHEM [27]

Volkov [24] 1643 1640 –
S3[25] 1247 1246 1235
MT-V [26] 1377 1376 1363

Expansion Method (HHEM) [27]. The slightly higher deviation from the results of the
HHEM can be attributed to the slow convergence rate of the HHE expansion for the S3
[25] potential having a practically repulsive hard core and for the semi-realistic Yukawa
type MT-V [26] potentials.

We turn now our attention to the case where A bosons are confined in a magnetic trap
which is approximated by a spherically symmetric harmonic oscillator potential

Vtrap(r) =
A

∑
i=1

1
2

mω2x2
i =

1
4

mωr2 (35)

In our calculations we use oscillator units (o.u) in which the energy and length are h̄ω
and

√
h̄/mω respectively, where ω is the harmonic oscillator circular frequency. In these

units h̄2/m = 1.
As a first example we employ a Gaussian potential

V (ri j) = V0 exp[−r2
i j/r2

0] (36)

with V0 = 3.1985× 106 o.u and r0 = 0.005 o.u which corresponds to the Joint Institute
for Laboratory Astrophysics (JILA) 87Rb experiment [28] with asc = 100 bohr and trap
frequency ν = 200 Hz. The results obtained by employing the kernel (26), designated as
IDEA-E, and the kernel (30), are shown in Table 3. The ground state energy for A = 3
differs, as expected, from the corresponding value obtained within the PHEM [19] by
25%, for A = 5 by 3.26%. For A = 10, however, the agreement is already within 0.2%.
Going beyond A > 10, the differences from the results of PHEM are very small and
can be mainly attributed to the overall numerical inaccuracies. It should be noted here
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TABLE 3. Results (in o.u) obtained
with IDEA-E (Eq. (23)) and IDEA-I
(Eq. (29)) using the Gaussian potential
(36).

A IDEA-E IDEA-I PHEM

3 6.009 6.009 4.500
5 7.758 7.758 7.505
10 15.003 15.003 15.034
15 22.501 22.501 22.567
20 30.000 30.001 30.107
25 37.501 37.501 37.654
30 45.009 45.001 45.207
35 52.509 52.501 52.768

TABLE 4. Same as 3 using the sech poten-
tial (37).

A IDEA-I PHEM[21] DMC[29]

10 15.143 15.1490 15.1539
20 30.625 30.6209 30.639
50 78.701 78.8704
100 165.038 164.907

that the binding energy per particle is of the order of Eb/A ∼ 1.50. It should be further
noted that the IDEA-E and the IDEA-I results are, to all practical purposes, identical and
therefore we shall employ from now on only the kernel (30).

As a second example we use the semi-realistic potential

V (ri j) = V0 sech2(ri j/r0) (37)

Following Das et al. [21] we use V0 = 1.81847×109 o.u and r0 = 0.001 o.u.. We present
our results in Table 4 and compare them with those of the PHEM and of the DMC results
of Blume and Greene [29].

We endeavored to carry out calculations for up to A = 100 where a very good agree-
ment is achieved in all cases for A ≥ 10 with both the PHEM [21] DMC [29] methods.
Going beyond A = 100 requires more refine calculations and rather an exact solution of
Eq. (29), the reason being that the extreme adiabatic approximation give rise to a multi-
tude of eigenpotentials Uλ (r) very close to each other and the results, albeit not differing
much, depend nevertheless on which eigenpotential Uλ (r) is used. This is shown in Fig.
2 where two effective potentials, Eq. (34), corresponding to λ = 1 and λ = 20 are plot-
ted for the case A = 500. This multitude of eigenpotentials close to each other does not
appear in the case where forces having an attractive well are used.

CONCLUSIONS

Our conclusions can be summarized as follows:
i) Using the transformation rij = rζ/

√
α and using the asymptotic form of the Jacobi
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FIGURE 2. Two eigenpotentials Veff(r) corresponding to λ = 1 and λ = 20 for A = 500.

polynomials Pα,β
K (z) which for large A are approximated by the Laguerre polynomials

L1/2
K (ζ ) that do not depend on A, we obtained an integro-differential equation describing

bound states of large number of bosons. This transformation simplifies the kinetic energy
term, the weight function, and the corresponding projection function. As a result the new
integro-differential equation with a fully analytic and simple kernel can be easily applied
to A-body bosonic systems.
ii) The IDEA formalism is similar to the PHEM of Ref. [3] employed by Das and
collaborators [19, 20, 21]. In the PHEM one has to solve a large number of differential
equations which in the IDEA are transformed, with the help of Potential Harmonics,
into a single integro-differential equation. (Technical details on this transformation can
be found in Refs. [2, 5, 12].) Therefore, our equation for large A can also be considered
as a simplified version not only of the IDEA method but also of the traditionally used
PHEM.

iii) We tested the new equation by calculating the ground state binding energy of the
model nuclear problem for the 16O system where the short range nuclear force was of
Wigner type. The good agreement achieved, with the three different type forces having
a soft core, a hard core, and of Yukawa type, as compared to the results obtained using
the IDEA and the HHEM methods implies that the new equation can be safely used
to calculate binding energies of large number (A ≥ 10) particles interacting via strong
forces.

iv) Application of our scheme to Bose-Einstein condensates consisting of A-atoms
trapped by an external field, we obtained results which are in excellent agreement with
those of PHEM and the Diffusion Monte Carlo (DMC) method, at least up to A = 100.
Going beyond this number requires improved numerical methods or a direct solution of
the equation as a two-variable integro-differential equation without resorting to the EAA
approximation which give rise to a plethora of eigenpotentials that are very close to each
other.

v) When A increases, the centrifugal part L (L +1)/r2 becomes extremely large and
extends outwards while the inter-atomic potential is constant and restricted to smaller
distances. Therefore the main contribution in the effective potential stems from the
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centrifugal and the trapping potentials which generate a harmonic oscillator–type well
which moves outwards as the number of particles A increases.

vi) The overall good results obtained, indicate that the derived equation can be used
in studies of bound A-boson systems as an alternative to competing methods such as the
variational and hyperspherical harmonics methods. Our approximations should become
better with increasing A i.e for α → ∞.
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S-matrix parametrization as a way of locating
quantum resonances and bound states:

multichannel case
P. O. G. Ogunbade and S. A. Rakityansky
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Abstract. A method is proposed for analytic continuation of the multi-channel S-matrix given at a
finite number of discrete points on the real axis of the energy. Using its values at these points, it is
possible to calculate the S-matrix at complex energies on any sheet of the Riemann surface within
a wide band along the real axis. The method is based on the established analytic properties of the
multi-channel Jost matrices and a rational (Padé-type) approximation of the S-matrix obtained at
real collision energies. Numerical examples demonstrate the stability and accuracy of the proposed
method.

Keywords: Jost matrices, quantum resonances, Padé approximation

INTRODUCTION

It is often necessary to identify the spectral points (i.e. bound and resonance states) and
extract their energies and widths from experimental scattering data available over some
energy range. For a single-channel problem, a method for solving such a problem was
proposed in Ref. [1].

The main idea is based on the coincidence principle [2]: two analytic functions
coinciding on a curve segment are identical everywhere in the complex plane. Therefore,
if we find a good analytic approximation of the S-matrix on the real axis, we may expect
that it is also valid at the nearby points of the complex plane (or Riemann surface).
In particular, such an approximate S-matrix should have the same singularities, i.e. the
spectral points, which thus can be located.

In Ref. [1], the given S-matrix values are fitted using a meromorphic function of the
Padé type, which is a ratio of two polynomials. In this work, we extend the method
to a multi-channel problem, where before using the Padé approximation, the threshold
branching points are explicitly factorized in each element of the Jost matrix.

RATIONAL APPROXIMATION OF THE S-MATRIX

We assume that the complex-valued matrices1 S`(E) are known at discrete points within
a finite energy segment [Emin,Emax] along the real axis. These can be either the experi-
mental points or the values obtained theoretically using some numerical procedure.

1 In this paper, all the matrices are labeled using bold symbols.
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Let us look for an approximate matrix S̃`(E) such that its difference from the given
("exact") values S`(E) is minimal on the segment [Emin,Emax]. Keeping in mind the
coincidence principle, we hope that the more accurately we approximate the S-matrix
on the real axis, the less different will be the poles of S̃`(E) at complex energies from
the corresponding poles of the "exact" S`(E).

In this work, the functional form we chose for the approximate S-matrix is known in
numerical analysis as the matrix Padé approximant of the order [M,M] given by

S̃`(E) = P(E)[Q(E)]−1 =

[
M

∑
m=0

pmEm

]
·
[

M

∑
m=0

qmEm

]−1

(1)

where the pm and qm are some unknown matrices of fitting parameters.
The form of the Padé approximation that we use is different from the standard

approach in the following. The standard matrix Padé approximant [3, 4] requires the
function to have a Taylor series representation. Our method, however, uses only the
values of the function at discrete points on the real axis. Similarly to the single-channel
case, the order [M,M] (equal orders of the "numerator" and "denominator") of the Padé
approximant ensures that at high energies S`(E)→ I [5] where I is the identity matrix.
The other difference is that we incorporate the correct low energy behaviour of the S-
matrix into our fitting procedure which is discussed next.

Multi-Channel Jost matrices

Consider an N-channel problem with the threshold energies E th
n , channel momenta

kn =
√

2µn

h̄2 (E−E th
n ), (2)

and channel angular momenta `n (n = 1,2, . . . ,N). The multi-channel S-matrix can be
written as the "ratio"

S`(E) = F(out)
` (E) ·

[
F(in)

` (E)
]−1

(3)

of the Jost matrices F(in/out)
` (E) which are the amplitudes of the incoming and outgoing

spherical waves in the asymptotic behaviour

ΦΦΦ`(E,r) −→
r→∞

H(−)
`(E,r)F(in)

` (E)+H(+)
`(E,r)F(out)

` (E) (4)

of the fundamental matrix ΦΦΦ` of regular solutions of the system of radial Schrödinger
equations. Here the diagonal matrices

H(±) = diag{h(±)
`1

(k1r),h(±)
`2

(k2r), . . . ,h(±)
`N

(kNr)} (5)

are composed of the Riccati-Hankel functions. Looking for the fundamental matrix
ΦΦΦ`(E,r) in the form

ΦΦΦ`(E,r) = J`(E,r)A(E,r)−N`(E,r)B(E,r) (6)
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where J and N are diagonal matrices composed of the Riccati-Bessel and Riccati-
Neumann functions,

J = diag{ j`1(k1r), j`2(k2r), . . . , j`N (kNr)} , (7)

N = diag{n`1(k1r),n`2(k2r), . . . ,n`N (kNr)} , (8)

we obtain [6] (from the Schrödinger equation) the following system of differential
equations for the new unknown matrices A(E,r) and B(E,r)

{
∂rA =−K−1NV(JA−NB)
∂rB =−K−1JV(JA−NB)

(9)

with the boundary conditions

A−−→
r→0

I, B−−→
r→0

0 (10)

where the diagonal momentum matrix K is given by

K = diag{k1,k2, . . . ,kN} . (11)

The matrices A and B are related to the Jost matrices via their asymptotic values

F(in)(E) = lim
r→∞

1
2

[A(E,r)− iB(E,r)] , (12)

F(out)(E) = lim
r→∞

1
2

[A(E,r)+ iB(E,r)] . (13)

At any finite r, the expressions on the right hand sides of Eqs. (12, 13) give the corre-
sponding Jost matrices for the potential truncated at the point r (similarly to the variable-
phase approach).

Since Eqs. (9) involve the channel momenta, their solutions and therefore the Jost
matrices (being functions of E) depend on the energy via all kn. This makes them
multivalued functions of the energy. Indeed, for any chosen E, we have two possibilities
for choosing the sign in front of the square root

kn =±
√

2µn

h̄2 (E−E th
n ), (14)

for each channel momentum. Therefore the Jost matrices have 2N different values at
each point E. In other words, they are defined on the Riemann surface consisting of 2N

interconnecting sheets. The branching points are at the threshold energies E(th)
n .

The complications caused by the multivaluedness of the matrices A and B can be
avoided in the following way. Let us consider the well known power series expansions
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of the Riccati-Bessel and Riccati-Neumann functions [7],

j`(kr) = k`+1
∞

∑
n=0

k2n

[
(−1)n√π

Γ(`+ 3
2 +n)n!

( r
2

)2n+`+1
]

= k`+1
∞

∑
n=0

k2nγ`n(r) = k`+1 j̃`(E,r) (15)

n`(kr) = k−`
∞

∑
n=0

k2n

[
(−1)n+`+1√π

Γ(−`+ 1
2 +n)n!

( r
2

)2n−`
]

= k−`
∞

∑
n=0

k2nη`n(r) = k−`ñ`(E,r). (16)

where the odd powers of the momenta are factorized, namely, the factors k`+1 and k−`.
Such a factorization for the matrices J and N gives

J = diag
{

k`1+1
1 ,k`2+1

2 , . . . ,k`N+1
N

}
J̃

N = diag
{

k−`1
1 ,k−`2

2 , . . . ,k−`N
N

}
Ñ

(17)

After the factorization, the remaining series involve only the even powers of k and thus
the functions J̃ and Ñ are single-valued functions of the energy.

Substituting the factorized expressions for J and N into Eqs. (9) and looking for
matrices A and B in the factorized form

Amn =
k`n+1

n

k`m+1
m

Ãmn , Bmn = k`m
m k`n+1

n B̃mn (18)

we see that all the factors composed of the odd powers of the momenta cancel out and
the matrices Ã and B̃ satisfy the following modified coupled differential equations

{
∂rÃ =−ÑV(J̃Ã− ÑB̃)
∂rB̃ =−J̃V(J̃Ã− ÑB̃) ,

(19)

with the boundary conditions

Ã−−→
r→0

I, B̃−−→
r→0

0 . (20)

It is seen that the differential equations (19) do not involve any channel momenta kn.
This means that Ã(E,r) and B̃(E,r) are single-valued matrix functions of the energy E.

Therefore, the Jost matrices have the following structure

F(in)
mn (E) =

1
2

[
k`n+1

n

k`m+1
m

Ãmn(E)− i k`m
m k`n+1

n B̃mn(E)
]

, (21)

F(out)
mn (E) =

1
2

[
k`n+1

n

k`m+1
m

Ãmn(E)+ i k`m
m k`n+1

n B̃mn(E)
]

, (22)
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They are multi-valued functions and the branching points are determined by the factors

k`n+1
n

k`m+1
m

and k`m
m k`n+1

n . (23)

Apparently, the "in" and "out" Jost matrices are related to each other on different sheets
of the Riemann surface, namely,

F(out)
mn (E,k1,k2, . . .) = (−1)`m+`nF(in)

mn (E,−k1,−k2, . . .) , (24)

and thus

S(E) = F(out)(E)
[
F(in)(E)

]−1

= (−1)`n+`m F(in)(E,−k1,−k2, . . . ,kN)
[
F(in)(E,k1,k2, . . . ,kN)

]−1
. (25)

It is important to point out that according to equation (24) not all the parameters in
equation (1) are independent. This symmetry property (24) enables us to reduce the
number of fitting parameters in half and also improves the quality of the approximation
since the correct structure of the S-matrix, given by equation (25), is taken into account.

FITTING PARAMETERS

To begin with, we expand the matrices Ã and B̃ in power series of E, since they are
single-valued matrix functions (see the statement following equation (19)), we have

Ã(E)≈
M

∑
µ=0

ααα(µ)Eµ , B̃(E)≈
M

∑
µ=0

βββ (µ)Eµ . (26)

It is clear from equation (26) that we have to determine 2(M + 1) unknown matrices
ααα(µ) and βββ (µ) (µ = 0,1,2, . . . ,M).

Let us assume that there are 2(M +1) S-matrix data given on the interval [Emin,Emax)]

of the real energy axis. The method of calculating the parameters ααα(µ) and βββ (µ) is as
follows. We multiply equation (25) by F(in) from the right and re-write it as

F(out)(Ei,k1,k2, . . .) = S(Ei)F(in)(Ei,k1,k2, . . .), i = 1,2, . . . ,2(M +1). (27)

Substituting equations (21) and (22), into equation (27), after some matrix algebra and
rearrangements, we find that this is a linear system of equations for α(µ)

mn and β (µ)
mn , given

by

M

∑
µ=0

[
k`n+1

n

k`m+1
m

(
Smm(Ei)−1

)
α(µ)

mn − ı k`m
m k`n+1

n

(
Smm(Ei)+1

)
β (µ)

mn

+
N

∑
j=1
j 6=m

Sm j(Ei)
(

k`n+1
n

k` j+1
j

α(µ)
jn − ı k` j

j k`n+1
n β (µ)

jn

)]
Eµ

i = 0
(28)
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where m,n = 1,2, . . . ,N; i = 1,2, . . . ,2(M +1). Similarly to the single channel case, we
can simplify the last equation by including into it the correct behaviour of the S-matrix
at zero collision energy [5]:

Smm(E)−−−→
km→0

1+O(kq
m), q≥ `+1

Smn(E)−−−→
km→0

O(kq
m), m 6= n, q≥ `+1/2,

we thus obtain

M

∑
µ=1

[
k`n+1

n

k`m+1
m

(
Smm(Ei)−1

)
α(µ)

mn − ı k`m
m k`n+1

n

(
Smm(Ei)+1

)
β (µ)

mn

+
N

∑
j=1
j 6=m

Sm j(Ei)
(

k`n+1
n

k` j+1
j

α(µ)
jn − ı k` j

j k`n+1
n β (µ)

jn

)]
Eµ

i = δmn−Smn(Ei)
(29)

where i = 1,2, . . . ,2M, α(0)
mn = δmn, β (0)

mn = 0 and δmn is the Kronecker delta (m,n =
1,2, . . . ,N).

Having obtained the parameters ααα(µ) and βββ (µ), we can search the spectral points at
complex energies as the roots of the determinant of the matrix function Fin (i.e. the poles
of the S-matrix (25))

det
[
Fin(E)

]
= 0, (30)

where the matrix elements of Fin are given by

F in
mn(E) =

1
2

M

∑
µ=0

[
k`n+1

n

k`m+1
m

α(µ)
mn − ı k`m

m k`n+1
n β (µ)

mn

]
Eµ . (31)

NUMERICAL EXAMPLES

As an illustration of how the suggested method works, we performed numerical calcula-
tions for two two-channel problems, namely: exactly solvable model of coupled square-
wells [8, 5] and Noro-Taylor model potential [9]. The test conducted here is mainly for
`1 = `2 = 0, although any channel angular momenta can be handled by our method. In
both cases N fitting points (input energies) were chosen and uniformly distributed on the
interval Emin 6 E 6 Emax on the real axis i.e.

En = Emin +
Emax−Emin

N−1
(n−1), n = 1,2, . . . ,N (32)

The exact values of the S-matrix at the fitting points were calculated using a very
accurate method, which is based on a combination of the complex rotation and a direct
calculation of the Jost matrix function as described in [6]. The locations of the exact
spectral points were obtained by the same method.
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The first of the testing potentials is an exactly solvable model problem coupled by
square-well potentials [5], shown in Figure 1. The units in this model are chosen in such
a way that µ1 = µ2 = h̄c = 1. The channel threshold energies are E th

1 = 0.0 and E th
2 = 2.0,

while the interaction potential have the forms

V(r) =

{
U for 0≤ r ≤ 1
0 otherwise

U =−
(

2.0 0.5λ
0.5λ 2.0

)
, λ = 0 or 1.

(33)

0 2 4 6 8 10

−2

0
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n = 1

n = 2
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Vnn + En

FIGURE 1. Square-well diagonal channel potentials (33). The potentials are shifted by the threshold
energies En.

Although, this model problem is known to have exact analytical solution [5], numer-
ical calculations as discussed above were employed to generate the S-matrix and the
spectral points. In the absence of coupling between the channels (i.e. λ = 0), the di-
agonal potentials each generates a single bound state. These bound states are located
at E1 = −0.2035507418 and E2 = 1.7964592582. When the coupling is switched on
(λ = 1) only the lower bound state survived with shifted energy: E1 =−0.2430965098.
The bound state of the upper potential V22(r)+ E th

2 can now decay into the continuum
of the lower potential V11(r) + E th

1 , thus turning into a resonance. The corresponding
pole of the S-matrix is located on an unphysical sheet of the complex energy Riemann
surface at E2 = 1.8315168862− i0.0290733625.

To give some indication of the accuracy of the rational approximation Table 1 shows
the positions of the bound states and resonance for a series of approximants ranging
from N = 2 to N = 10, with Emin = 1 and Emax = 8.

The second test case is shown in Figure 2. It supports bound states, resonances and
sub–threshold resonances [1]. In the units such that µ1 = µ2 = h̄ = 1, the potential has
the form

V(r) =
(−1.0 −7.5
−7.5 7.5

)
r2 e−r (34)

The thresholds energies are E th
1 = 0 and E th

2 = 0.1. The exact S-matrix corresponding
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TABLE 1. Convergence of the poles of the approximate S̃(E) found for the potential (33)
using N fitting points evenly distributed over the interval 1 6 E 6 8. All values are given in
the arbitrary units such that µ1 = µ2 = h̄ = 1. λ is the switching parameter.

λ = 0 λ = 1

ID N ReE ImE ReE ImE

E1 2 0.9346579288 −0.2046585820 0.9696684253 −0.1914384518
5 −0.2020229243 −1.24×10−12 −0.2422637171 −1.1×10−14

7 −0.2035497226 −1.46×10−11 −0.2430955910 −2.2×10−11

10 −0.2035506639 1.54×10−10 −0.2430964602 −8.4×10−10

Exact −0.2035507418 −0.2430965098

E2 2 1.2144390251 6.71×10−16 1.2539964140 −0.0861903892
5 1.7964492680 3.03×10−15 1.8315169134 −0.0290733682
7 1.7964492581 −2.12×10−14 1.8315168861 −0.0290733625

10 1.7964492581 4.54×10−13 1.8315168861 −0.0290733625
Exact 1.7964492582 1.8315168862 −0.0290733625

0 2 4 6 8 10

−4

−2

0

2

4

r

V
(r

)

V11

V12

V22

FIGURE 2. The Noro–Taylor potential [9] model given in Equation (34).

to this potential has an infinite number of poles forming a string that goes down the
E-plane to infinity. The exact locations of the first six of the S-wave resonance states
are given in Table 2. We compared the S-wave resonance poles obtained using N = 30
of the approximated S̃-matrix where Emin = 1 and Emax = 10 with the exact locations.
Figure 3 shows the accuracy of the proposed method. Just as it was expected, the most
significant poles i.e. those that are close to the real axis and the fitting segment were
reproduced correctly. The fitting points on the real E-axis are indicated by vertical bars.
In Table 3, the exact and approximate S̃-matrix poles are compared for the first five
resonances generated by the potential (34).
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TABLE 2. The S-wave resonance poles, h̄2k2
n = 2µn(E −E th

n ), of the exact S-matrix
obtained for the Noro–Taylor potential (34). They were obtained using the rigorous Jost-
function method described in [6]. All the values are given in the arbitrary units such that
µ1 = µ2 = h̄ = 1.

no. ReE ImE Rek1 Imk1 Rek2 Imk2

1 4.768197 −0.000710 3.088105 −0.000230 3.055551 −0.000232
2 7.241200 −0.755956 3.810742 −0.198375 3.784482 −0.199752
3 8.171217 −3.254166 4.119051 −0.790028 4.095577 −0.794556
4 8.440526 −6.281492 4.354528 −1.442520 4.333805 −1.449417
5 8.072643 −9.572815 4.538158 −2.109405 4.520027 −2.117867
6 7.123813 −13.012669 4.686027 −2.776909 4.670234 −2.786299

TABLE 3. Comparison of the first five reso-
nance points for the potential (34) for ` = 0.
They (Exact) were obtained using the rigorous
Jost-matrix function method [6] and the Padé ap-
proximation (Approx.) with the number of fitting
points N = 30 evenly distributed over the interval
1 6 E 6 10 (the units are such that µ1 = µ2 = h̄ =
1.

` no. ReE ImE

0 1 Exact 4.768197 −0.000710
Approx. 4.768197 −0.000710

2 Exact 7.241200 −0.755956
Approx. 7.241200 −0.755956

3 Exact 8.171217 −3.254166
Approx. 8.171199 −3.254177

4 Exact 8.440526 −6.281492
Approx. 8.431643 −6.261440

5 Exact 8.072643 −9.572815
Approx. 8.846481 −9.353923

CONCLUSION

In this paper, we propose a method by which one can obtain an approximate analytic
expression for the S-matrix valid at complex energies when the S-matrix is given at a set
of points on the real axis of the energy. Such an expression can be used, for example,
to locate the poles of the multichannel S-matrix which may correspond to bound and
resonant states of a system. Compared to the previous description [1] we have here
extended it from single-channel case to multichannel problems. The only requirements
for this method is a table of the S-matrix data along the real E-axis for which rational-
fraction analytical continuation to complex energy plane has been proven to converge
rapidly.

The numerical examples show that the proposed method is stable and accurate. With
just a few fitting points, it reproduces the bound states and the most significant reso-
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FIGURE 3. The exact positions of the S-wave resonance poles (dots) on the complex energy plane for
the potential (34), and the corresponding poles of the Padé approximation (open circles). The correspond-
ing fitting points on the ReE-axis are indicated by vertical bars.

nances to the accuracy that is sufficient for any practical purposes.
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Abstract. We present a method for treatment of three charged particles. The proposed method has
universal character and is applicable both for bound and continuum states. A finite rank approxi-
mation is used for Coulomb potential in three-body system Hamiltonian, that results in a system
of one-dimensional coupled integral equations. Preliminary numerical results for three-body atomic
and molecular systems like H−, He, ppµ and other are presented.
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INTRODUCTION

The quantum three-body problem emerges in various fields of physics, and different
methods of treating it are developed. However, there are no universal methods able to
solve it in case of charged particles in the continuum. These problem is important in
atomic and molecular physics and in nuclear astrophysics.

The main purpose of the work is to develop a procedure applicable to treatment of
three charged particles in continuum. One of the ways to construct it is to make an
approximation on operator level, i.e. in the Hamiltonian of three-body system under
consideration. After that any boundary conditions can be used. The idea of our work
was inspired by earlier paper of N. Aronszajn et al, who introduced the so-called method
of intermediate Hamiltonians. This method was applied to calculate lower bounds for
eigenvalues of some differential operators. N. W. Bazley and D. W. Fox applied it to
He atom and other physical systems [1, 2]. They constructed sequence of intermediate
Hamiltonians using finite rank operators. These operators are defined in the whole
space of full Hamiltonian. In opposite to that we will apply finite rank approximation
in a subspace of the three-body system Hamiltonian, namely in the angular space of
hyperspherical variables. This results in a system of coupled one-dimensional integral
equations.

In the following sections we review a method of intermediate Hamiltonians, hyper-
sperical coordinates, derive system of integral equations and report the results of calcu-
lations.

62



HYPERSPHERICAL COORDINATES

There are different ways to formulate the three-body problem. We use hyperspherical
coordinates, and in this section we give a brief review of them. Complete theory, deriva-
tions etc can be found, e.g., in [5].

We start with the three-body system Hamiltonian:

H =−
3

∑
i=1

1
2mi

∇2
i + ∑

i< j
Vi j(ri− r j), (1)

where i enumerates different particles and corresponding sets od Jackobi coordinates.is
a numbri is a position vector of the i-th particle. The scaled Jackobi coordinates are
introduced as follows:

xi =
[

m jmk

m j +mk

]1/2

(r j− rk)

yi =
[

mi(m j +mk)
m1 +m2 +m3

]1/2 (
−ri +

m jr j +mkrk

m j +mk

) (2)

and the Hamiltonian (1) takes the form

H =−1
2

∇2
x−

1
2

∇2
y +V, (3)

where V = V13 +V23 +V31 — a sum of pair potentials. Taking x and y in spherical
coordinates (x,y)→ (x,θ1,ϕ1,y,θ2,ϕ2), one obtains:

Ĥ =− 1
2x2

∂
∂x

(
x2 ∂

∂x

)
− 1

2x2 ∆Ω1 −
1

2x2
∂
∂x

(
x2 ∂

∂x

)
− 1

2y2 ∆Ω2 +V, (4)

Now let us introduce hyperspherical variables:

x = ρ cosα, y = ρ sinα (5)

Here ρ is hyperradius, α — hyperangle. Hamiltonian expressed in terms of this variables
has the form:

Ĥ =−1
2

(
∂ 2

∂ρ2 +
5
ρ

∂
∂ρ

)
− 1

2ρ2

[
∂ 2

∂α2 +4cot2α
∂

∂α
+

1
cos2 α

∆Ω1 +
1

sin2 α
∆Ω2

]
+V

(6)
Angular part of a kinetic energy operator is the hypermomentum operator:

K̂ =
∂ 2

∂α2 +4cot2α
∂

∂α
+

1
cos2 α

∆Ω1 +
1

sin2 α
∆Ω2, (7)

and its eigenfunctions are hyperspherical harmonics:

Y l1m1l2m2
K (α,Ω1,Ω2) = cl1l2

K (sinα)l1(cosα)l2P
(l1+ 1

2 ,l2+ 1
2 )

n (cos2α)Yl1m1(Ω1)Yl2m2(Ω2),
(8)
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where

cl1l2
K =

[
2n!(K +2)(n+ l1 + l2 +1)!

Γ(n+ l1 +3/2)Γ(n+ l2 +3/2)

]1/2

. (9)

Let us consider system of three particles with masses m1,m2,m3 and charges q1,q2,q3.
The Coulomb potential has the form:

V (x,y) =
b1

x1
+

b2

x2
+

b3

x3
, (10)

where bi =
√

m jmk
m j+mk

q jqk. In hyperspherical coordinates:

V (ρ,Ω) =
1
ρ

(
b1

cosα1
+

b2

cosα2
+

b3

cosα3

)
(11)

Here αi — hyperangles corresponding to different sets of Jacobi coordinates.

FINITE RANK OPERATORS

Finite rank operators are widely used in different problems of mathematical physics.
They allow one to reduce complexity of a problem and proceed to its solution. E.g.,
in [4] finite-rank operator was used to describe nuclear part of full Hamiltonian in a
problem of low energy π− 3He scattering.

N. W. Bazley and D. W. Fox used finite rank operators to calculate lower bounds
of eigenvalues of Schrödinger eqution [1, 2]. Let us shortly review the method of
intermediate Hamiltonians they used.

We suppose that full Hamiltonian H can be presented as a sum of H0, that has
known eigenvalues and eigenfunctions, and a positively definite H ′. The exactly solvable
Hamiltonian H0 is assumed to have ordered discrete energy levels E0

1 ≤ E0
1 ≤ ... below

its continuum spectrum. The corresponding eigenfunctions are ψ0
1 , and we have

H0ψ0
i = E0

i ψ0
i . (12)

Since H = H0 +H ′, where H ′ is positively definite, H0 ≤H and E0
1 ≤ E1. Thus, the full

Hamiltonian H and H0 are linked by a sequence of intermediate Hamiltonians:

H0 ≤ Hk ≤ Hk+1 ≤ H. (13)

To construct the Hamiltonians Hk, we introduce a system of k linearly independent
functions p1, p2, ..., pk. The set of functions p1, p2, ... is defined in the whole space of
definition of the Hamiltonian H. Projection of some wavefunction ϕ on these functions
is given by

Pkϕ =
k

∑
i=1

αk pk (14)
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The projection Pk increases with k:

0≤ 〈ϕ|Pkϕ〉 ≤ 〈ϕ|Pk+1ϕ〉 ≤ 〈ϕ|ϕ〉 (15)

0≤ 〈ϕ|H ′Pkϕ〉 ≤ 〈ϕ|H ′Pk+1ϕ〉 ≤ 〈ϕ|H ′ϕ〉 (16)

From Eq. (16) we can see that H ′Pk ≤ H ′Pk+1 ≤ H ′, and we now define intermediate
Hamiltonian as

Hk = H0 +H ′Pk (17)

It is important to to emphasize that the finite rank operator Hk acts on the functions
p1, p2, ... in the same way as full Hamiltonian H:

Hk|i〉= H|i〉, i = 1, . . . ,k (18)

This is the main property of a some finite rank operators which we use in our work.
Following this idea, we construct such an operator in the angular space of definition of

operator (7). The Coulomb potential in hyperspherical variables has the form V (ρ ,Ω) =
1
ρ f (Ω), where f (Ω) is the angular part of potential. We use a finite rank approximation
in it. Namely, the function f (Ω) is replaced by a finite rank operator:

f (Ω)→ f̂ N =
N

∑
i, j

f |ϕi〉di j〈ϕ j| f (19)

Here ϕ j are some auxiliary functions defined in angular space, di j = 〈ϕi| f |ϕ j〉−1 —
inverse matrix element.

FORMALISM

Here we derive a system of coupled one-dimensional integral equations using the finite
rank approximation. Wavefunction of an arbitrary system in bound state satisfies the
Schrödinger equation:

(H0 +V )|Ψ〉= E|Ψ〉 (20)

Here H0 is kinetic energy, V — interaction potential. This equation can be written in
integral form using free Green function:

|Ψ〉= (E−H0)−1V |Ψ〉=−GEV |Ψ〉 (21)

Let us rewrite it in coordinate representation:

Ψ(R) =−
∫

dR′GE(R,R′)V (R′)Ψ(R′), (22)

where R = (x,y) = (ρ ,Ω), and use the Coulombic potential: V (R) = 1
ρ f (Ω). We obtain

integral equation for the wavefunction Ψ in hyperspherical coordinates:

Ψ(ρ,Ω) =−
∫

ρ ′5dρ ′dΩ′GE(ρ,ρ ′;Ω,Ω′)
1
ρ ′

f (Ω′)Ψ(ρ ′,Ω′) (23)
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Using finite rank operator (19) instead angular part of potential f (Ω), we obtain repre-
sentation for the wavefunction Ψ:

Ψ(ρ,Ω) =−
N

∑
i, j

∫
ρ ′4dρ ′dΩ′GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′)di j C j(ρ ′), (24)

where C j(ρ ′) =
∫

dΩ′′ϕ j(Ω′′)Ψ(ρ,Ω′′).
In order to obtain a system of integral equations for coefficients Ci(ρ), we use integral

operator:
∫

dΩϕk(Ω) f (Ω) . . .

Ck(ρ) =−
N

∑
i, j

∫
dρ ′ρ ′4

∫
dΩdΩ′ϕk(Ω) f (Ω)GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′)di j C j(ρ ′)

(25)
or

Ck(ρ) =−∑
i, j

∫
dρ ′Mki(ρ,ρ ′)di j C j(ρ ′), (26)

Mki(ρ,ρ ′) = ρ ′4
∫

dΩdΩ′ϕk(Ω) f (Ω)GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′) (27)

The Green function GE(R,R′) has quite a simple form in Jacobi coordinates; an
analytical expression for it is derived in [6]. However, it has the simplest form in the
momentum representation. To exploit this we insert full sets of hyperspherical functions
∑ |Y l1l2

KLM〉〈Y l1l2
KLM| into the matrix element 27 and use a hyperspherical representation for

a wavefunction of free particles:

GE(x,y) =
∫∫ dpdq

(2π)6 exp(ipx+ iqy)
2m/h̄2

p2 +q2 +κ2 ,

We obtain
1

(2π)3 eiqx+ipy =
1

(κρ)2 ∑
KLMl1l2

iKJK+2(κρ)Y l1l2
KLM(Ωρ)Y l1l2

KLM(Ωκ),

where κ2 = p2 + q2. This allows us to derive the three-body free Green function in
hyperspherical representation:

GK
E (ρ,ρ ′) =

∫∫
Y l1l2

KLM(Ω)GE(R,R′)Y l1l2
KLM(Ωκ)dΩdΩ′ =

=
∫ ∞

0

κ dκ
(2π)3

(
ρ ′

ρ

)2

JK+2(κρ)JK+2(κρ ′)
1

κ2 +2mE
=

=
1

(2π)3

(
ρ ′

ρ

)2
{

IK+2(κ0ρ)KK+2(κ0ρ ′), 0≤ ρ ≤ ρ ′

KK+2(κ0ρ)IK+2(κ0ρ ′), 0≤ ρ ′ ≤ ρ

Here Jn(x), In(x) and Kn(x) are Bessel function and modified Bessel functions of first and
second kind, respectively. Now we can calculate the kernels of integral equations ((25)):

Mki(ρ ,ρ ′) = ∑
KLMl1l2

GK
E (ρ ,ρ ′)〈ϕk| f |Y l1l2

KLM〉〈Y l1l2
KLM| f |ϕi〉 (28)
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We derived a system of coupled one-dimensional integral equations (26). Now one need
to calculate the kernel and solve this system numerically. At this stage of treating the
Coulomb three-body problem the finite rank approximation makes it sufficiently easier.

CALCULATION AND RESULTS

We constructed the finite rank operator (19) using hyperspherical functions. They have
been chosen for convenience, but one can use some other complete set of orthonormal-
ized functions defined in angular space.

It is important to mention that the representation (25) for solution of Schrödinger
equation is not a well known hyperspherical expansion. One can see it from the definition
of Ci(ρ).

We performed calculations using finite rank operators constructed on 1, 3 and 6
auxiliary functions. In calculation the kernel (28) we should summate an infinite number
of terms, but we stopped at values of the hypermomentum K equal to 6, 10 and 14. In
order to solve integral equations, the variables ρ and ρ ′ were discretized with 100 mesh
points.

We calculated binding energies of the ground state of such systems: He, H−, H+
2 , ppµ

and ddµ . Results of these calculations are presented in Table 1 and 1. Table 1 shows
a convergence of calculated binding energies with Kmax for finite rank operator(19)
constructed on 6 auxiliary functions, Table 2 shows a convergence of calculated binding
energies with the rank of operator N, when the summation stops at Kmax = 14.

TABLE 1. Calculated and exact binding energies, eV

Eex,eV Kmax = 6 Kmax = 10 Kmax = 14

H− 14.34 18 16.2 15.6

He 79.0 95 87 85

H+
2 16.25 10,1 13.5 15.1

ppµ 2782 1690 2290 2332

ddµ 2988 1845 2195 2654

TABLE 2. Calculated and exact binding en-
ergies, eV

Eex,eV N = 1 N = 3 N = 6

H− 14.34 18.2 17.1 15.6

He 79.0 95 89 85

H+
2 16.25 11 13.7 15.1

ppµ 2782 1850 2101 2332

ddµ 2988 1990 2480 2654

The exact energies are taken from [7].
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CONCLUSION

Binding energies of different three-body Coulombic systems were calculated within a
finite rank approximation method. The finite rank approximation is made in an angular
part of potential in three-body Hamiltonian. This method was tested on some of these
systems earlier in [3]. The results obtained shows it can be useful for solving the
Coulombic three-body problem.

Calculations were performed at various conditions, i.e. different dimension of the
finite rank operator, limit of inner summation, number of mesh points. Results demon-
strate reasonable agreement with known values of binding energies. Accuracy of calcu-
lation can be improved by takin into account more terms.

We suppose the proposed method will be also applicable to three charged particles in
continuum.

REFERENCES

1. N. W. Bazley, D. W. Fox, Phys. Rev. 124, 483-492 (1961).
2. N. W. Bazley, Phys. Rev. 120, 144–149 (1960).
3. V. B. Belyaev, I. I. Schlyk, Nucl. Phys. A 790, 792–795 (2006).
4. V. B. Belyaev, J. Wrzecionko, M. I. Sakvarelidze, Phys. Lett. B 83, 19–21 (1979).
5. C. D. Lin, Phys. Rep. 257, 1–83 (1995).
6. A. M. Badalyan, Yu. A. Simonov, Yad. Fiz. 3, 1032–1047 (1966).
7. A. Martin, J.-M. Richard, T. T. Wu, Phys. Rev. A 46, 3697–3703 (1992).

68



SESSION: NUCLEAR STRUCTURE

Chairpersons: R.G. Nazmitdinov and W.D. Heiss





Fragmentation and scales in nuclear giant
resonances

W. D. Heiss∗, R. G. Nazmitdinov† and F. D. Smit∗∗

∗National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute
of Theoretical Physics, University of Stellenbosch, 7602 Matieland, South Africa

†Department de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain and
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980

Dubna, Russia
∗∗iThemba LABS, PO Box 722, Somerset West 7129, South Africa

Abstract. We propose a general approach to characterise fluctuations of measured cross sections of
nuclear giant resonances. Simulated cross sections are obtained from a particular, yet representative
self-energy which contains all information about fragmentations. Using a wavelet analysis, we
demonstrate the extraction of time scales of cascading decays into configurations of different
complexity of the resonance. We argue that the spreading widths of collective excitations in nuclei
are determined by the number of fragmentations as seen in the power spectrum. An analytic
treatment of the wavelet analysis using a Fourier expansion of the cross section confirms this
principle. A simple rule for the relative life times of states associated with hierarchies of different
complexity is given.
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INTRODUCTION

Nuclear Giant Resonances (GR) have been the subject of numerous investigations over
several decades [1]. Some of the basic features such as centroids and collectivity (in
terms of the sum rules) are reasonably well understood within microscopic models [2, 3].
However, the question of how a collective mode like the GR dissipates its energy is one
of the central issues in nuclear structure physics.

According to accepted wisdom, GRs are essentially excited by an external field
through a one-body interaction. It is natural to describe these states as collective 1p-1h
states. Once excited, the GR progresses to a fully equilibrated system via direct particle
emission and by coupling to more complicated configurations (2p-2h, 3p-3h, etc). The
former mechanism gives rise to an escape width, while the latter yields spreading
widths (Γ↓). An understanding of lifetime characteristics associated with the cascade
of couplings and scales of fragmentations arising from this coupling (cf [4, 5, 6, 7])
remains a challenge. Recent high energy-resolution experiments of the Isoscalar Giant
Quadrupole Resonance (QR) [8, 9, 10] provide new insights into this problem.

It has been shown by Shevchenko et al. [8] that the fine structure of the QR observed
in (p, p′) experiments is largely probe independent. Furthermore, a study of the fine
structure using wavelet analysis [11, 12, 13] reveals energy scales [9, 10] in the widths
of the fine structure displaying a seemingly systematic pattern, as can be seen in Figs.8
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and 9 of Ref.[10]. The power spectrum patterns vary with the structure of the nucleus
being studied. They are obtained by summing the wavelet coefficients (an integrated
overlap of the mother wavelet and the excitation energy spectrum) onto the wavelet
energy-scale axis. While the physical meaning of the results of such an analysis is still
being debated, we try here to offer a general explanation. However, we do not embark
on a specific microscopic analysis, but rather make use of general and well-established
techniques of many-body theory. Gross effects due to nuclear deformation and coupling
to the continuum [5] are not discussed; we rather focus on the decay of the QR into
configurations of various complexity.

SELF-ENERGY AND CROSS SECTION

To proceed we use the Green’s function approach. A central role is played by the self-
energy whose finer structure is imparted upon the Green’s function via the solution of
Dyson’s equation which reads [14]

Gα,β (ω) = G0
α,β (ω))+G0

α ,γ(ω)Σγ,γ ′(ω)Gγ ′,β (ω) (1)

which is solved by

Gα,β (ω) = ((G0
α,β (ω))−1−Σα,β (ω))−1, (2)

where we assume G0(ω) = δα ,β /(ω− ε) to be diagonal in the basis α,β , . . . while the
complicated pole structure of G(ω) is generated by that of the self-energy Σα,β (ω). The
pole structure of G carries over to the scattering matrix given by

Tα,β (ω) = Σα,β (ω)+Σα ,β ′(ω)G0
β ′,α ′(ω)Tα ′,β (ω) (3)

= Σα,β (ω)+Σα,β ′(ω)Gβ ′,α ′(ω)Σα ′,β (ω) (4)

from which a cross section ∼ |Tα,α(ω)|2 is obtained.
Within the excitation energy range of the QR the nucleus has a high density of compli-

cated states of several tens of thousands per MeV and even more for heavy nuclei. These
many states appear in the self-energy as poles in the complex energy plane close to the
real axis. The small widths imply they are long-lived states and traditionally classed as
compound states. The simpler intermediate structure of the excitation is expressed by
the substantial fluctuations of the corresponding residues associated with the poles of
the self-energy Σ(ω) [15]. In other words, while the individual pole positions of Σ(ω)
are virtually unstructured [16], it is the variation of the corresponding residues that bears
all the information about intermediate structure. Note that our approach differs from a
traditional microscopic calculation in that from the outset we start from a random distri-
bution of pole terms representing compound states. Traditional microscopic approaches
cannot address such finer structures [17].

We assume that the QR, being a collective 1p-1h state, decays via a cascade pro-
gressing through (2p-2h)-, (3p-3h)-configurations and so forth to the eventual compound
states. In turn, each of the intermediate states (including the initial QR) can either de-
cay directly to the ground state or via some more complicated intermediate state. Below

72



0 0.25 0.5 0.75 1

re
si

d@
ar

b.
un

.D

pole position

0 0.25 0.5 0.75 1

re
si

d@
ar

b.
un

.D

pole position

FIGURE 1. Schematic illustration of the residues of the self-energy: for 5 (top) and 10 (bottom)
intermediate states. The heights of each of the 300 bars which are situated at the real parts of the poles of
the self-energy illustrate the relative variation of the residues. The randomisation is clearly discernible.

we will show that it is this mixture that is seen in the cross section and extracted by
wavelet analysis, and it is the variety and cascading complexity of states that invokes
the structure of the residues of the poles of the self-energy. Of importance to note is that
the number of states available within the energy domain of the QR increases with its
complexity: for example, five (2p-2h)-states, ten (3p-3h)-states, down to several thou-
sand compound states (the numbers six or eleven should be taken as examples without
claim for quantitative correctness). Moreover, the corresponding life times are expected
to increase in line with their increasing complexity, which is in accordance with their
decreasing spreading widths (below we come back to this particular aspect of scaling).

As a typical case study we investigate here a wavelet analysis of a simulated cross
section that results from a particular input for the self-energy. Since arbitrary units
are used, we concentrate on the energy interval [0,1] and use for the pole position
ε = 0.5− i0.5 of the single pole of G0 (see Eq.(2)). The number of compound states is
assumed to be 300; this is of course much less than the experimental level density in the
region of a QR for a medium or heavy nucleus, but it suffices for our demonstration. The
real parts of the pole positions are assumed to be randomly distributed with a uniform
distribution of the mean distance 1/300; the imaginary parts are randomly distributed in
the interval [0.004,0.007].

For illustration we consider as a specific example four different sets of residues of the
self-energy. The self-energy reads

Σ(ω) =
300

∑
k=1

rk

ω−ωk
(5)

where each residue rk is the sum of four subsets; each subset is distributed by a
Lorentzian with specific widths γi, i = 1, . . . ,4 around the four sets of positions pi≈ 1/ fi.
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FIGURE 2. Simulated cross section in arbitrary units and power spectrum (right). The abscissa of the
cross section is the unit energy interval.

Formally it reads

rk =
4

∑
i=1

hi,k, hi,k = s
fi

∑
j=1

γ2
i

( k
300 − j · pi)2 + γ2

i
(6)

with an overall strength s = 10−5. This order of magnitude is based on the mean value
of the widths of the compound states being about 10−4 to 10−5 times smaller than the
Γ↓ (γi).

The poles at the complex positions ωk occur in the lower ω-plane with ω being the
energy variable. If only i = 1 was to occur with f1 = 5, a typical pattern of the residues
h1,k is illustrated by the top of Fig.1; similarly for f2 = 10 with h2,k being illustrated by
the bottom of Fig.1. The inclusion of further terms would simply add additional peaks
to the pattern. In the case presented below we have chosen f3 = 16 and f4 = 28 totalling
to 5+10+16+28 additional peaks (not easily visualised, but beautifully discernible in the
final analysis). We stress again that the four values fi were chosen for demonstration
purposes and that more than four - or other values - are equally suitable.

These arbitrary numbers used in the example chosen describe particular fragmenta-
tions of the QR into altogether 5, 10, 16 and 28 states of increasing complexity. The
widths γi giving rise to the Lorentzian shape of the residues are in reality determined by
the product of the density of the compound states and the coupling of the i-th group to
the compound states. The widths are the spreading widths of the respective states con-
sidered [15]. As the complexity increases with label i we shall assume γ1 > γ2 > γ3 > γ4.
In the simulation we endow each γi with a random fluctuation with mean value γi/4.
As stated above we refrain from specifying a microscopic structure causing the residue
pattern assumed for the self-energy; below it becomes clear that guidance comes from
experiment.

We also assume that each set fi is uniformly distributed over the whole energy interval.
This is similar in spirit to the assumption used in the local scaling dimension approach
[6]. The positions pi in Eq.(6) are set to be ∼ 1/ fi which spreads the actual j · pi
positions equidistantly over the whole interval with j running from 1 to fi; however,
we endow them with a small random fluctuation with mean value pi/8. Note that the
random fluctuation of widths and positions generate a mild degree of asymmetry in the
energy interval [0,1], resulting in slightly different patterns in the intervals [0,0.5] and
[0.5,1]. The near equality of the positions, that is - apart from slight random fluctuations
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FIGURE 3. Power spectrum from the cross section in Fig 2. The energy values δ refer to the wavelet
parameters.
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FIGURE 4. Power spectrum for a particular asymmetric situation discussed in text. The dotted curve
originates from a scan of the interval [0,0.5], the dashed curve from [0.5,1] and the solid curve from the
total interval. Note that the peak on the far left is virtually absent in the dashed curve while fully present
in the dotted curve. Units as in Fig.2 and 3.

- the regular pattern of the various fragments as illustrated in Fig.1, is basically dictated
by experimental findings: if there is no near regular pattern there will be no discernible
structure in the power spectrum of the wavelet analysis. However, we shall return below
to the case where regular patterns may occur only in a smaller portion of the interval.

The first obvious choice for the widths assumes simply γi = 1/(2 fi) yielding the
simulated cross section shown in Fig.2 (below a precise analytic expression confirming
the 1/(2 fi)-law is given). A variation of such a choice is rather significant, we shall
return to this aspect in detail.

THE WAVELET ANALYSIS

The analysis using a Morlet-type mother wavelet

Ψ(ω,δ ) =
1√
δ

cos
k(ω−ω0)

δ
exp−(ω−ω0)2

2δ 2 (7)

is used to calculate the coefficients

C(δ ,ω0) =
∫ dσ(ω)

dΩ
Ψ(ω,δ )dω (8)
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FIGURE 5. Power spectrum: dependence of height at the maximum on spreading width. The curve
with the lower value of the most left maximum is identical to the one in Fig.3., while the higher peak is
due to a decrease of its spreading width or an increase of its life time. Units as in Fig.2 and 3.

from which the power spectrum

Psp(δ ) =
∫
|C(δ ,ω0)|2 dω0

is obtained as a function of the scaling parameter δ . It is shown in Fig.3; if not indicated
otherwise we use the value k = 6 for the wave number of the mother wavelet. There is
in fact a k-dependence of the positions of the maxima of the power spectrum which is
given in analytic terms below. A contour plot of C(δ ,ω0) is illustrated in Fig.6.

In Fig.3 we clearly discern the four maxima that are produced by the four different
values fi of the number of fragmentations. In fact, the fragmentation into f1 = 5 produces
(for k = 6) the maximum at δ max

1 = 1/ f1 = 0.2; similarly, the other three maxima occur
at δ max

i = 1/ fi, i = 2,3,4. This is one of our major findings:
the maxima of the power spectrum occur at

δ max
i ≈ k/(2π) · I/ fi

with I being the interval of the whole range of the QR considered and fi the number of
fragmentations. The factor k/(2π) originates from the analytic expression given in (7)
below. Here we note that this result does not depend on whether we use a real wavelet
as in Eq.(7) or its complex version where the cosine-function is replaced by its complex
counterpart cos(.)+ isin(.).

The asymmetry found in some experimental data can obviously be accounted for by
our analysis. We refer to cases where the analysis yields a pattern in the first half of
the whole resonance being different from that in the second half, or in principle for
any subdivision of the whole resonance. For illustration, we take f4 = 14 while leaving
all other parameters unchanged. In this way the total of 28 maxima of the residues r f4
are confined to only 14 within the left half of the interval. The effects are clearly seen
in Fig.4. Note that the positions of the maxima still remain unchanged. This type of
asymmetry is clearly discernible in Fig.9 of Ref.[10]: from the two-dimensional wavelet
transform the wavelet power would give a similarly different pattern when taken at
different portions of the whole interval.
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The folding (integration) of the cross section with the Morlet wavelet has to be
done numerically. In order to obtain an analytic expression relating the number of
fragmentations fi to the positions of the maxima of the power spectrum, we consider
an expansion of a cross section into a Fourier series

dσ(ω)
dΩ

= ∑
m

cm sin(mπω/I)+∑
m

c′m cos(mπω/I). (9)

An intermediate structure manifests itself, if a few terms in Eq.(9) are appreciably
stronger than the others. For Fig.2 the terms with c10 ≈ c20 ≈ c32 ≈ c56 (and similarly
for the primed coefficients) are dominant; of course, terms for different m-values also
occur but are smaller by roughly an order of magnitude or more (here our analysis does
not focus on m ≤ 4: while giving larger contributions such values would correspond to
δ ≥ 0.5 and represent gross and bulk structure). Performing analytically the wavelet-
transform of each term in Eq.(9) (see Appendix), one obtains an analytic evaluation of
the positions and heights of the maxima of the power spectrum. For each sin(mπx)−
or cos(mπx)−term the positions of the local maxima in the power spectrum turn out to
be

Maxm =
k +

√
2+ k2

2mπ
I. (10)

For k = 6 (and the unity interval I) this yields 0.2, 0.1, 0.0625 and 0.036 for m =
10,20,32 and 56, respectively, as verified in Fig.3. Note that a different choice of k
moves the positions of the local maxima, yet the ∼ 1/m law prevails. The expression
(10) provides an obvious tool to be used to ascertain the number of fragmentations when
the maxima are determined from an analysis of experimental data. Clearly, the number
fm of fragmentations introduced above is related to the value m in Eq.(9) by m = 2 fm.

Furthermore, an increased value of k can resolve a peak in the power spectrum that
is caused by two near values of fi. In fact, the distance between adjacent maxima (say
m = 17 and m = 18) roughly doubles when k is doubled.

While - for fixed k - the 1/ fi dependence of the maxima of the power spectrum is
an important finding, even more significant is the result that the values at the maxima
(the heights) also obey the same 1/ fi-law if the corresponding Fourier coefficients are
about equal. Indeed, a straight line can be drawn through the maxima in Fig.3 since
the four values cm, m = 10,20,32,56 are about equal. We recall that, for example,
sin(10πx) generates fk = 5 peaks of a width γk = 1/(2 fk) in the energy (unit) interval
for the cross section. This can be exploited in a realistic analysis: a deviation from this
straight-line-rule signals effectively a deviation from the spreading width being assumed
to be 1/(2 fi). This is illustrated in Fig.4 where the spreading width 1/(2 f4) has been
decreased to 1/(2.8 f4). As a result, the value of the first peak becomes enhanced. Since
the spreading width is related to the life time of the states, we conclude: the life times
are proportional to fi if the heights of the maxima lie on a straight line; an increased
(decreased) height signals an even longer (shorter) life time.

In this context we note that the number of peaks and troughs in Fig.5 on the horizontal
lines matches exactly the values of the fi: five on the top, further down ten, then sixteen
and twenty eight on the bottom. The actual values of these peaks and troughs determine
the heights of the bumps in the power spectrum, that is the information about the life
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FIGURE 6. Wavelet contour plot of cross section shown in Fig.3. The symbols δ and ω0 refer to the
Morlet wavelet parameters used in Eq.(7). The (positive) maxima are in light shading and the (negative)
minima in dark. For the top pattern the contours range from 0.4 to −0.4.

times of the respective fragmented states. A similar wavelet transform obtained from
experimental data is presented in Figs.8 and 9 in Ref.[10]; note that our schematic ’in
vitro’ illustration is of course much more symmetric.

CONCLUSION

While in experiments the chaotic nature of the nucleus usually shows at higher excitation
energies [16], the pertinent structure revealed in the analysis may come as a surprise.
We are of course familiar with order in the nuclear many body system as shown in
shell effects and simple collective states. The fragmentations of the QR may be due
to a different quality: it could be a manifestation of self-organising structures [18,
19, 20]. Indeed, the life time of increasingly complex configurations of the QR is
increasing toward the compound states and the ground state. There is no generally
accepted definition of conditions under which the self-organising structures are expected
to arise. We may speculate that in the case considered here, once the nuclear QR state
is created, it is driven to an unstable hierarchy of configurations (metastable states) by
quantum selection rules which connect these different complex configurations due to
internal mixing. This problem needs of course a dedicated study on its own and is beyond
the scope of the present paper.

We summarise the major points of our findings: (i) the position of the peaks in the
power spectrum indicate the number of fragmentations of a particular intermediate
state; the more complex states lie to the left of the simpler states (see Eq.(10)); (ii)
the resolution of poorly resolved peaks can be improved by a higher value of k; (iii) the
values (heights) at the peaks are related to the spreading widths, implying knowledge
about the life times: if they lie on a straight line, the life times are proportional to the
number of fragmentations, if they lie above (below) the straight line the corresponding
life times are longer (shorter). Finally, we mention that a pronounced gross structure
of the experimental cross section as found in lighter nuclei, would have no effect upon
our findings. In fact, such gross structure had to occur at the far right end (values of δ
appreciably larger than those used in the literature) of the power spectrum.
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APPENDIX

The wavelet transform of each term in Eq.(9) is for the sinmπω-term (with mπ = a)

1√
δ

∫ 1

0
dxsinaxcos

k(x− ε)
δ

exp−(x− ε)2

2δ 2 =−
√

π
2

√
δ

2
exp(−(aδ + k)2

2
) ·

ℑ(exp(−iaε)Erf
1+ iaδ 2− ε + iδk√

2δ
)+ℑ(exp(−iaε +2aδk)Erf

1+ iaδ 2− ε− iδk√
2δ

)

+ℑ(exp(iaε)Erf
−iaδ 2− ε− iδk√

2δ
)+ℑ(exp(iaε +2aδk)Erf

−iaδ 2− ε + iδk√
2δ

)

and similar for the cosmπω-term where the ℑ is replaced by ℜ. Here Erf denotes the
error function. The positions of the maxima in Fig 3 are the zeros of the derivative with
respect to δ of the square of the expression above (we assume that the maxima are
isolated). This amounts to finding the zeros of the derivative. The derivative reads

−1+ exp(2iaε)
16δ 3/2

{
i
√

2πδ exp(−k2 +a2δ 2 +2iaε
2

)
(

exp(akδ )(−1+2aδ (−k +aδ ))ℑErf(
ε + iδ (k−aδ )√

2δ
)

+ exp(−akδ )(−1+2aδ (k +aδ ))ℑErf(
ε− iδ (k +aδ )√

2δ
)
)

− 4exp(−ε(ε +2iδ (k +2aδ ))
2δ 2 )(1+ exp(

2iεk
δ

)(−i(1+ exp(2iaε))ε

+ a(−1+ exp(2iaε))δ 2
}

.

This expression has three terms: two within the big round brackets and a third before
the closing curly bracket. For the parameter range of interest, owing to the exponential
factors only the first term within the round brackets contributes substantially while the
other two terms are smaller by many orders of magnitude. This first term, in turn, is
governed by the factor (−1+2aδ (−k+aδ )). It vanishes, and thus the whole expression,
for δ = (k +

√
2+ k2)/(2a) = (k +

√
2+ k2)/(2mπ) being the expression given in

Eq.(10).
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Abstract. One of the major problems in numerical solution of coupled differential equations is the
maintenance of linear independence for different sets of solution vectors. A novel method for solu-
tion of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations
in a way that is appropriate to avoid usual numerical instabilities associated with components of the
wave function in their classically forbidden regions. Applications of the new method for nuclear
structure calculations within the hyperspherical harmonics approach, are given.

Keywords: Schröfinger equation, solution of coupled differential equations, hyperspherical har-
monics
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INTRODUCTION

Systems of coupled Schrödinger equations often appear in problems of quantum me-
chanics and applications to nuclear physics, quantum chemistry etc. A variety of meth-
ods has been developed to solve systems of coupled radial Schrödinger equations. A
widespread approach consists of two steps. First, sets of linear independent solutions are
calculated and then, exploiting the linearity of the coupled equations, a suitable combi-
nation of different sets with the required boundary conditions is found. A major problem
in numerical solution of the coupled equations is the difficulty of maintaining the linear
independence of the solution vectors. There always exists a region of radii where some
components of the wave function are classically forbidden and others not. The com-
ponents with negative radial kinetic energy will in general consist of an exponentially
growing and an exponentially decreasing part. If the integration is continued through a
classically forbidden region, the exponentially growing components of the wave func-
tion in the most strongly closed channels increase faster and soon start to dominate the
entire wave function matrix. The small components become insignificant on the scale of
the relative accuracy of the calculation. Eventually different solutions become linearly
dependent and, thus, useless for finding linear combinations with required boundary
conditions. In the classically allowed region, the uneven growth of the components does
not occur, since the components are mainly oscillating. But all problems involve inte-
gration through at least one classically forbidden region, and instability from developing
nearly dependent solutions causes serious numerical inaccuracy. This difficulty arises
from the natural properties of solutions rather then from any particular method for their
construction.
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To maintain linear independence, different stabilizing transformations during propa-
gation were suggested [1, 2, 3, 4, 5]. After several propagation steps these regularization
procedures can be applied to re-establish the linear independence of the columns in the
wave function matrix. Usually these transformations are rather awkward and tedious.
Another approach to overcome the difficulty is to use a so-called invariant imbedding
method, in which the propagated quantity is not the wave function matrix ΨΨΨ = {ψin(r)}
but rather its logarithmic derivative ΨΨΨ′ΨΨΨ−1 [6, 7] or its inverse matrix RRR = ΨΨΨΨΨΨ′−1 [8].
These methods found broad applications, especially for large coupled-channels calcula-
tions. In other approaches radial wave functions are expanded in terms of orthonormal
basis functions, chosen to account for some dynamical features in the most effective
way. Then a solution of the differential equations is reduced to a set of linear equations
for expansion coefficients. Such an approach, for example, is realized in program [9].

In the past three decades, a lot of research (see, for example, [10, 11] and references
therein) has been performed in the area of numerical integration of the Schrödinger equa-
tion. The main goal is to construct numerical methods that are both accurate and compu-
tational efficient. The development of these methods is still an active subject. Here, we
suggest a novel method for solution of radial Schrödinger equations. It consists in rear-
rangement of coupled equations in a way that is appropriate to avoid the usual numerical
instabilities associated with components of the wave function in their classically forbid-
den regions. Applications of the new method to nuclear structure calculations within the
hyperspherical harmonics approach, are given.

THEORY

Consider the system of the N coupled radial Schrödinger equations
(

d2

dr2 +
2mE
h̄2 −Li(Li +1)

r2

)
ψin(r) =

N

∑
j=1

Vi j(r)ψ jn(r) (1)

where E is a total energy, Li is an angular orbital momentum in the channel i. The
first index of ψin(r) denotes the i-th component of wave functions (i = 1, . . . , N) while
the second index n marks different linear independent solutions. The N×N matrix of
coupling potentials Vi j(r) is assumed symmetric, i. e. Vi j(r) = V ji(r). Note that potentials
include the factor 2m/h̄2 and have dimension f m−2. In general, the system (1) of the
N linear differential equations of second order has 2N linearly independent solutions
called the fundamental ones; N solutions have a regular behaviour at the origin while
the N others have irregular behaviour. Any solution of the system (1) can be written as
a linear combination of these fundamental solutions. Only solutions that satisfy definite
boundary conditions imposed at the origin and infinity, have physical meaning. At the
origin the boundary condition demands that wave functions have a regular behaviour

ψin(r → 0)→ 0 (2)

while at infinity the boundary condition depends on the sign of energy E. For bound
states (E < 0) the problem is of the eigenvalue type and for any given eigenvalue (En)
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the solution of (1) decays exponentially for large values of r

ψin(r → ∞)→ exp(−kn r) (3)

where kn =
√

2m | En | /h̄2. For continuum states (E > 0) the solutions oscillate at infinity

ψin(r → ∞)→ H(−)
Li

(k r)δin−H(+)
Li

(k r)Sin (4)

where k =
√

2m | E | /h̄2. Here H(±)
Li

(x) = GLi(x) ± ıFLi(x) are the Coulomb functions
of index Li [12] describing the in- and out-going spherical waves. FLi(x) and GLi(x)
are regular and irregular Coulomb functions, respectively, ı =

√−1. The Sin is the S-
matrix element for the outgoing amplitude in channel i from an incoming plane wave in
channel n.

Our aim is to find solutions of system (1) satisfying boundary conditions (2,3,4) for
radius changing from zero to some maximal value r = rmax. The general method to solve
the boundary value problem for coupled equations (1) is to construct a set of linear in-
dependent solutions and after that find a linear combination of these solutions which
satisfies the required asymptotic behaviour. Numerical integration within a long radial
interval tends to accumulate errors and induces a loss of linear independence of solu-
tions. Thus it is convenient to divide the radial space into nonoverlapping domains by
points bI , 0 = b0 < b1 < . . . < bmax = rmax and solve differential equations separately
in each of the intervals. Then the partial solutions are assembled into a global solution
that is continuous and smooth across the whole region and satisfies the given boundary
conditions. The transparent and straightforward way to perform this task is to reformu-
late the coupled differential equations (1) as a system of coupled integral equations. It
has also the advantage that integral equations contain the explicit structure of required
solutions.

Integral formulation

Boundary value problems for a system of ordinary differential equations (1) can
be reformulated as a system of Fredholm integral equations. For technical reasons
it is simpler to solve Volterra integral equations with variable upper or lower limits.
System of Volterra equations corresponds to the solution of the initial value problem. If
only open channels exist then solutions of Fredholm and Volterra systems are different
by a constant matrix. Since the total normalization is not important all solutions are
acceptable. If closed and opened channels coexist, then solutions of Volterra equations
can not substitute the solutions of Fredholm systems within the entire range of a radial
variable. Numerical solutions of Volterra equations with variable upper limit are regular
at the origin but at large radii they will have exponentially increasing components in
closed channels. Numerical solutions of Volterra equations with variable lower limit can
contain exponentially decreasing components in closed channels but can not guarantee
the regular behaviour of wave functions at the origin. A solution of this dilemma is
well known and commonly used. It consists of a combination of solutions for both type
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of Volterra equations: wave functions and their first derivatives are matched at some
intermediate radius. Thus the obtained wave functions are solutions of the original
system of Schrödinger equations (1) for all radii and satisfy the required boundary
conditions. If at least one open channel exists then a matching procedure is always
possible. Let N = Nop + Ncl , where Nop (Ncl) is the number of open (closed) channels.
Then, there are N regular solutions for outward integrations of Volterra equations with
variable upper limit, while the number of linear independent solutions for Volterra
equations with variable lower limit is larger and equal to N + Nop = Ncl + 2Nop. This
number is composed of the Ncl sets with exponentially decreasing components in closed
channels, Nop sets with components oscillating asymptotically like regular functions Fi
or Nop sets with components oscillating like irregular Gi. The extra freedom in number
of linear independent solutions always allows to match them and define simultaneously
necessary S-matrix elements. When only closed channels exist, i. e. for bound state
problems, the number of linear independent solutions for inward and outward integration
is the same and equal to N. Then matching procedure is only possible at discrete values
of the energy which are energies of bound states, respectively.

Consider the following systems of Volterra integral equations with variable upper or
lower limit r

ψin(r)− 1
k

∫ r

0
dr′

(
fi(k r)gi(k r′)−gi(k r) fi(k r′)

) N

∑
j=1

Vi j(r′)ψ jn(r′) = δin fi(k r) (5)

ψin(r)+
1
k

∫ ∞

r
dr′

(
fi(k r)gi(k r′)−gi(k r) fi(k r′)

) N

∑
j=1

Vi j(r′)ψ jn(r′) = δin gi(k r) (6)

where δin is the Kronecker symbol, and where the Green’s function
( fi(k r)gi(k r′)−gi(k r) fi(k r′))/k is composed of two linear independent solutions
fi(k r) and gi(k r) of the free Schrödinger equation

(
d2

dr2 +
2mE
h̄2 −Li(Li +1)

r2

)
fi(k r) = 0 (7)

Free solutions are normalized by demanding that the Wronskian relation W ( fi,gi) =
fi(x)g′i(x) - f ′i (x)gi(x) = -1. They have explicit representation via Bessel functions [12]
of the first Jν and second Yν kinds for E > 0

fi(x) =
√

πx
2

JLi+1/2(x) ; gi(x) =−
√

πx
2

YLi+1/2(x) (8)

and modified Bessel functions Iν and Kν for E < 0

fi(x) =
√

xILi+1/2(x) ; gi(x) =
√

xKLi+1/2(x) (9)

The functions fi(k r) and gi(k r) have regular and irregular behaviour at the origin,
respectively. Hence solutions of Volterra systems (5) and (6) also define sets of N
linear independent solutions of the Schrödinger equations (1) with regular or irregular
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behaviour at the origin, respectively. Below we consider only system (5), for system (6)
a derivation can be made in a similar way.

Labelling the wave function ψin(r) in the interval I as ψ I
in(r) and using the equations

(5) we can write

ψ I
in(r) − 1

k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)ψ I
jn(r

′)

= fi(k r)AI
in−gi(k r)BI

in (10)

where the constants AI
in and BI

in are equal to

AI
in = δin +

1
k

∫ bI−1

0
dr′gi(k r′)∑

j
Vi j(r′)ψ jn(r′)

BI
in =

1
k

∫ bI−1

0
dr′ fi(k r′)∑

j
Vi j(r′)ψ jn(r′) (11)

The wave functions ψ I
in(r) in the interval I can be written as linear combinations of

unknown functions yI
ip(r) and zI

ip(r) [13]

ψ I
in(r) =

N

∑
p=1

(yI
ip(r)AI

pn− zI
ip(r)BI

pn) (12)

Substituting decomposition (12) into equations (10) we obtain the integral equations in
the I-th interval for functions yI

in(r) and zI
in(r)

yI
in(r)−

1
k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)yI
jn(r

′) = δin fi(k r) (13)

zI
in(r)−

1
k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)zI
jn(r

′) = δin gi(k r) (14)

According to the driving terms on the right hand side of equations (13) - (14) the func-
tions yI

in(r) and zI
in(r) can be called the regular and irregular solutions in the interval

I. They form a complete system of 2N linear independent solutions of the Schrödinger
equations (1) within the radial interval I. Substituting the decomposition (12) in equa-
tions (11), simple recurrence relations for the coefficients AI

in and BI
in can be obtained

AI
in = AI−1

in +
N

∑
p=1

(
(gV y)I−1

ip AI−1
pn − (gV z)I−1

ip BI−1
pn

)

BI
in = BI−1

in +
N

∑
p=1

(
( fV y)I−1

ip AI−1
pn − ( fV z)I−1

ip BI−1
pn

)
(15)
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with initial values A1
in = δin, B1

in = 0 and I ≥ 2. The coefficients of AI−1
pn and BI−1

pn in (15)
are given by

(gV y)I−1
ip =

1
k

∫ bI−1

bI−2

dr′gi(k r′)
N

∑
j=1

Vi j(r′)yI−1
jp (r′)

(gV z)I−1
ip =

1
k

∫ bI−1

bI−2

dr′gi(k r′)
N

∑
j=1

Vi j(r′)zI−1
jp (r′)

( fV y)I−1
ip =

1
k

∫ bI−1

bI−2

dr′ fi(k r′)
N

∑
j=1

Vi j(r′)yI−1
jp (r′)

( fV z)I−1
ip =

1
k

∫ bI−1

bI−2

dr′ fi(k r′)
N

∑
j=1

Vi j(r′)zI−1
jp (r′) (16)

Thus the original problem (1) is reduced to obtaining a complete set of regular yI
in(r) and

irregular zI
in(r) solutions in the interval I. From these solutions, using decomposition

(12), global solutions ψ I
in(r) can be obtained. Note that the yI

in(r) and zI
in(r) in the I-

th interval are calculated independently of solutions on other intervals. Below we will
present the detailed derivation only for regular solutions yI

in(r). For irregular solutions
zI

in(r) similar relations can easily be obtained.
The Green’s function constructed from the fi(k r) and gi(k r) solutions of the free

Schrödinger equation (7) was used explicitly in (13) and (14). In reality, any potentials
can be added into equation (7) to obtain potential-modified functions fi(k r) and gi(k r)
in the I-th interval. These potentials must however be subtracted from the diagonal
potentials Vii(r) in equations (13) and (14), respectively. For example, the diagonal
potentials Vii themselves may be used for fi(k r) and gi(k r) calculations. This allows
to account for a sizeable part of the correlations induced by the interactions before an
attempt is made to solve the system of coupled equations. But now we lose knowledge
about analytical properties of fi(k r) and gi(k r) functions. As a reasonable compromise,
the value of the diagonal potential at any fixed point within the I-th interval (for example,
bI−1 - the beginning of interval I) can be used to represent the interval. Then functions
fi(ki r) and gi(ki r) will still be solutions of the free Schrödinger equation (7) but with
new (scaled) energies Ei = E - (h̄2/2m)Vii(bI−1) and, correspondingly, with new linear
momenta ki =

√
2m|Ei|/h̄. Then we get new integral equations for calculations of local

regular solutions

yI
in(r) − 1

ki

∫ r

bI−1

dr′
(

fi(ki r)gi(ki r′)−gi(ki r) fi(ki r′)
) N

∑
j=1

V I
i j(r

′)yI
jn(r

′)

= δin ( fi(ki r)ai−gi(ki r)ci) (17)

where V I
i j(r) = Vi j(r) - δi jVii(bI−1) and where the constants ai and ci in the driving term

are fixed by the requirement that yI
in(r) must satisfy the initial values built into equations
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(13): yI
in(bI−1) = δin fi(k bI−1) and yI′

in(bI−1) = δin k f ′i (k bI−1)

ai =
k
ki

f ′i (k bI−1)gi(ki bI−1)− fi(k bI−1)g′i(ki bI−1)

ci =
k
ki

f ′i (k bI−1) fi(ki bI−1)− fi(k bI−1) f ′i (ki bI−1) (18)

When all ki = k, the equations (17) reduce to equations (13). In equations (17) the channel
energies Ei depend on values of diagonal potentials Vii(bI−1) and thus may have different
signs, therefore different channels may be locally open or closed.

The integral equations (17) define an explicit structure for regular solutions yI
in(r)

yI
in(r) = fi(ki r)α I

in(r)−gi(ki r)β I
in(r) (19)

where the unknown functions α I
in(r) and β I

in(r) are solutions of the following system of
coupled integral equations

α I
in(r) = δinai +

1
ki

∫ r

bI−1

dr′gi(ki r′)
N

∑
j=1

V I
i j(r

′)
(

f j(k j r′)α I
jn(r

′)−g j(k j r′)β I
jn(r

′)
)

β I
in(r) = δinci +

1
ki

∫ r

bI−1

dr′ fi(ki r′)
N

∑
j=1

V I
i j(r

′)
(

f j(k j r′)α I
jn(r

′)−g j(k j r′)β I
jn(r

′)
)

(20)

Now we return to the differential formulation of the respective equations.

Differential formulation

The system of integral equations (20) for the functions α I
in(r) and β I

in(r) is equivalent
to a system of the 2N coupled ordinary differential equations of the first order

dα I
in(r)
dr

=
1
ki

gi(ki r)
N

∑
j=1

V I
i j(r)

(
f j(k j r)α I

jn(r)−g j(k j r)β I
jn(r)

)

dβ I
in(r)
dr

=
1
ki

fi(ki r)
N

∑
j=1

V I
i j(r)

(
f j(k j r)α I

jn(r)−g j(k j r)β I
jn(r)

)
(21)

with initial values α I
in(bI−1) = δinai and β I

in(bI−1) = δinci. Multiplying the first equation
by fi(ki r) and the second by gi(ki r), we see that these equations have the special prop-
erties, fi(ki r)dα I

in(r)/dr = gi(ki r)dβ I
in(r)/dr. Equations (21) also allow to investigate

explicitly the reasons that catalyze loss of linear independence for different solution sets.
We have to estimate the qualitative behaviour of the regular fi(x) and irregular gi(x)

functions. For closed channels, the regular (irregular) functions (9) are monotonously
increasing (decreasing) with increasing arguments. Both functions never equal zero at
finite arguments. For open channels there are two regions where functions fi(x) and
gi(x) (8) have qualitatively different behaviour. At small arguments they have monotonic
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behaviour similar to that for closed channels. At large arguments they oscillate like
cosine or sine functions. Instead of fi(x) and gi(x) functions in the region of oscillations
it is convenient to introduce the modulus Mi(x) and phase θi(x) functions [12]

Mi(x) =
√

f 2
i (x)+g2

i (x) ; fi(x) = Mi(x) cosθi(x) ; gi(x) = Mi(x) sinθi(x) (22)

Modulus Mi(x) is never equal to zero. From the Wronskian relation it also follows that
θ ′i (x) = −1/M2

i (x).
The presence of centrifugal barriers is natural for dynamics described by Schrödinger

equations. It is possible to account for them analytically by introducing regular fi(kir)
and irregular gi(kir) solutions of the free Schrödinger equations (7). Explicit centrifu-
gal barriers drop out and their influence on the full solution is described by the fi(kir)
and gi(kir) functions in the equations (21). The regular and irregular functions of dif-
ferent orders are mixed in the equations. These functions have quantitatively different
behaviour, some may be rather small while others are very large. The difference in ab-
solute values can easily reach many orders of magnitude. Under such circumstances it
is difficult to keep an acceptable level of the accuracy in numerical solution of coupled
equations. The lack of accuracy leads to loss of the linear independence of different
solutions. A possible way out is to make a rearrangement of coupled equations such
that the different behaviour of free solutions will be minimized. There exist only three
suitable combinations: the product of free functions fi(x)gi(x) and their logarithmic
derivatives f ′i (x)/ fi(x) and g′i(x)/gi(x). After rearrangement the necessary requirements
to the numerical accuracy for solutions of the new system of coupled equations become
significantly weaker. Such rearrangement of equations is just the main idea of this arti-
cle.

To illustrate our point, Figure (1) shows the regular fi(x) and irregular gi(x) functions
for closed (a) and open (b) channels with Li = 3/2, 19/2 and 39/2 represented by the
solid, dash and dash-dot lines, respectively. (In the hypersherical harmonics method
these values of Li correspond to calculations with hypermoment K = 0, 8 and 18,
respectively.) We see that changes in scales for absolute values of free solutions can
easily span twenty orders of magnitude. (Figure (1) shows variations from 10−10 to
10+10). Variations of logarithmic derivatives for these functions, on the other hand,
shown in Figure (2), span only a few (2 - 3) orders of magnitude.

Now we assume that in the I-th interval the first N0 channels have free functions fi(x)
and gi(x) with arguments x lying in the region of monotonic behaviour. All closed and
a part of the open channels are included into this number. The rest, channels from N0
+ 1 to N are open, and arguments of free functions are in the region of oscillations. In
the first N0 channels the absolute values of free solutions may vary over a wide scale
while they are restricted to about unity in the last (N - N0) ones. We will transform the
system of equations (21) in such a way that free solutions enter into the new system of
equations as logarithmic derivatives with rather restricted variations in absolute scale.
For functions with arguments in the region of oscillations the logarithmic derivatives
become infinite at the points where the functions have zeros. This is a reason for special
selection of such channels. Thus instead of the relation (19) for a regular solution yI

in(r)
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FIGURE 1. The regular fi(x) and irregular gi(x) solutions of the free Schrödinger equations for neg-
ative (a) and positive (b) energies. The solid, dash and dash-dot lines correspond to calculations with
hypermoments K = 0, 8 and 18, respectively.

we use a more explicit decomposition for different components i

yI
in(r) = fi(ki r)α I

in(r)−gi(ki r)β I
in(r), 1≤ i≤ N0 (23)

= Mi(ki r)
(
cos(θi(ki r))α I

in(r)− sin(θi(ki r))β I
in(r)

)
, N0 +1≤ i≤ N

Let us first consider the equations for channels i ≤ N0. Differentiating functions
yI

in(r), using equations (21) and the Wronskian relation for free solutions we can get
the following set of equations for i≤ N0

dyI
in(r)
dr

= ki
f ′i (ki r)
fi(ki r)

yI
in(r)+ γ I

in(r) (24)

dγ I
in(r)
dr

= −ki
f ′i (ki r)
fi(ki r)

γ I
in(r)+

N

∑
j=1

V I
i j(r)yI

jn(r)
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FIGURE 2. Absolute values of the logarithmic derivatives of regular fi(x) (solid line) and irregular
gi(x) (dash line) solutions of the free Schrödinger equations for negative (a) and positive (b) energies for
hypermoments K = 0, 8 and 18. The dash-dotted lines show moduli (22) M0(x) and M8(x) of free solutions
in the region of oscillations.

where the function γ I
in(r) = ki β I

in(r)/ fi(ki r). For i > N0 the following set of equations
can be obtained

dyI
in(r)
dr

= ki
M′

i(ki r)
Mi(ki r)

yI
in(r)+ γ I

in(r) (25)

dγ I
in(r)
dr

= −ki
M′

i(ki r)
Mi(ki r)

γ I
in(r)+

N

∑
j=1

V I
i j(r)yI

jn(r)−
k2

i

M4
i (ki r)

yI
in(r)

where γ I
in(r) = ki

(
sin(θi(ki r))α I

in(r)+ cos(θi(ki r))β I
in(r)

)
/Mi(ki r). Initial values for

functions yI
in(r) and γ I

in(r) are equal to

yI
in(bi−1) = δin fi(k bI−1) ; 1≤ i≤ N

γ I
in(bi−1) = δin fi(k bI−1)

(
k

f ′i (k bI−1)
fi(k bI−1)

− ki
f ′i (ki bI−1)
fi(ki bI−1)

)
; 1≤ i≤ N0

γ I
in(bi−1) = δin fi(k bI−1)

(
k

f ′i (k bI−1)
fi(k bI−1)

− ki
M′

i(ki bI−1)
Mi(ki bI−1)

)
; N0 < i≤ N (26)
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For cases when ki = k and i ≤ N0 the initial values for functions γ I
in(bi−1) are equal to

zero. Finding functions yI
in(r) and γ I

in(r) we obtain simultaneously the derivatives yI′
in(r)

via equations (24) and (25).
The systems of equations (24) - (25) include the bare potentials V I

i j(r) without the
multiplications on functions fi(ki r) and gi(ki r) occurring in equations (21). The free
solutions appear in the new equations (24) - (25) only as logarithmic derivatives. Thus
huge differences in scales of absolute values that may exist for functions fi(x) and gi(x)
with different indices i are significantly reduced, to relatively mild variations of absolute
values for logarithmic derivatives. Hence requirements on accuracy of numerical meth-
ods applied for solving the coupled radial Schrödinger equations become essentially
weaker and the loss of linear independence for different solution sets due to insufficient
numerical accuracy, is greatly reduced.

Expressions (24) - (25) correspond to calculations of regular solutions yI
in(r). For

irregular solutions zI
in(r) we can proceed analogously and get for i ≤ N0 the following

system of equations

dzI
in(r)
dr

= ki
g′i(ki r)
gi(ki r)

zI
in(r)+η I

in(r) (27)

dη I
in(r)
dr

= −ki
g′i(ki r)
gi(ki r)

η I
in(r)+

N

∑
j=1

V I
i j(r)zI

jn(r)

and for i > N0 equations parallel to those of (25) (by just changing notations: yI
in(r)→

zI
in(r) and γ I

in(r)→ η I
in(r)). Initial values for functions zI

in(r) and η I
in(r) are equal to

zI
in(bi−1) = δingi(k bI−1) ; 1≤ i≤ N

η I
in(bi−1) = δingi(k bI−1)

(
k

g′i(k bI−1)
gi(k bI−1)

− ki
g′i(ki bI−1)
gi(ki bI−1)

)
; 1≤ i≤ N0

η I
in(bi−1) = δingi(k bI−1)

(
k

g′i(k bI−1)
gi(k bI−1)

− ki
M′

i(ki bI−1)
Mi(ki bI−1)

)
; N0 < i≤ N (28)

We see that if in the formulas above for yI
in(r), the regular functions fi(x) are replaced

by the irregular functions gi(x), we get expressions for calculations of irregular solutions
zI

in(r). The new systems (24) and (27) show explicitly why regular and irregular solutions
behave in qualitatively different way. The differences of respective equations for i ≤
N0 are in the terms that include the logarithmic derivatives of free solutions. Since
f ′i (x)/ fi(x) and g′i(x)/gi(x) have comparable absolute values and different signs they
force solutions to change in opposite directions. For components i > N0 in the regions
of oscillations both solutions yI

in(r) and zI
in(r) obey equations where only the modulus

function Mi(ki r) of free solutions appears at the place of fi(ki r) and gi(ki r).
In practice, it is convenient to scale solutions yI

ip(r) and zI
ip(r) by factors fp(k bI−1)

and gp(k bI−1), respectively, for channels p where the functions fp(k bI−1) and
gp(k bI−1) have monotonic behaviour (while we do not scale solutions for channels p
where their absolute values oscillate around unity)

yI
ip(r) = ỹI

ip(r) fp(k bI−1) ; ÃI
pn = fp(k bI−1)AI

pn (29)
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zI
ip(r) = z̃I

ip(r)gp(k bI−1) ; B̃I
pn = gp(k bI−1)BI

pn

Then, wave functions ψ I
in(r) (see (12)) on interval I can be written as linear combinations

of the ỹI
ip(r) and z̃I

ip(r) functions

ψ I
in(r) =

N

∑
p=1

(ỹI
ip(r) ÃI

pn− z̃I
ip(r) B̃I

pn) (30)

where the initial values for functions ỹI
ip(r) and z̃I

ip(r) at the radius r = bI−1 are reduced
to the Kronecker symbol. The integrals in (16) can be scaled in similar ways, for

example (gV y)I
ip = gi(k bI−1) ˜(gV y)

I
ip fp(k bI−1) etc. Thus, the recurrence relations (15)

for coefficients AI
in and BI

in are transformed, and read

ÃI
in =

fi(k bI−1)
fi(k bI−2)

{
ÃI−1

in + fi(k bI−2)gi(k bI−2)
N

∑
p=1

(
˜(gV y)

I−1
ip ÃI−1

pn − ˜(gV z)
I−1
ip B̃I−1

pn

)}

B̃I
in =

gi(k bI−1)
gi(k bI−2)

{
B̃I−1

in + fi(k bI−2)gi(k bI−2)
N

∑
p=1

(
˜( fV y)

I−1
ip ÃI−1

pn − ˜( fV z)
I−1
ip B̃I−1

pn

)}

This scaling gives significant reduction of the absolute value variations within radial
interval I for all functions and coefficients in the formulas above.

Matching and normalization

For bound state case (E < 0) we have two sets of the N linear independent solutions of
systems (5) and (6), regular ψreg

in (r) and irregular ψ irr
in (r), respectively. Wave functions

ψreg
in (r) are regular at the origin while ψ irr

in (r) vanish at infinity. We demand that at some
(matching) point rm a linear combinations of wave functions and derivatives for both
sets become equal to a each other

N

∑
n=1

ψreg
in (rm)λn =

N

∑
n=1

ψ irr
in (rm)µn

N

∑
n=1

ψreg ′
in (rm)λn =

N

∑
n=1

ψ irr ′
in (rm)µn (31)

Here {λn} and {µn} are unknown mixing coefficients that must be found from solving
the homogeneous system of 2N linear equations (31). A solution exists only if the
determinant of the system constructed from wave functions and derivatives equals to
zero. This may only happen at a discrete value of the energy E, which is the energy
of a bound state. Hence we have a procedure searching for the energy of bound states.
First, the energy intervals, where the determinant changes sign, are defined. Then the
search for zero of the determinant within the energy interval gives the bound state
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energy. Knowing sets of solutions for this energy we can arbitrarily fix one of the mixing
coefficients (say by putting it equal to unity) and the rest of them can be found by solving
the inhomogeneous system of (2N− 1)-equations obtained from (31). Finally a bound
state wave function, obtained as linear combination of ψreg

in (r) and ψ irr
in (r), is normalized

to have unit norm.
For continuum states (E > 0) the asymptotic form (r → ∞) for linear combinations of

radial wave functions from system (5) may be written as

N

∑
p=1

ψip(r)λpn = Fi(k r)δin +Gi(k r)Kin

N

∑
p=1

ψ ′
ip(r)λpn = k

(
F ′i (k r)δin +G′

i(k r)Kin
)

(32)

Solutions of this system allow us to define the KKK-matrix elements Kin and matrix of
mixing coefficients {λpn} for normalization of linear independent sets of radial functions
ψip(r). The KKK-matrix is related to the scattering SSS-matrix appearing in formula (4) by
the equation

SSS = (1+ ıKKK)(1− ıKKK)−1 (33)

This procedure gives the SSS (or KKK) matrix and N independent sets of radial wave functions
with necessary asymptotic behaviour.

DISCUSSION

The centrifugal potentials are an important part of the dynamics described by the system
of coupled radial Schrödinger equations and usually singled out explicitly. Numerical
solutions of Schrödinger equations in regions where motions are under barriers lead to
mixing of large and small components that coexist at these conditions. When accuracy
of numerical integration is not enough for tracing of different solutions, such mixing
may lead to loss of linear independence. This is one of the major problems in numerical
solutions of coupled system of equations. The method suggested here, tries to remedy
this, and consists of two steps. First, the radial domain is split into finite intervals. A
complete set of fundamental solutions has to be obtained at every interval independently
on solutions in other intervals. The second step consists in a rearrangement of equations
to a set which is less prone to developing numerical instabilities. To this end, the second
order equations are reduced to a system of the first order equations. In mathematical text-
books on ordinary differential equations, the general method to transform second order
equations y′′ = F(x,y) into a double systems of first order equations is usually formu-
lated via introduction of new variables γ = y′ for the first derivative of solutions y. In our
scheme this general idea is developed further taking into account the specific structure of
Schrödinger equations. If the function f is a solution of the free Schröedinger equation
with centrifugal barrier then the special transformation γ = y′ - k ( f ′/ f )y accounts for
the influence of centrifugal barriers explicitly and in a most effective way. As the result,
centrifugal barriers drop out from the final system of first order differential equations,
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FIGURE 3. Different components of the 6He ground state wave function ψJπ
KLSlxly(ρ). The solid, dash,

dot and dash-dot lines show components with quantum numbers (K,L = S, lx = ly) equal to: a) (0, 0, 0),
(2, 0, 0), (2, 1, 1) and (4, 0, 2), respectively; and b) (20, 1, 9), (20, 1, 7), (20, 1, 5) and (20, 1, 3),
respectively.

and their influence on dynamics appears only via the free solutions appearing as loga-
rithmic derivatives. Since variations of the magnitude of logarithmic derivatives for free
solutions are essentially milder, compared to the variations of their absolute values, the
conditions for developing numerical instabilities are strongly suppressed.

TABLE 1. Root mean square (r.m.s.) values of hyperradii (〈ψJπ
KLSlxly |ρ2|ψJπ

KLSlxly〉1/2) and

weights of different components of the 6He ground state wave function. The r.m.s. hyperra-
dius for the whole ground state wave function is equal to 5.55 fm.

K, L = S, lx = ly 0 0 0 2 0 0 2 1 1 4 0 2 20 1 9 20 1 7 20 1 5 20 1 3

r.m.s. (fm) 6.80 5.40 5.22 5.75 12.36 12.36 12.36 12.36

weight, % 4.1 77.0 14.5 0.6 5.10−4 2.10−4 6.10−5 1.10−5

Below we will demonstrate an application of the new method to solution of a concrete
physical problem. A good example is the calculation of the ground state wave functions
for light nuclei within cluster few-body models [14]. The method of hyperspherical har-
monics is very convenient for description of three-body structure of two-neutron halos
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that appears in some nuclei, like the Borromean nuclei 6He, 11Li, etc, at the very edge of
nuclear stability (see recent works [15, 16] and references therein for more detailed dis-
cussion of successes and challenges of this approach). The relative motion of three clus-
ters is described in the space of hyperspherical coordinates (ρ , Ω5) and the nuclear wave
function ΨJπ is decomposed on a basis of hyperspherical harmonics ϒKν(Ω5) [14], ΨJπ

= ∑Kν ψJπ
Kν(ρ)ϒKν(Ω5). Here ρ , Ω5 and K are the hyperradius, hyperangles and the hy-

permoment, respectively. The index ν denotes all quantum numbers which are necessary,
in addition to K, for a complete identification of the basis. If the Schrödinger equation
for wave function ΨJπ is multiplied by hyperspherical harmonics ϒKν(Ω5) from the left
and integrated over hyperangles Ω5, a system of coupled hyperradial differential equa-
tions similar to (1) is obtained. In this system the effective orbital angular momenta Li =
Ki + 3/2, where Ki is hypermoment in the i-th channel, and matrix elements Vi j(ρ) of the
all intercluster interactions in the basis of hyperspherical harmonics, depend only on the
hyperradius ρ . More details about development of the model and applied interactions
can be found in [17]. As an example, we will consider the calculation of the 0+ ground
state wave function of the 6He nucleus. All possible hyperharmonics up to a value of K
= 20 are included in the wave function decomposition, giving a system of Schrödinger
equations with ∼ 70 coupled channels. A few wave function components with lowest
and highest values of hypermoment K are shown in Figures (3(a)) and (3(b)), respec-
tively. Table (1) also gives weights of the respective components and also shows their
r.m.s. values of the hyperradius ρ . It is interesting to note the different localization (in
hyperradius ρ) of components with different values of the hypermoment K, hence of the
generalized orbital angular momentum. Components with larger values of K are more
strongly suppressed at small values of the hyperradius, while their maxima are shifted
to larger ρ . The r.m.s. values of the hyperradius for each hyperharmonic component are
for the largest K values more then two times the value for small K. Note that weights of
components that peak far out in the exterior region are rather small. This behaviour is
in accordance with intuitive expectations about the role that (centrifugally suppressed)
components with high K values should play in the wave function decomposition.

Some questions, important for practical applications, are not discussed in this article.
For example, what numerical methods are suited for solving the new system of equa-
tions, what partitions of whole radial domain into smaller parts are the most effective
(the formulation above was for arbitrary radial intervals) and so on. It is clear that these
questions can be answered in different ways and practical prescriptions should take into
account the specific features of the problem and should be optimized for any concrete
model. To cover these issues, the physical models must be explicitly formulated and thus
the scope of this article would have to be essentially expanded. Since our main aim was
to present the general idea of the method, these important practical questions will have
to be illuminated elsewhere.

CONCLUSION

The dynamics of a system of coupled radial Schrödinger equations may be very versa-
tile and complicated due to coupling potentials, but also carry general features due to
universality of the kinetic energy operator. These universal properties are contained in
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different centrifugal barriers and lead to appearance of difficulties in numerical solu-
tions of coupled equations in regions where the motion for some channels is classically
forbidden. Such classically forbidden regions exist even in cases when coupling poten-
tials are absent, and solutions within such regions are described by Bessel functions with
known analytical properties. The absolute scales for free solutions may be very different.
Coupling potentials mix and modify free solutions with different absolute values when
they are propagated via forbidden regions. If numerical accuracy is not high enough,
the propagation leads to development of numerical instabilities in solution vectors. The
novel method suggested in this paper rearranges the coupled equations such that free
solutions only enter in combinations with minimal variations of absolute values. As a
result, the new system is less prone to develop numerical instabilities.
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Abstract. We present results for levels in 26Si (the mirror of nucleus 26Mg). The calculated gamma-
decay lifetimes and 25Al to 26Si spectroscopic factors together with experimental information on
the levels of excited states are used to determined the 25Al(p,γ)26Si reaction rates together with a
theoretical error on this rate based on the use of the USDA and USDB interactions.
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INTRODUCTION

The production mechanism and production site for the long-lived radioactive isotope
26Al has been of interest since the first indications of 26Al enrichment in meteoritic in-
clusions was observed [1]. Understanding its origin would serve as a unique signature
for nucleosynthesis in novae and supernovae. The main reaction sequence leading to
26Al is 24Mg(p,γ)25Al(β+ + ν)25Mg(p,γ)26Al. At the high-temperature conditions ex-
pected for shell carbon burning and explosive neon burning the 25Al(p,γ)26Si reaction
becomes faster than the 25Al β decay. Since 26Si β decays to the short-lived 0+ state of
26Al, the long-lived (5+) state becomes depleted.

The properties of the states of 26Si required for the calculation of the 25Al(p,γ)26Si
reaction rate are the energies, Jπ values, proton-decay widths and gamma-decay widths
for levels above the proton decay threshold of 5.51 MeV. Experiments have established
the energy of some levels [2]. But there is uncertainty in their Jπ values and (based on
the known levels of 26Mg) many levels have not yet been observed. Theoretical input is
needed for the unobserved levels as well as the gamma and proton decay widths for all
of the levels.

Several advances are made in this paper. A new method is used to calculate the ener-
gies of levels in 26Si based upon the observed energies of levels of the analogue states

1 This work was supported by NSF grant PHY-0758099 and Joint Institute for Nuclear Astrophysics,
NSF-PFC

97



in 26Al and 26Mg, together with a calculation of the c-coefficient of the isobaric-mass-
multiplet equation (IMME). Also the gamma and proton decay widths are calculated
with several Hamiltonians to find their values and to estimate their theoretical uncertain-
ties.

This paper follows from recent work on the properties of (0d5/2,0d3/2,1s1/2) sd-shell
nuclei that include new Hamiltonians [3], a comprehensive study of electromagnetic
and beta-decay observables [4] and a comprehensive study of the properties of states in
26Mg [5]. For 26Mg assignments between theory and experiment for about 50 levels in
26Mg levels up to 10 MeV in excitation have been made, based on a comparison of the
experimental and theoretical electron scattering data cross sections and electromagnetic
transition strengths [5]. Because of the uncertainty in levels of 26Si, conventionally levels
are assigned on the basis of known levels in the mirror nucleus 26Mg. In the next section
we base these assignments on a new and improved method.

PROCEDURE FOR DETERMINING 26SI ENERGY LEVELS.

In the present work we make use of a novel method of calculating energy levels in 26Si
by using the measured binding energies of the T=1 partners and a theoretical value of
the c coefficient of the IMME [6]. Specifically

Bth(26Si) = 2B(26Al)−B(26Mg)+2cth. (1)

In Fig. 1 values of c from experiment and theory are compared for states in 26Si ordered
according to increasing experimental energy. The calculated values of c are obtained
from

cth = [Bth(26Si)−2Bth(26Al)+Bth(26Mg)]/2. (2)

The experimental values are obtained for states where all three members of the multiplet
are known. In general a good correspondence can be seen, the largest deviations being
less than 30 keV. There is considerable state dependence with c values ranging from 300
keV (for the 0+ ground state) down to 180 keV. Thus where data is not available in 26Si
to determine the c coefficient from experiment, a fairly reliable value can be obtained
from the theoretical calculation, and the binding energies for states in 26Si can be then
be obtained from Eq. 1, with experimental values of binding energy for corresponding
states in 26Al and 26Mg (when they are known in both).

Testing calculated excitation energies against known values in 26Si indicates that
corresponding levels can be obtained very accurately. This is shown in Fig. 2. The
calculated values can then be used as a guide to the correct spin/parity assignments
for measured levels in 26Si. Where no levels in 26Si are known, levels can be predicted.
Two such levels are indicated by crosses in Fig. 2.

The three levels that are just above the proton-decay separation energy of 5.51 MeV
and of potential importance for the capture reaction at low temperatures are indicated by
the arrows in Fig. 2. The Jπ of levels 16 and 17 are from the recent analysis of Wrede
[7] where arguments for the Jπ are based on all available data for these states.
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FIGURE 1. c coefficients from the isobaric mass multiplet equation (IMME: E = a+bTz +cT 2
z ) versus

state number (in order of increasing energy) in 26Si based on experimental energies (closed circles) and
energies calculated from USDB (crosses).

RESULTS FOR THE REACTION RATE

The resonant reaction rate for capture on a nucleus in an initial state i, NA < σv >res i for
isolated narrow resonances is calculated as a sum over all relevant compound nucleus
states f above the proton threshold [8]

NA < σv >res i= 1.540×1011(µT9)−3/2

×∑
f

ωγi f e−Eres/(kT ) cm3 s−1mole−1. (3)

Here T9 is the temperature in GigaK, Eres = E f − Ei is the resonance energy in the
center of mass system, the resonance strengths in MeV for proton capture are

ωγi f =
(2J f +1)

(2Jp +1)(2Ji +1)
Γp i f Γγ f

Γtotal f
. (4)

Γtotal f = Γp i f +Γγ f is a total width of the resonance level and Ji, Jp and J f are target
(25Al), the proton projectile (Jp = 1/2), and states in final nuclues (26Si), respectively.
The proton decay width depends exponentially on the resonance energy and can be
calculated from the proton spectroscopic factor C2Si f and the single-particle proton
width Γsp i f as Γp i f =C2Si f Γsp i f . The single-particle proton widths were calculated from
Γsp = 2γ2P(`,Rc) [9], with γ2 = h̄2c2

2µR2
c

and where the channel radius Rc was chosen to
match the width obtained from an exact evaluation of the proton scattering cross section
from a Woods-Saxon potential well and Q = 0.1−0.5 MeV. This simple model matches
exact calculations in the sd-shell to within about 10%, and has the advantage that it
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is fast and can be easily extrapolated to energies below 0.1 MeV where the scattering
calculation becomes computationally difficult. We use a Coulomb penetration code from
Barker [10].

The total rp reaction rates have been calculated for each of the interactions USD,
USDA and USDB. The Q values required were based on measured energies in 26Si,
and where they were not known values calculated from Eq. 1 were used. In the cases
with energies near 8 MeV and above where the energy of the T=1 state in 26Al was not
known, the energy of the state in 26Si is based on the shift obtained from the average of
five states in 26Mg near 8 MeV. Above 8 MeV we use the energies obtained with USDB
that includes the addition of about 170 states with Jπ ≤ 5+ up to 14 MeV in excitation
energy. The 0+ state at 6.461 MeV [2] is much lower than the predicted energy of the
fifth 0+ state with USDB (at 8.040 MeV). Theory predicts a 1+ state (at 6.620 MeV)
which has no experimental counterpart. We have used the theoretical results of the 1+

state for Γp and Γγ , instead of the 0+ state.
Fig. 3 shows the results for the capture rate obtained using the properties of 26Si.

The Γp and Γγ in this case are all based on the USDB Hamiltonian. The contribution
between log(T9)= −0.7 and 0.5 is dominated by the properties of the 3+ state at 5.915
MeV (number 16). Since Γγ < Γp the rate is determined by Γγ .

Above log(T9) of about 0.8 there will be contributions from negative parity states that
should be taken from Hauser-Feshbach statistical model estimates for negative parity
states [11].
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CONCLUSIONS

Because the calculation of the rp reaction rate for the 25Al(p,γ)26Si requires a knowledge
of the energy levels in 26Si, and many levels are uncertain, we have adopted a novel
method of determining levels which is partly based on experiment and partly on theory.
For the experimental part we used well-known binding energies of the T=1 analogue
states of 26Si. For the theoretical part we used calculated c coefficients of the isobaric
mass multiplet equation. We have demonstrated that a good correspondence between
theoretical and experimental values of the c coefficient for sd-shell nuclei exists. The
method leads to a reliable prediction of energy levels in 26Si. Using energy values
in 26Si constrained by our method for the Q values of the proton capture process on
25Al, we obtained the required spectroscopic factors and gamma decay lifetimes for rate
calculations from shell-model calculations using the new sd-shell interactions USDA
and USDB. For comparison we also used the older USD interaction.

Reaction rates as well as contributions from individual states in 26Si were then ob-
tained for the different interactions. The variation in the rates give some indication of
the theoretical error due to the use of different interactions and approximations for the
gamma widths, and amounts to overall error band of ± 40%. It can also be concluded
that using theoretical gamma widths from the mirror nucleus 26Mg instead of 26Si is an
adequate approximation. The effect of negative parity states should also still be consid-
ered.
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Abstract. In recent years a phenomenological core-cluster has been constructed with a Saxon-
Woods plus cubic Saxon-Woods term successfully predicts a reasonable number of observable phe-
nomenon which is related to alpha clustering. This model, however successful, lacks a microscopic
description of clustering phenomenon in nuclear systems. A fully microscopic formalism is pre-
sented, where the core and cluster baryon densities are derived from a relativistic mean field ap-
proach. The Lorentz covariant IA1 representation of the nucleon-nucleon interaction is folded with
the derived core and cluster densities. Theoretical predictions of the ground-state decay half-life
and positive parity energy band of 212Po are obtained with the relativistic mean field formalism and
compared to predictions made with the phenomenological Saxon-Woods plus cubic Saxon-Wood
core-cluster potential.

Keywords: nucleon-nucleon interaction, nuclear clustering
PACS: 21.45.-v, 21.60.Gx, 24.10.Jv, 27.80.+w, 23.60.+e

INTRODUCTION

Clustering phenomenon is one of the essential features of nuclear matter which has
been studied in great detail [1] in nuclear physics. In the physics of unstable nuclei,
clustering is one of the central areas of study. The cluster-core interaction lies central
to the identification of clustering in the nuclear matter and the description of clustering
phenomenon in various nuclei. During the last decade the modified phenomenological
Saxon-Woods plus Cubic Saxon-Woods cluster potential has successfully described
various phenomenon related to alpha clustering in light as well as even-even heavy
nuclei. In order to fully describe clustering in nuclear systems one would have to develop
a microscopic model of the phenomenon at the nucleon-nucleon scale.

At a more microscopic level the core-cluster interaction may be constructed from a
nucleon-nucleon interaction. Prior to the development of the Saxon-Wood plus Saxon-
Wood cubed potential form, such a microscopic interaction had been employed in
various forms to describe α cluster bound states in light nuclei [2] and the exotic decays
in heavy nuclei [3]. In recent years the microscopic M3Y-type potential model has been
extended to describe the alpha decay half-lives and the structure of heavy nuclei [4],
[5], and [6]. An application of the interaction to 94Mo and 212Po in particular suggests a
good amount of α clustering in these nuclei [7].

Relativistic mean field theory (RMFT) [8] has proven to be very successful in de-
scribing various properties of nuclear structure [9]. In this work a RMFT description of
clustering is presented and a comparison is made between the experimental ground-state
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decay half-lives and band energy spectral of 212Po and cluster model predictions of these
quantities which were obtained from the Saxon-Woods + cubic Saxon-Woods potential,
double folded M3Y nucleon-nucleon interaction [10] and the microscopic RMFT based
core-cluster interaction.

THE BINARY CLUSTER MODEL

This model is based on the preformed binary cluster model for which the decay half life
is given by

T1/2 = h̄
ln2
Γ

, (1)

where Γ represents the cluster decay width. For the breakup of a nucleus into the core
and cluster the decay width is defined by the relationship

Γ = P
h̄2

2µ
exp(−2

∫ r3
r2

k(r)dr)∫ r2
r1

[k−1(r)]dr
(2)

with P being the core-cluster preformation probability in the parent nucleus, µ is re-
duced mass of the core-cluster system and k(r) is cluster wavenumber. The wavenumber
depends on both the decay energy (E) and the core-cluster potential V (r), and is given
by

k(r) =
√

2µ
h̄2 |E−V (r)|. (3)

The energy band structure of the quasi-boundstates can be obtained from a combina-
tion of the Bohr-Sommerfeld (BS) quantization integral

∫ r2

r1

√
2µ
h̄2 [El−V (r)]dr = (2n+1)

π
2

(4)

and the Wildermuth condition G = 2n + l, where n is the number of nodes of the
radial wavefunction and l is the orbital angular momentum of the cluster state. G defines
the global quantum number of the core-cluster relative motion. The interaction between
the core and cluster, V (r), is described by the sum of the attractive nuclear cluster-
core potential U(r), the Coulomb potential between the two charged centres, and the
centrifugal potential.

CORE CLUSTER POTENTIALS

Phenomenological core-cluster interaction

The recently developed modified Saxon-Wood with an additional cubic Saxon-Woods
core-cluster phenomenological potential
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U(r) = U0

[
x

1+ exp
( r−R

a

) +
1− x

1+ exp
( r−R

3a

)3

]
(5)

is found to consistently reproduce not only the alpha and exotic decay half-lives, but
also correctly predict the level properties of nuclei in the rare earth and the actinide
region. This potential is parameterized in terms of the potential depth (U0), nuclear
radius (R), diffuseness (a), and x is a mixing parameter. Despite its success this potential
model tells us very little about the microscopic nature of clustering in closed shell nuclei.

Relativistic mean field construction of the cluster-core potential

In the IA1 representation of the nucleon-nucleon scattering amplitude [12]

F = FSIaIb +FV γµ
a γµb +FPSγ5

a γ5b +FT σ µν
a σµνb +FAγ5

a γµ
a γ5

b γµb, (6)

Lorentz covariance, parity conservation, isospin invariance, and the constraint that the
free nucleons are on the mass shell imply that the invariant NN scattering operator F
be written in terms of the five complex functions for pp and five for pn scattering. The
quantities λ L

i = (I,γµ ,γ5,σ µν ,γ5γµ) represent the five Dirac gamma matrices [13], and
the index (i = a,b) labels the two interacting nucleons. The index L labels the scalar,
vector, pseudo-scalar, tensor and axial terms.
Out of the Lorentz covariant McNeil, Ray and Wallace (MRW) construction of the
optical potential for nucleon-nucleus scattering [11], arises the double folded MRW
form which describes the cluster-core potential

UL(r,ε) =−4πip
Mc2

∫ d3q
(2π)3 eiq·rFL(q,ε)

∫
d3r′e−iq· r′ρL

1 (r′)
∫

d3r′′e−iq· r′′ρL
2 (r′′), (7)

where r represents the separation distance between the cluster (1)and core (2)center, and
ε is the laboratory energy of the nucleons in the cluster. The momentum of the nucleons
in the nucleon-nucleon (NN)center of mass system is given by p while M represents the
nucleon mass. Equation (7) contains the Lorentz covariant nucleon-nucleon scattering
amplitudes FL(q,ε), which are functions of the NN centre of mass momentum transfer
(~q) and nucleon laboratory energy (ε), as well as the respective cluster and core densities
ρL

1 and ρL
2 .

The Walecka model is based on a relativistic mean field theory with an effective La-
grangian which describes the NN interaction via the electromagnetic interaction and the
effective meson fields [8]. The dynamical equation which results from the Lagrangian is
given by

Ĥψ(r) =
(
iα ·∇−gvγ0V 0(r)+β [M−gsφ(r)])ψ(r

)
= Eψ(r) (8)

with the Dirac Hamiltonian operator (Ĥ = iα ·∇−gvγ0V 0(r)+β [M−gsφ(r)]), vector
and scalar fields gv and gs respectively, as well as the zeroth component vector field (V0)
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and scalar field (φ ). Equation (8) has both positive and negative solutions U(r) and V (r),
and thus the field operator can be expanded as

ψ̂(r) = ∑
Λ

[
AΛUΛ(r)+B†

ΛVΛ(r)
]
. (9)

The baryon and antibaryon creation operators A†
Λ and B†

Λ satify the standard anti-
commutator relationships and the index Λ specifies the full set of single-particle quan-
tum numbers, which for a spherically symmetric and parity conserving system, are the
usual angular momentum and parity quantum numbers, as given by reference [13]. The
positive-energy spinor can be written as

UΛ ≡Un jlmt(r) =
(

i
[
Gn jlt(r)/r

]
Φ jlm[

Fn jlt(r)/r
]

Φ jl+1m

)
ςt , (10)

where Φ jlm is the angular momentum and spin dependent part of the solution and n
and ςt represents the principal quantum number and two component isospinor which
is labeled by the isospin projection t. The functions G(r) and F(r) represent the radial
wave functions for the upper and lower components of the positive energy spinor UΛ
Neglecting the negative-energy spinors the local baryon (ρB) and scalar (ρs) densities
can be derived from the positive-energy solutions

ρB(r)
ρs(r)

}
= ∑

Λ
ŪΛ(r)

(
γ0

I

)
UΛ(r). (11)

MODEL PREDICTIONS AND CONCLUSIONS

For the BMP phenomenological form of the cluster-core potential prediction of the
positive parity alpha band energy structure of 212Po the parameters U0 = 208 MeV, a
= 0.66 fm, x = 0.30 and R = 6.784 were used with G = 18 [15].
The Walecka based RMFT prediction uses the experimental masses M = 939 MeV,
mv = mω = 738 MeV, mρ = 770 MeV, ms = 520 MeV, and α = e2/4π = 1/137.36
are used. The coupling constants for the scalar, vector, and ρ-meson are g2

s = 109.6,
g2

v = 190.4, and g2
ρ = 65.23 respectively. We apply the Dirac-Hartree code Timora [14]

to calulate the scalar and vector densities for both the protons and neutrons. The densities
of the core and cluster systems are inturn used to calculate the core-cluster potential by
means of the double folded MRW method.
The results of the calculated α-decay half-life of the ground-state as predicted by the
phenomenological BMP, the microscopic M3Y with phenomenological core and cluster
baryon densities [15], and MRW double folded relativistic mean field nucleon densities
with Lorentz covariant NN scattering amplitudes are compared with experimental data
[16] in Table I. Table II compares the predicted band energy structure from the BMP,
M3Y and RMFT model calculations with available experimental data [16].
From the results in Table (1) and (2) one see that the Saxon-Woods plus cubic Saxon-
Woods potential and the RMFT based model gives a reasonable prediction of the half-
life of the 0+, while the microscopic M3Y based model underpredict the ground-state
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alpha decay half-life of 212Po by a factor of approximately 2. Furturemore the energy
spectra of the excited α states are predicted reasonably well both the Saxon-Woods plus
cubic Saxon Woods core-cluster potential and the self-consistent RMFT core-cluster
model where as the microscopic M3Y model potential results in a clear inversion of the
energy spectra.

TABLE 1. The experimental ground state decay of 212Po and the corre-
sponding values obtained with the BMP (5), double folded M3Y, and the
self-consistent RMFT potentials.

T1/2(Exp) ns T1/2(BMP) (ns) T1/2(M3Y) (ns) T1/2(RMFT) (ns)

300 348.0 157.4 299.6

TABLE 2. The experimental energy level scheme of 212Po and
the calculated spectra obtained with the BMP (5), double folded
M3Y and self-consistent RMFT potentials.

Jπ Eexp (MeV) EBMP MeV EM3Y ERMFT (MeV)

0+ 0.000 (0.495) −0.004 0.203
2+ 0.727 0.659 −0.067 0.421
4+ 1.132 0.948 −0.229 0.699
6+ 1.355 1.318 −0.508 0.857
8+ 1.476 1.730 −0.930 1.085
10+ 1.834 2.145 −1.538 1.319
12+ 2.702 2.519 −2.358 1.553
14+ 2.885 2.805 −3.437 1.787
16+ − 2.941 −4.800 2.021
18+ 2.921 2.841 −6.477 2.255
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Abstract. The status of calculation of the neutrinoless double beta decay (0νββ -decay) nuclear
matrix elements (NMEs) is reviewed. The spread of published values of NMEs is discussed. The
main attention is paid to the recent progress achieved in the evaluation of the 0νββ -decay NMEs in
the framework of the quasiparticle random phase approximation (QRPA). The obtained results are
compared with those of other nuclear structure approaches. The problem of reliable determination
of the 0νββ -decay NMEs is addressed. It is manifested that the uncertainty associated with the
calculation of the 0νββ -decay NMEs can be diminished by suitable chosen nuclear probes.
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INTRODUCTION

The fundamental importance of the search for 0νββ -decay,

(A,Z)→ (A,Z +2)+2e−, (1)

is widely accepted. After 70 years the brilliant hypothesis of Ettore Majorana is still
valid and is strongly supported by the discovery of neutrino oscillations and by the
construction of the Grand Unified Theories. The 0νββ -decay is currently the most
powerful tool to clarify if the neutrino is a Dirac or a Majorana particle. This issue
is intimately related with the origin of neutrino masses having a strong impact also on
astrophysics and cosmology.

The main aim of the experiments on the search for 0νββ -decay is the measurement
of the effective Majorana neutrino mass mββ . Under the assumption of the mixing of
three massive Majorana neutrinos the effective Majorana neutrino mass mββ takes the
form

mββ = U2
e1 m1 +U2

e2 m2 +U2
e3 m3. (2)

Here, Uei and mi (i = 1,2,3) are elements of Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix and masses of neutrinos, respectively.

Experimental searches for the 0νββ -decay, of ever increasing sensitivity, are being
pursued worldwide. However, interpreting existing results as a measurement of the
Majorana neutrino effective mass and planning new experiments, depends crucially on
the knowledge of the corresponding nuclear matrix elements that govern the decay rate.
Accurate determination of the nuclear matrix elements, and a realistic estimate of their
uncertainty, is of great importance.
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CURRENT STATUS OF THE 0νββ -DECAY NMES

The inverse value of the 0νββ -decay half-life for a given isotope (A,Z) is a prod-
uct of the effective mass of Majorana neutrinos mββ , the known phase-space factor
G0ν(Qββ ,Z) (depending on nuclear charge Z and the energy release Qββ of the re-
action) and the nuclear matrix element M0ν , which depends on the nuclear structure of
the particular isotope under study [1]:

(T 0ν
1/2)

−1 = G0ν(Qββ ,Z) |M0ν |2 |mββ |2. (3)

From the measurement of half-life of the 0νββ -decay only the product
|mββ | |M0ν(A,Z)| of effective neutrino mass and nuclear matrix element can be
determined. Clearly, the accuracy of the determination of |mββ | from the measured
0νββ -decay half-life is mainly given by our knowledge of nuclear matrix elements.
Without accurate calculation of the 0νββ -decay NMEs, it is not possible to reach
qualitative conclusions about neutrino masses, the type of neutrino mass spectrum and
CP violation.

The nuclear matrix elements for 0νββ -decay must be evaluated using tools of nuclear
structure theory. Unfortunately, there are no observables that could be directly linked
to the magnitude of 0νββ -decay nuclear matrix elements and that could be used to
determine them in an essentially model independent way. The calculation of the 0νββ -
decay matrix elements is a difficult problem because ground and many excited states of
open-shell nuclei with complicated nuclear structure have to be considered.

The main two basic approaches used for evaluation of double beta decay NMEs are
the Quasiparticle Random Phase Approximation (QRPA) [2, 3] and the Large Scale
Shell Model (LSSM) [5]. Both methods have the same starting point, namely a Slater
determinant of independent particles. However, there are substantial differences between
both approaches, namely the kind of correlations they include are complementary. The
QRPA treats a large single particle model space, but truncates heavily the included
configurations [2]. The LSSM, by a contrast, treats a small fraction of this model space,
but allows the nucleons to correlate in arbitrary ways [4].

Due to its simplicity the QRPA is a popular technique to calculate the 0νββ -decay
NMEss. One of the most important factors of the QRPA calculation of the 0νββ -
decay NMEs is the way how the particle-particle strength of the nuclear Hamiltonian
gpp is fixed. It has been shown that by adjusting gpp to the 2νββ -decay rates the
uncertainty associated with variations in QRPA calculations of the 0νββ -decay NMEs
can be significantly eliminated [2]. In particular, the results obtained in this way are
essentially independent of the size of the basis, the form of different realistic nucleon-
nucleon potentials, or on whether QRPA or renormalized QRPA (take into account Pauli
exclusion principle) is used.

Matrix elements for the double beta decay are calculated also by angular momentum
projected (with real quasi-particle transformation) Hartree-Fock-Bogoliubov (P-HFB)
wave functions [6] and by the Interacting Boson Model (IBM) [7]. The P-HFB allows
only, that neutron pairs with angular momenta 0+, 2+, 4+, · · · are transformed into two
protons in the 0νββ -decay. In addition the pairs different from 0+ are strongly sup-
pressed compared to the results of the LSSM and the QRPA. The approaches LSSM and
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FIGURE 1. The 0νββ -decay NMEs calculated within different nuclear structure approaches: Large
Scale Shell Model (LSSM) [5], (Renormalized) Quasiparticle Random Phase Approximation (R)QRPA
[3], Projected Hartree-Fock Bogoliubov approach (P-HFB) [6] and Interacting Boson Model (IBM) [7].
The Miller-Spencer Jastrow two-nucleon short-range correlations are taken into account.

QRPA show also, that other neutron pairs contribute strongly, which can not be included
into real P-HFB. One would need to extend the P-HFB approach to complex quasi-
particle transformations and probably also to several orthogonal P-HFB configurations.
IBM is even more restrictive: It allows only that 0+ and 2+ neutron pairs are changed
into proton pairs.

The calculated 0νββ -decay NMEs within these approaches are presented in Fig.
1. It is surpricing that the IBM results agree well with the QRPA ones. Results of
these aproaches exhibit some dependence on A unlike the LSSM values, which are
practically the same except for 48Ca. The value of the 0νββ -decay NME for this isotope
is suppressed as 48Ca is a magic nucleus.

REDUCING THE UNCERTAINTY IN NMES

The improvement of the calculation of double beta decay nuclear matrix elements is a
very important and challenging problem. The uncertainty associated with the calcula-
tion of the 0νββ -decay NMEs can be diminished by suitable chosen nuclear probes. A
complementary experimental information from related processes like charge-exchange
reactions, muon capture and charged current (anti)neutrino-nucleus reactions is highly
required. A direct confrontation of nuclear structure models with data from these pro-
cesses might improve quality of nuclear structure models. The constrained parameter
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space of nuclear models is a promising way to reduce uncertainty in the calculated
0νββ -decay NMEs.

As a practice, knowledge of the 2νββ -decay rate and of the ordinary decay f t
values were used to constrain the nuclear model parameters, in particular when the
quasiparticle random phase approximation (QRPA) was employed [3]. Clearly, when
other relevant data become available, and the nuclear model is constrained to reproduce
them, confidence in the deduced 0νββ -decay NMEs is increased. Recently, a set of such
data, the occupation numbers of neutron valence orbits in the initial 76Ge and final 76Se
nuclei, were determined in a series of measurements of cross sections for neutron and
proton adding and removing transfer reactions [8].

The occupancies of valence neutron and proton orbits determined experimentally in
Refs. [8], represent important constraints for nuclear models used in the evaluation of
the 0νββ -decay NMEs. In Ref. [9] the input mean field has been modified in such a
way that the valence orbits in the model obey these constraints. Within QRPA and its
generalizations it was found that it is important to also choose the variant of the basic
method that makes such comparison meaningful by conserving the average particle
number in the correlated ground state. When following this procedure, but otherwise
keeping the same steps as in evaluation of M0ν within QRPA before, the conclusion was
that for the 76Ge →76 Se transition the matrix element is smaller by 25%, reducing the
previously bothersome difference with the shell model prediction noticeably. Clearly,
having the experimental orbit occupancies available and adjusting the input to fulfill the
corresponding constraint makes a difference. It would be very useful to have similar
constraints available also in other systems, in particular for 130Te and/or 136Xe.

Charge-exchange reactions of (p,n) and (n, p) type at intermediate energies and
at forward angles, i.e., low momentum transfers (qtr ∼ 0 and ∆L = 0), selectively
excite Gamow-Teller (GT) transitions owing to the dominance of the Vστ component
of the effective interaction. However, experiments which employ the elementary (p,n)
and (n, p) reactions have rather limited resolution and alternatives to them have now
successfully been established through the (n, p)-type (d,2He) or (t,3He) reactions and
the (p,n)-type (3He, t) reaction. Resolutions on the order of 100 keV in the case of
(d,2He), 190 keV for (t,3He) and 30 keV for (3He, t) have routinely been achieved
[10].

The connection between the two-neutrino double beta decay (2νββ -decay) half-life
and the GT transition strength B(GT) is as follows:

(
T 2ν

1/2

)−1
= G2ν(Q,Z)

∣∣M2ν
DGT

∣∣2
, (4)

where G2ν(Q,Z) is a phase-space factor depending on the Q-value of the reaction and
the Z-value of the decaying nucleus. It contains squared the weak interaction coupling
constant gA. The 2νββ -decay matrix element can be deduced by combining GT + and
GT− distributions in the following way:

M2ν
DGT = ∑

m

MGT+
m ·MGT−

m

Qββ /2+me +Ex(1+
m)−E0

,

B(GT±) =
1

2Ji +1

∣∣∣MGT±
∣∣∣
2
. (5)
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Here, (Ex(1+
m)−E0) is the energy difference between the mth intermediate 1+ state and

the initial ground state. Qββ is the Q-value of the ββ -decay, and the ∑m runs over all
states of the intermediate nucleus. In this approach the effect of a destructive interference
among contributions of different states of intermediate nucleus to M2ν

DGT is neglected.
The results of the charge-exchange reaction experiments therefore furnish important

information about the nuclear physics relevant for double β -decay [10]. This informa-
tion directly feed into model calculations, which are aimed at describing reliably the nu-
clear physics around both decay variants, the 2νββ -decay and the 0νββ -decay. A high
energy resolution of the order of 30 keV, which can presently only be obtained at the
RCNP facility in Osaka, allows a precise determination of the GT strength distribution.
The high resolution can give significant insight into the details of the nuclear structure.
It may be important to understand if the concentration of the low-energy B(GT) strength
within a single strong transition, as was observed in the case of 96Zr and 100Mo, is a
somewhat general feature of nuclei with masses A ∼ 100 or above [10]. An open ques-
tion is the 2νββ -decay half-life of 136Xe, which has been not measured yet. The reason
of suppression of this process is not known. Clearly, explanation of these effects has
significant bearing on the double β -decay rate.

we note that a possibility to study charge-changing and particle transfer reactions at
iThemba Labs in South Africa is under discussion.

CONCLUSION AND OUTLOOK

Many new projects for measurements of 0νββ -decay have been proposed, which hope
to probe effective neutrino mass mββ down to 10-50 meV. Nuclear matrix elements
need to be evaluated with uncertainty of less than 30% to establish the neutrino mass
spectrum and CP violating phases. The improvement of the calculation of the nuclear
matrix elements is a very important and challenging problem.

Recently, there has been significant progress in understanding the source of the spread
of calculated NMEs. Nevertheless, there is no consensus among nuclear theorists about
their correct values, and corresponding uncertainty. However, a recent development in
the field is encouraging. There is a reason to be hopeful that the uncertainty will be
reduced.

An important cross-check for nuclear models would be to explore the structure of the
intermediate odd-odd nuclei by the charge exchange reactions. There are possibilities for
improving the QRPA calculation of NMEs, e.g., by taking into account the deformation
of parent and daughter nuclei. Further progress in the NSM calculation will be possible
due to increasing computer speed and memory. This will allow to extend the considered
model spaces. The exactly solvable models can also help to find the ultimate solution
of this important problem. It is also clear that in order to have confidence in calculated
NMEs multiple 0νββ -decay experimental results are required.
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Abstract. The electrodisintegration of the deuteron for the kinematic conditions of the JLab exper-
iment E-94-019 is considered. The calculations are performed within the covariant Bethe-Salpeter
approach with the separable kernel of interaction. The results are obtained within the relativistic
plane wave impulse approximation and compared with the experimental data and other models. The
influence of nucleon electromagnetic form factors is investigated.
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FORMALISM

The deuteron electrodisintegraton is considered within the Bethe-Salpeter (BS) approach
[1] with a separable kernel of NN interactions. It is based on the solution of the BS
equation:

ΦJM(k;K) =
i

(2π)4 S2(k;K)
∫

d4 pV (p,k;K)ΦJM(p;K) (1)

for the bound state of the neutron-proton (np) system with the total angular momentum
J and its projection M which is described by the BS amplitude ΦJM. Here the total
K = kp + kn and the relative k = (kp− kn)/2 momenta are used instead of the proton
kp and neutron kn momenta. In general, the BS amplitude can be decomposed by the
partial-wave states through the generalized spherical harmonic Y and the radial part φ
[2] as:

ΦJM
αβ (k;K(0)) = ∑

a
(YaM(k)UC)αβ φa(k0, |k|;K2

(0)), (2)

where K(0) = (Md,0) is the total momentum of the NN system in its rest frame (here it is
the deuteron rest frame called the laboratory system, LS); Md is a mass of the deuteron;
UC is the charge conjugation matrix; α , β denote matrix indices; a is a short notation
of the partial-wave state 2S+1Lρ

J with spin S, orbital L and total J angular momenta, ρ
means positive- or negative-energy partial-wave state. S2(k;K) is the free two-particle
Green function:

S−1
2 (k;K) =

(1
2 K · γ + k · γ−m

)(1)(1
2 K · γ− k · γ−m

)(2)
.
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In calculations, it is more convenient to use the BS vertex function ΓJM which is
connected with the BS amplitude by the following relation:

ΦJM(k;K) = S2(k;K)ΓJM(k;K). (3)

After using the decomposition of type (2) for the vertex function the relation between
ΦJM and ΓJM radial parts can be deduced:

φa(k0, |k|) = ∑
b

Sab(k0, |k|;s)gb(k0, |k|), (4)

where Sab is the one-nucleon propagator [2]. To solve the BS equation (1) we use the
separable ansatz for the interaction kernel

Vab(p0, |p|;k0, |k|;s) =
N

∑
i, j=1

λi j(s)g
[a]
i (p0, |p|)g[b]

j (k0, |k|), (5)

where N is a rank of the kernel, gi are model functions; λ is a parameter matrix satisfying
the symmetry property λi j(s) = λ ji(s); k [p] is the relative momentum of the initial
[final] nucleons; s = (pp + pn)2 where pp is the outgoing proton and pn is the neutron
momentum, respectively. If the radial part of the vertex function ΓJM is written in the
following form:

ga(p0, |p|) =
N

∑
i, j=1

λi j(s)g
[a]
i (p0, |p|)c j(s), (6)

the initial integral BS equation (1) is transformed into a system of linear homogeneous
equations for the coefficients ci(s):

ci(s)−
N

∑
k, j=1

hik(s)λk j(s)c j(s) = 0, (7)

where

hi j(s) =− i
4π3 ∑

a

∫
dk0

∫
k2d|k| g[a]

i (k0, |k|)g[a]
j (k0, |k|)

(
√

s/2−Ek + iε)2− k2
0

(8)

and Ek =
√

k2 +m2. Using (4) and taking into account only positive-energy partial-wave
states for the deuteron 3S+

1 , 3D+
1 the radial part of the BS amplitude can be written as:

φa(k0, |k|) =
ga(k0, |k|)

(Md/2−Ek + iε)2− k2
0
. (9)

Thus, using the separable functions g we can calculate observables describing the np
system.
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CROSS SECTION

The exclusive d(e,e′n)p process when all particles are unpolarized can be described by
the cross section in LS:

d3σ
dQ2d|pn|dΩn

=
σMottπp2

n
2(2π)3MdEeE ′e

×

×[
l0
00W00 + l0

++(W++ +W−−)+ l0
+− cos2φ 2ReW+− − l0

+− sin2φ 2ImW+−
−l0

0+ cosφ 2Re(W0+−W0−)− l0
0+ sinφ 2Im(W0+ +W0−)

]
, (10)

where σMott = (α cos θ
2 /2Ee sin2 θ

2 )2 is the Mott cross section, α = e2/4π is the fine
structure constant; Ee [E ′e] is the energy of the initial [final] electron; Ω′

e is the outgoing
electron solid angle; θ is the electron scattering angle; Q2 =−q2 =−ω2 +q2, where q =
(ω ,q) is the momentum transfer. The outgoing neutron is described by the momentum
pn and the solid angle Ωn = (θn,φ) with the zenithal angle θn between q and pn momenta
and azimuthal angle φ between (ee′) and (qpn) planes. The photon density matrix
elements have the following form:

l0
00 =

Q2

q2 , l0
0+ =

Q
|q|√2

√
Q2

q2 + tan2 θ
2

,

l0
++ = tan2 θ

2
+

Q2

2q2 , l0
+− =− Q2

2q2 . (11)

The hadron density matrix elements W can be calculated using Cartesian components of
the hadron tensor

Wµν =
1
3 ∑

sdsnsp

∣∣< np : SMS| jµ |d : 1M >
∣∣2

, (12)

where S is a spin of the np pair and MS is its projection, and the photon polarization
vectors ε according to the relation

Wλλ ′ = Wµνεµ
λ ελ ′

ν , (13)

here λ , λ ′ are photon helicity components [3]. The hadron current jµ in (12) can be
written according to the Mandelstam technique [4] and, within the relativistic impulse
approximation, has the following form:

< np : SMS| jµ |d : 1M >=

i ∑
r=1,2

∫ d4 p
(2π)4 Sp

{
Λ(L −1)ψ̄SMS(P

CM, pCM)Λ(L ) ×

Γ(r)
µ (q)S(r)

(
K(0)

2
− (−1)r p− q

2

)
ΓM

(
K(0), p+(−1)r q

2

)}
, (14)
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the sum over r = 1,2 corresponds to the interaction of the virtual photon with the proton
and with the neutron in the deuteron, respectively. The total PCM and the relative pCM

momenta of the outgoing nucleons are considered in the final np pair rest frame (center-
of-mass system, CM) and can be written in LS using the Lorenz-boost transformation
along the q direction. The Lorenz transformation of the np pair wave function ψSMS from
CM to LS is:

Λ(L ) =
(

1+
√

1+η
2

) 1
2
(

1+
√ηγ0γ3

1+
√

1+η

)
. (15)

where η = q2/s. The interaction vertex is chosen in the on-mass-shell form:

Γµ(q) = γµF1(q2)− 1
4m

(
γµ/q−/qγµ

)
F2(q2), (16)

here F1(q2) is the Dirac form factor, F2(q2) - Pauli form factor. The form factors are
described by the dipole fit model [5] or modified dipole fit [6, 7]. If the outgoing nucleons
are supposed to be non-interacting it is the so-called plane-wave approximation. In this
case the np pair wave function can be written in the following form:

ψ̄SMS(P, p; p∗) → ψ̄(0)
SMS

(P, p; p∗) = (2π)4χ̄SMSδ (p− p∗), (17)

where p∗ = (0,p∗) is the relative momentum of on-mass-shell nucleons, χSMS describes
spinor states of the pair. Taking into account the representation (17), the hadron current
(14) can be transformed into a sum:

< np : SMS| jµ |d : 1M >= i ∑
r=1,2

{
Λ(L −1)χ̄SMS

(
PCM, pCM∗)Λ(L )Γ(r)

µ (q) ·

·S(r)
(

K(0)

2
− (−1)r p∗− q

2

)
ΓM

(
K(0), p∗+(−1)r q

2

)}
. (18)

In the paper the cross section of the exclusive electrodisintegration of the deuteron
d2σ/dQ2d|pn| [8] is calculated. It can be obtained from (10) after integration over the
neutron solid angle:

d2σ
dQ2d|pn| =

∫

Ωn

d3σ
dQ2d|pn|dΩn

dΩn. (19)

According to [8] the integration is performed over Ωn: 20◦ 6 θn 6 160◦, 0◦ 6 φ 6 360◦.
Four different Q2 are considered. The obtained results are discussed in the next section.

DISCUSSION AND CONCLUSION

In this paper the exclusive cross section of the electrodisintegration (19) for the kine-
matic conditions of the JLab experiment [8] is calculated within the Bethe-Salpeter
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FIGURE 1. The cross section (19) for Q2 = 2±0.25 GeV2 depending on the neutron momentum pn is
considered. Calculations with Graz II (NR) [11] (purple dash-dot-dotted line), Graz II [12] (brown dash-
dotted line), MY6 [9] (red solid line) and Paris [10] (pink dotted line) are present. The dipole fit [5] (on
the left) and modified dipole fit [5, 6, 7] (on the right) models for nucleon electromagnetic form factors
are considered.
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FIGURE 2. As in Fig.1, but for Q2 = 5±0.5 GeV2.

approach with the rank-six separable kernel MY6 [9]. The calculations are performed
within the relativistic plane-wave impulse approximation. The obtained results are com-
pared with the experimental data and other theoretical models, the Paris potential [10],
the nonrelativistic Graz II (NR) [11] and relativistic Graz II [12] separable interaction
kernels.

In Fig.1, the cross section depending on the outgoing neutron momentum pn is present
for Q2=2 GeV2. The dipole fit [5] (figure on the left) and modified dipole fit [6, 7] (figure
on the right) models for the nucleon electromagnetic form factors are considered. From
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FIGURE 3. The wave function (9) at k0 = Md/2−Ek for the 3S+
1 partial-wave state in the deuteron rest

frame for the MY6 model in comparison with those of Graz II (NR) [11], Graz II [12], and Paris [10].

the figure, a good agreement with the experimental data can be seen at low neutron
momenta |pn| 60.25 GeV/c. The discrepancy between the theoretical calculations and
the experiment increases with the increase of |pn| for the nonrelativistic separable Graz
II (NR) [11] and Paris [10] potential models. For the relativistic MY6 [9] and Graz II
[12] separable models, a good agreement with the experimental data can be seen not
only at low pn but also at high |pn|>1.5 GeV/c.

In Fig.2, the cross section for Q2=5 GeV2 is present. As in previous figure, two models
of nucleon electromagnetic form factors are considered. The relativistic MY6 and Graz
II models agree with the experimental data much better than for Q2=2 GeV2 whereas the
nonrelativistic Graz II (NR) and Paris potentials deviate from the experimental points
at |pn|>0.25 GeV/c increasingly more than in previous case (Fig.1). Therefore, it can
be concluded that the influence of relativistic effects increases with the increase of the
energy of the nucleons and the momentum transfer.

It should be noticed that the behavior of the calculated cross section is similar to the
behavior of the corresponding wave function for the deuteron 3S+

1 partial-wave state
which is shown in Fig.3. From the comparison of Figs.1, 2 and Fig.3, it is seen that the
cross section at high |pn| is similar to the asymptotic form of the 3S+

1 wave function.
From Figs.1,2, it is seen that results obtained within the dipole fit model [5] for

nucleon electromagnetic form factors are similar to those obtained with modified form
factors [6, 7]. Thus, we can summarize that the choice of nucleon electromagnetic form
factors does not play an important role in the description of the cross section at high
momentum transfer. It is interesting that the results calculated within the dipole fit
model, which does not describe the behavior of the electric form factor of the proton
at high Q2, is virtually undistinguishable from those obtained with the modified proton
electric form factor [6]. However, the final conclusion which model gives the best result
can be made only when negative-energy partial-wave states (P waves) and final state
interaction effects will be taken into account.
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in the mass 160 region
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Abstract. Recent theoretical work has suggested that some nuclei in the rare earth region might
exhibit tetrahderal deformations. Several nuclei have been studied at iThemba LABS, resulting in
evidence against the possibility of low-lying tetrahedrally deformed bands. In this paper we present
results suggesting that the next set of candidates is also not tetrahedrally deformed. This region
of the nuclear landscape still contains several interesting features, particularly the discrepancies in
B(E2)/B(E1) ratios within the octupole bands, and deserves further study.

INTRODUCTION

In recent years, there has been interest in various regions of the periodic table regarding
nuclear deformations [1, 2, 3, 4]. Work by Dudek et al. [2], has suggested that the region
around Gd and Yb and neutron number 90 might exhibit tetrahedral deformations at a
fairly low excitation energy (within 1 MeV of the yrast band). Several experiments were
performed at iThemba LABS to look for these candidate tetrahedral bands and see if
they agree with the theoretical predictions. The results obtained for 154Gd and 160Yb
have been published [5]. In this article, we will summarize the experimental results
finished to date, together with the status of the further analysis of nuclei in the region of
interest.

Theoretical motivation

The nuclear surface in in the instrinsic frame is often exapanded as [6]

R(θ ,φ) = R0

[
1+

4

∑
λ=2

λ

∑
µ=0

αλ µYλ µ(θ ,φ)

]
. (1)

The λ = 2 terms correspond to quadrupole deformations, which are well established,
while λ = 3 terms correspond to octupole deformations. The low-lying negative parity
bands are generally intepreted as octupole vibrations with pronounced α30.

Calculations that included α32 deformations have been performed [3] that suggest
that potential energy minima occur at specific regions akin to shell-gaps. Specifically,
if α20 = 0, an α32 deformation corresponds to a tetrahedral shape. Tetrahedral shell
gaps have been calculated to occur at 64, 70, 90 and 94, which correspond to the nuclei
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from 154Gd to 164Yb. In addition, Dudek et al. [2] have shown that if a nucleus has a
sizable tetrahedral deformation, it will behave almost as a tetrahedral rotor and exhibit
the Td symmetry. The nucleus must then have a zero quadrupole moment, implying a
lack of E2 transitions in the tetrahedral band. The negative parity bands in the nuclei
in the region of interest were usually interpreted as vibrational Y30 octupoles [7], but
the vanishing in-band transitions at lower spin offers an alternative interpretation as
‘tetrahedral candidates’.

EXPERIMENTAL RESULTS

To try and verify the predictions, several experiments have been run at iThemba LABS
using the AFRODITE gamma ray detector array, which consists of eight HPGe seg-
mented clover detectors. The reactions included 152Sm(α,2n)154Gd at 25 MeV, and
147Sm(16O,3n)160Yb at 73 MeV. Approximately 0.5×109 γγ conincidence events were
collected for the former reaction, and 2× 109 in the latter. The complete analysis and
results have already been published [8, 9, 5].

FIGURE 1. Left, energies of negative parity band levels in 160Yb, 166Gd and 164Gd, less a rigid rotor
reference against spin. Right shows the branching ratios for in-band (E2) vs out-of-band (E1) transitions
in the candidate tetrahedral bands [5].

The results are shown above. The data from 156Gd [10] is shown for comparison, as
that was considered one of the best candidates for a tetrahedral nucleus [3]. For low spin
states (below 10h̄), the octupole bands (labelled ‘tetra’ in the figure) show a fairly similar
structure, both in the sign of the signature splitting between the two spin partners, and
the magnitude of splitting. At higher spin, there are interactions with the negative parity
two quasiparticle bands, which distort the picture.

Additionally, if one considers the branching ratio of the in-band transitions B(E2, I →
I−2), against out-of-band transitions to the ground state band B(E1, I → I−1) for odd
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and B(E1, I → I), for even spins, one finds a staggering of the data. The observed ratios
indicate that the in odd spin bands, the E2 transitions are very unfavoured, making their
study difficult. The ratio could be due to the a natural suppression of the E2 transitions
due to a low quadruple moment, which is the expected signature of the tetrahedral
deformation, but alternately the ratio could be low simply due to very high E1 strengths.

Bark et al. [5] performed a careful analysis of the energies and branching ratios of the
negative parity bands, and resolved the interactions and quadrupole moments with band-
mixing calculations. The calculations found QtT ∼ 4 eb, which corresponds to a signif-
icant quadrupole deformation. This is against the expectation of the zero quadrupole
moment required for the tetrahedral rotor, indicating that the low-lying negative parity
bands are most likely normal octupole vibrations. The calculated quadrupole moments
also disallow an explanation of the staggered B(E2)/B(E1) ratios based on the suppres-
sion of in-band transitions in the odd octupole bands. At this time there is no complete
explanation of the discrepancy between odd and even spin branching ratios.

The result of the non-tetrahedral nature of 160Yb does not preclude nearby nuclei
from containing structures that are interesting. By performing a systematic study of the
negative parity bands in the nuclei Gd, Dy, Er and Yb, with neutron numbers 88, 90 and
92 (figure 2), one can observe that the behaviour of the bands depends strongly on N,
yet individual features remain to be understood. Unfortunately, a lot of the experimental
data on the negative parity bands remains unknown, especially down to the very low
spins. This is partly due to the low strength of the in band E2 transitions, making the
transitions near the low end of the octupole bands difficult to populate and observe. The
data on the B(E2)/B(E1) branching ratios are even less known.

In an attempt to learn more about this region, two more nuclei in this region
were recently studied at iThemba. The reactions were 147Sm(12C,3n)156Er and
152Sm(12C,4n)160Er, as a slightly different neutron number has a direct effect on
the nuclear shape. Approximately 1.8× 109 γγ conincidence events were collected for
each reaction.

The preliminary results are included above. The low-lying negative parity bands have
been extended in both nuclei, but the branching ratios of in-band and out of band
transitions are not yet available.

It is apparent that in 156Er the candidate tetrahedral bands behave similarly to the
other N = 88 nuclei at low spin (below 10h̄). The odd band partner is lower in excitation
energy and the two band partners proceed in an almost parallel manner. Around spin 10
however, the two bands experience deviations from the expected behaviour, most likely
due to the interaction of the bands with the two quasi-particle band. The expectation
is that a careful band-mixing calculation can clear up these uncertainties. The negative
parity bands in 160Er appear to contain a similar structure to the other well-studied nuclei
in the region, but there is no complete information for the other N = 92 nuclei, making
the careful comparisons difficult.

CONCLUSION

The rare earth region of 64 ≤ Z ≤ 70 and 88 ≤ N ≤ 92 remains a very interesting one
indeed. To date there seems to be no evince supporting the existence of tetrahedrally

124



FIGURE 2. Systematics of the negative parity bands in the Gd-Yb region, for N = 88,90,92. The
octupole (candidate tetrahedral) bands are marked with squares, and the two quasi-particle bands are
marked with triangles. Data collected from nndc. The bands for 158Dy are tentative spin and parity
assignments

deformed nuclei in the region, although the search for evidence has not been exhaustive.
There are several results that remain unexplained, including he nature of the variation in
the branching ratios in the negative parity bands. It is hoped that the RPA calculations
can shed some light on the systematic behaviour of the observed bands.
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Reflection asymmetry in 220Th and dinuclear
model

T.M. Shneidman∗, G.G. Adamian∗, N.V. Antonenko∗, R.V. Jolos∗ and
W. Scheid†

∗Joint Institute for Nuclear Research, 141980 Dubna, Russia
†Institut für Theoretische Physik der Justus-Liebig-Universität, D–35392 Giessen, Germany

Abstract. The negative parity bands with different values of K in 220Th are analyzed within the
dinuclear system model which was previously used for description of the ground state alternating-
parity bands with K = 0 in deformed actinides. The model is based on the assumption that the
cluster type shapes are produced by the collective motion in the mass-asymmetry coordinate. To
describe the reflection-asymmetric collective modes characterized by the nonzero values of K, the
intrinsic excitations of clusters are taken into account. The observed excitation spectrum, angular
momentum dependence of the parity splitting and of the staggering behavior of the B(E1)/B(E2)
ratios are explained.

Keywords: dinuclear system
PACS: 21.60.Ev,21.60.Gx

INTRODUCTION

In the even-even isotopes of actinides and also in the heavy Ba and Ce isotopes the
low-lying negative parity states are observed together with the usually presented collec-
tive positive-parity states combined into rotational or quasirotational ground-state bands.
Formation of the positive-parity rotational or quasirotational bands is connected in gen-
eral to the quadrupole collective motion, while the lowering of the negative-parity states
is a signature of the presence of the reflection asymmetric collective mode. There are
several approaches to treat the collective motion related to the reflection asymmetric
degrees of freedom. One of them is based on the concept of the nuclear mean field [1]
which has a static mirror asymmetric deformation or is characterized by a large am-
plitude of reflection asymmetric vibrations around the equilibrium shape. Another ap-
proach is based on the assumption that the reflection asymmetric shape is a consequence
of the α-clustering in nuclei [2]. It is also known from the Nilsson-Strutinsky type cal-
culations for light nuclei that nuclear configurations corresponding to the minima of the
potential energy contain particular symmetries which are related to certain cluster struc-
tures [3, 4]. Several calculations performed for heavy nuclei [5, 6, 7] have shown that
configurations with large equilibrium quadrupole deformations and low-lying collective
negative parity states are strongly related to clustering. We mention also a different ap-
proach to description of the properties of the alternating parity bands which is based on
the idea of the aligned octupole phonons [8, 9].

The main idea of the cluster model developed in [7, 10, 11] is that a dynamics of a
reflection asymmetric collective motion can be treated as a collective motion of nucleons
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between two clusters or as a motion in a mass-asymmetry coordinate. Such collective
motion simultaneously creates deformations with even and odd-multipolarities. The
choice of the collective coordinates and the procedure of the calculation of the potential
energy and of the inertia coefficients for the Hamiltonian of the model are based on the
concept of the dinuclear system (DNS). This concept was first introduced to explain the
experimental data on deep inelastic and fusion reactions. Later on it was applied to the
description of the nuclear structure phenomena, like alternating parity bands, mentioned
above, and superdeformed states [12, 13]. The dinuclear system (A,Z) consists of two
fragments (A1,Z1) and (A2,Z2) with A = A1 + A2 and Z = Z1 + Z2 kept in touching
configuration by a a molecular-type nucleus-nucleus potential. As it was shown by our
calculations, the α-cluster DNS AZ →(A−4) (Z−2)+4He gives a significant contribution
to the formation of the low-lying nuclear states. This is also in agreement with the fact
that these nuclei are good alpha-emitters.

Within this approach the existing experimental data on the angular momentum de-
pendence of the parity splitting in the excitation spectra and the multipole transition
moments (E1,E2,E3) of the low-lying alternating parity states in odd and even actinides
220−228Ra, 223,225,227Ac, 222−224,226,228−232Th, 231Pa, 232−234,236,238U and 240,242Po and
the medium mass nuclei 144,146,148Ba, 151,153Pm, 146,148Ce 153,155Eu and 146,148Nd are
well described. The good agreement between the results of calculations and the experi-
mental data support a cluster interpretation of the reflection-asymmetric states.

However, previously we have considered in the even-even nuclei only the low-lying
collective negative parity states with K=0. At the same time, there are experimental data
which indicate on a presence of the low-lying collective states related to the reflection-
asymmetric modes which are characterized by nonzero values of K. It can happens
also that K is not a good quantum number if nuclei are located in a transitional region
between deformed and spherical ones. A good example is 220Th [14] whose energy
spectra is a challenge for the theoretical approaches. To describe in the framework of the
cluster approach the properties of the low-lying collective states related to the reflection-
asymmetric collective mode and characterized by nonzero values of K we should take
into account intrinsic excitations of the clusters forming a nucleus under consideration.
It is the aim of the present investigation to extend the dinuclear system model to take
into account such excitations.

MODEL

Hamiltonian

As illustrated in Fig. 1, the degrees of freedom chosen to characterize a dinuclear
system with nearly spherical heavy cluster are related to description of the rotation of
the DNS as a whole, the quadrupole oscillations of the heavy fragment, and the transfer
of nucleons between the fragments. The Hamiltonian of the model can be presented in
the form

Ĥ = Ĥ0 +V̂int , (1)
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FIGURE 1. Schematic picture illustrates degrees of freedom used in the model to describe dinuclear
system. Orientation of the vector of the relative distance R is defined by the angles Ω(θ ,φ) with respect
to the laboratory frame system.

where Ĥ0 describes independent fragments of the system and V̂int describes the interac-
tion between the fragments.

We assume that the heavy cluster is spherical and perform harmonic quadrupole
oscillations around the spherically symmetric shape with frequency h̄ω0, while the light
cluster stays in its ground state. This assumption is in agreement with the suggestion
made in [19] that some nuclei in the region of N=130 may have a shape with a significant
octupole deformation but a negligible quadrupole deformation.

Then for Ĥ we have the following expression

Ĥ = h̄ω0n̂+
h̄2

2µ(ξ )R2 L̂2− h̄2

2Bξ

1
ξ

∂
∂ξ

ξ
∂

∂ξ
+U(R,ξ ,α2µ), (2)

where, for convenience, we use positively-defined variable ξ instead of a usual definition
of the mass-asymmetry coordinate η = (A1−A2)/(A1 +A2)

ξ = 2A2/A = 1−η . (3)

In equation (2), µ(ξ ) is the reduced mass of the DNS, R(ξ ) is the distance between
the centers of mass of the fragments, n̂ is the operator of the number of the quadrupole
phonons of heavy cluster, α2µ describes quadrupole oscillations of the surface of the
heavy fragment and L̂2 is the operator of the square of angular momentum of the relative
rotations of the two fragments

L2 =−
[

1
sinθ

∂
∂θ

sinθ
∂

∂θ
+

1
sin2 θ

∂ 2

∂φ 2

]
. (4)

Angles Ω = (θ ,φ) (see Fig.1) describes the orientation of the relative distance vector R
with respect to the laboratory coordinate system.

Above, Bξ is a mass tensor and U(R,ξ ,α2µ) is a potential energy. The potential
energy of the dinuclear system is determined as

U(R,ξ ,α2µ) = B1 +B2−B12 +V (R,ξ ,α2µ). (5)
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Here, B1, B2 and B12 are the binding energies of the fragments and the compound
nucleus, respectively. The nucleus-nucleus potential in (5)

V (R,ξ ,α2µ) = VCoul(R,ξ ,α2µ)+Vnucl(R,ξ ,α2µ) (6)

is the sum of the Coulomb potential

VCoul(R,ξ ,α2µ) =
e2Z1Z2

R
+

3
5

e2Z1Z2
R3 R2

01 ∑
µ

α∗2µY2µ(θ ,φ)+ ... (7)

and the nuclear interaction potential

Vnucl(R,ξ ,α2µ) =
∫

ρ1(r1)ρ1(R− r2)F(r1− r2)d3r1d3r2, (8)

where F(r1−r2) is a Skyrme-type density dependent effective nucleon-nucleon interac-
tion. Vnucl can be expanded in degrees of α2µ . The procedure of calculation used in this
paper is described in [17]. Since in our case the amplitude of the quadrupole oscillations
is small only the terms linear in α2µ in the expansion of V (R,ξ ,α2µ) are considered.
Thus, V (R,ξ ,α2µ) can be presented as

V (R,ξ ,α2µ) = V (R,ξ )+V0(ξ )∑
µ

α∗2µY2µ(θ ,φ), (9)

where V0 is determined by the nuclear and Coulomb parts of the nucleus-nucleus inter-
action potential. For the H0 and Vint we obtain

Ĥ0 = h̄ω0n̂+
h̄2

2µ(ξ )R2 L̂2− h̄2

2Bξ

1
ξ

∂
∂ξ

ξ
∂

∂ξ
+V (R,ξ ), (10)

and

Vint = V0(ξ )∑
µ

α∗2µY2µ(θ ,φ). (11)

In this paper h̄ω0 is considered as a free parameter which is fixed by the description
of the energy of 2+

1 state. The numerical calculation have shown that E(2+
1 ) is described

if we take h̄ω0=0.47 MeV. Below we assume that the value of R is fixed and corresponds
to the touching configuration of two clusters forming a dinuclear system with mass
asymmetry ξ . Thus, R = R(ξ ).

Our analysis of the mass-asymmetry motion in 220Th have shown that the motion in
coordinate ξ can be separated from the other degrees of freedom and the system is in its
lowest state with respect to the mass-asymmetry. The reason for this is that the energy
of the first exited state related to the mass-asymmetry degree of freedom is high enough
to neglect its influence on the low-energy part of the spectra. Neglecting the excitations
in the variable ξ we average Hamiltonian Ĥ over Ψ0(ξ ) which describes motion in ξ in
the ground-state. As a result we obtain

Ĥ0 = h̄ω0n̂+
h̄2

2µ(ξ0)R(ξ0)2 L̂2 +E0(ξ0). (12)
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Averaging over Ψ0(ξ ), yield the effective value of ξ , namely, ξ0 located between ξ =0,
which corresponds to the mononucleus configuration and ξ = ξα = 8/A. In equation
(12) E0(ξ0) is the zero-point energy of the motion in ξ , which is unimportant for further
consideration. The calculation have been performed with ξ0=0.2ξα . Using this value of
ξ0 we can calculate the interaction energy of the dinuclear system as described in [17].
This gives V0(ξ0)=11 MeV for the interaction between vibrational and rotational degrees
of freedom (see Eq.(11)).

The collective quadrupole coordinate α2µ can be expressed in terms of the creation
and annihilation operators of the quadrupole bosons

α̂2µ = β0(d+
2µ + d̃2µ), (13)

with β0 =
√

h̄/2Bω0. Again, as in the case of h̄ω0, the mass parameter of the quadrupole
motion B is not fixed in the model. The value of B and, respectively, β0 can be retrieved
by fitting the experimental value B(E2,2+ → 0+). According, to [18], the reduced
transition probabilities for the lowest levels of 220Th satisfy the rotor model expression
with quadrupole model Q0=540 e fm2. This yields β0=0.12.

If we neglect the interaction term V̂int in (1) the eigenfunctions of the Hamiltonian can
be constructed as

ΨIM
(nτn∆I1)I2

= [|nτn∆I1)×YI2](IM) , (14)

where |nτn∆I1) represents the n-boson wave function of the heavy nucleus, with the
seniority τ and angular momentum I1. Since the quadrupole oscillations have positive
parity, the parity of the states (14) is determined by the angular momentum of the relative
rotation of the fragments p = (−1)I2 . The energies of the states (14) are given in this
approximation by the expresssion

EnI1I2I =
[

h̄ω0n+
h̄2

2µR2 I2(I2 +1)
]
. (15)

The set of the wave functions (14) can be used as a basis to construct the eigenfunction
of the Hamiltonian Ĥ in the form

ΨIM,p = ∑
I1I2

∑
nI1τI1

a(I,p)
nI1τI1 I1I2

[|nI1τI1I1)×YI2](IM) , (16)

where coefficients a(I,p)
nI1 τI1 I1I2

should be obtained by a diagonalization of Ĥ. The matrix

elements of V̂int between the states (14) have the following form

〈ΨIM
(n′τ ′I′1)I

′
2
|V̂int |ΨIM

(nτI1)I2
〉 = (−1)I1+I′2+IV0β0

√
5

4π
(2I2 +1)(I2020|I′20)

×
(

I′2 I′1 I
I1 I2 2

)
(n′τ ′I′1||(d+ + d̃)||nτI1), (17)
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where the reduced matrix elements of the boson operators can be calculated using the
boson fractional parentage coefficients

[
dn−1(α1I1)dI|}dnαI

]
=

1√
n

1√
2I +1

(dnαI||d+||dn−1α1I1)

[
dn−1(α1I1)dI|}dnαI

]
= (−1)I−I1

1√
n

1√
2I +1

(dn−1α1I1||d̃||dnαI). (18)

Two-level solution

Although our calculations have been performed using a sufficiently large basis pro-
viding convergence the calculations have shown that the ground-state band and the first
excited negative parity band can be presented with a good accuracy as a superposition of
two basis states of the form (14). For the ground state band the two level approximation
yields the wave function of the form (I can have only even values)

Ψg.s.
I = sin[γ0(I)]

[
| I
2

I
2

I)×Y0

]

(IM)
− cos[γ0(I)]

[
|I−2

2
I−2

2
(I−2))×Y2

]

(IM)
,(19)

where

sin[γ0(I)] =
1√
2


1+

1√
1+

(
V0β0√

2π∆

)2
I

)




1/2

(20)

and for the energy we obtain

εg.s.
I = h̄ω

I
2

+
∆
2


1−

√
1+

(
V0β0√

2π∆

)2

I


 . (21)

In the last expressions ∆ = 3h̄2

µR2 − h̄ω .
For the first excited negative parity band we have

Ψn.p.
I = sin[γ1(I)]

[
|I−1

2
I−1

2
(I−1))×Y1

]

(IM)
+

cos[γ1(I)]
[
|I +1

2
I +1

2
(I +1))×Y1

]

(IM)
, (22)
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where

sin[γ1(I)] =
1√
2




1+
1√

1+
(√

12
5π

V0β0
h̄ω

)2
(I+1)(2I+3)

(2I+1)




1/2

(23)

and the energy is given as

εn.p.
I = h̄ω

(I−1)
2

+
h̄2

ℑ
+ h̄ω


1−

√√√√1+

(√
12
5π

V0β0

h̄ω

)2
(I +1)(2I +3)

(2I +1)


 . (24)

Angular momentum I can take only odd values.

Multipole Moments

Electric multipole operators are given by the expression

Q̂λ µ =
∫

ρ(r)rλY ∗λ µdτ. (25)

For the dinuclear system we assume that

ρ(r) = ρ1(r)+ρ2(r), (26)

where ρi (i = 1,2) are the densities of the DNS fragments. Using (26) we can rewrite
the expression of the electric multipole moments for the DNS in the following form

Q̂λ µ = ∑
λ1,λ1+λ2=λ

√
4π(2λ +1)!

(2λ1 +1)!(2λ2 +1)!

[
q̂(λ1λ2)

λ1
×Yλ2(Ω)

]
λ µ

, (27)

where

q̂(λ1λ2)
λ1

=

[(
A1

A

)λ2

Q(2)
λ1

+(−1)λ2

(
A2

A

)λ2

Q(1)
λ1

]
Rλ2 . (28)

In the last expression Q(i) (i = 1,2) are the intrinsic multipole moments of the DNS
fragments.

Since we assume that the light fragment is spherical and can not be excited in the
considered energy range the only nonzero moment for the first fragment is Q(1)

0 =
Z1/

√
4π . The second fragment is assumed to perform the quadrupole oscillations around
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the spherical shape. Thus, in the linear approximation with respect to the deformation,
we have two nonzero moments for the second fragment: Q(2)

0 = Z2/
√

4π and Q(2)
2 =

3Z2R2
2

4π α∗2µ . Therefore, we can write the explicit expressions for the dipole and quadrupole
moment of the DNS in the form

Q1µ = e
A1Z2−A2Z1

A
R ·Y1µ(Ω) (29)

for the dipole moment and

Q2µ = e
A2

1Z2 +A2
2Z1

A2 R2 ·Y2µ(Ω)+Q2µ
(2) (30)

for the quadrupole moment.

Reduced transition probabilities

Using expression (16) for the wave function and (27) for the multipole operators we
can calculate the reduced transition probabilities as the

B(Eλ , Ii → I f ) =
|< I f ||Qλ ||Ii > |2

2Ii +1
(31)

The reduced matrix elements for the multipole operator Qλ between the initial state i
and the final state j has the following form

< I j p j||Qλ ||Ii pi >=

∑
λ1λ2

∑
{i}{ j}

a(I j p j)∗
nI1τI1 I1I2

a(Ii pi)
nI′1

τI′1
I′1I′2

(nI1τI1I1||q(λ1λ2)
λ1

||nI′1τI′1I′1)C
I20
I′20λ20

√
(2λ +1)!

(2λ1 +1)!(2λ2 +1)!

×
√

(2i+1)(2 j +1)(2λ +1)(2i2 +1)(2λ2 +1)





I1 I2 I j
I′1 I′2 Ii
λ1 λ2 λ



 , (32)

where λ1 = λ −λ2, and {i}({ j}) stands for the set of quantum numbers of the initial
(final) states.

Using the two-level solutions for the ground-state and the first excited negative parity
bands we can easily calculate the B(E2)-values for the intraband transitions and the
values of B(E1) for the transitions between these bands.

In the case of the quadrupole transitions we have for the transitions between the states
of the ground state band

B(E2, Ig.s. → (I−2)g.s.) =

(−q(2,0)
0 sin [γ0(I)]cos [γ0(I−2)]+q(0,2)

2

√
I
2

sin [γ0(I)]sin [γ0(I−2)]

+q(0,2)
2

√
(I−2)

2
cos [γ0(I)]cos [γ0(I−2)])2 (33)
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and for the transition between the negative parity states

B(E2, In.p. → (I−2)n.p.) =

(−q(2,0)
0

√
6(2I−3)
5(2I−1)

sin [γ0(I)]cos [γ0(I−2)]+q(0,2)
2

√
I−1

2
sin [γ0(I)]sin [γ0(I−2)]

+q(0,2)
2

√
(2I−3)(2I +3)(I +1)

2(2I−1)(2I +1)
cos [γ0(I)]cos [γ0(I−2)])2. (34)

In the last two expressions we have

q(2,0)
0 = ee f f

A2
1Z2 +A2

2Z1

A2 R2,

q(0,2)
2 = ee f f

3
4π

Z1R2
1β0. (35)

For the dipole transitions between the two bands our calculations yields

B(E1, Ig.s. → (I−1)n.p.) =

q2
0

2I +1

{
√

2I−1sin [γ0(I)]cos [γ1(I−1)]+

√
6(2I +1)

5
cos [γ0(L)]sin [γ1(I−1)]

}2

,

B(E1, In.p. → (I−1)g.s.) = q2
0 sin2 [γ1(I)]sin2 [γ0(I−1)], (36)

where
q0 = ee f f

A1Z2−A2Z1

A
R .

RESULTS OF CALCULATIONS

The results of calculations of the energy spectra of the ground state band and the two
lowest negative parity bands for the 220Th are presented in Fig.2 together with the avail-
able experimental data. the The Hamiltonian (1) has been diagonalized numerically.
One can see the overall good agreement between the calculated and experimental spec-
tra.As a consequence of the harmonic quadrupole oscillations of the heavy fragment, the
ground-state band and the first negative parity bands exhibit approximately an equidis-
tant spectra.

The calculation shows that mainly two eigenvectors of Ĥ0 are present in the
wave function of the states of the ground state band. Namely,

[| I
2

I
2(I))×Y0

]
(IM) and[| I−2

2
I−2

2 (I−2))×Y2
]
(IM). The contribution of the first of them is predominant at low

angular momenta. As a consequence at low angular momenta the ground state band has
an equidistant spectrum with the energy differences determined mainly by the frequency
of the harmonic quadrupole oscillations of the heavy fragment. With increase of the
angular momentum, the distance between the levels is slightly increased, due to the
growing admixture of the component

[| I−2
2

I−2
2 (I−2))×Y2

]
(IM) to the wave function.
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FIGURE 2. Calculated and experimental level scheme of 220Th. Experimental energies, spin and parity
assignments are taken from [14].

This introduces a small nonlinear dependence of the γ-transition energies on the angular
momentum.

The same equidistant structure with the frequency slightly growing with an-
gular momentum holds for the first negative parity band. Again, the calculation
shows that mainly two eigenstates of Ĥ0 are present in the wave function. Namely,[| I−1

2
I−1

2 (I−1))×Y1
]
(IM) and

[| I+1
2

I+1
2 (I +1))×Y1

]
(IM) . The contribution of the later

component while being small at I=0 is growing with angular momentum. The energy
differences between the states in the negative parity band at low angular momentum are
again determined mainly by the frequency of the quadrupole oscillations of the heavy
fragment.

The angular momentum dependence of the frequency ωvib = Eγ/2, defined as a half
of the energy difference between the energies of two neighborhood levels of the ground
state band and of the first excited negative parity band is illustrated in Fig.3. One can see
the sharp decrease of the experimental values of Eγ for the transition 10+ → 8+ in the
ground state band and for the transition 13−→ 11− in the negative parity band which can
be a consequence of the backbending phenomena. The backbending in these bands can
be related to a rotational alignment of the nucleonic orbitals as it is mentioned in [14].
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FIGURE 3. Calculated (line) and experimental (solid circles connected by lines) energies of γ tran-
sitions between subsequent levels of the ground state band (a) and the first negative parity band (b).
Experimental values are taken from [14].
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FIGURE 4. Calculated (lines) and experimental (solid squares connected by lines) values of parity
splitting (see Eq.(37)). Experimental values are taken from [14].

The model considered above does not provide a mechanism which could be responsible
for the experimentally observed behavior of the γ-transition energies. However, it is
seen from Fig. 3 that the interval of variation of ωvib with angular momentum observed
experimentally and obtained in calculations is not large. The frequencies vary from 185
keV to 240 keV. By taking into account the length of the spectra in both energy and
angular momentum, we see that the frequency can be treated with a good accuracy as a
constant.

Dependence of the experimental and calculated values of a parity splitting in the
ground state and the first negative parity bands, treated as a unified alternating parity
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FIGURE 5. Angular momentum dependence of the ration of the reduced transition probabilities
B(E2, I → (I− 2))/B(E2,2+ → 0+) for the quadrupole transitions between the subsequent levels in the
ground state band and the first negative parity band.

band, on angular momentum is illustrated in Fig.4. The parity splitting is defined by the
expression [14]

S(I−) = E(I−)−
(I +1)E+

(I−1) + IE+
(I+1)

2I +1
. (37)

It is seen from the figure that for the low angular momenta the parity splitting is positive
and becomes negative with angular momentum increase. The possibility for the negative
values of the parity splitting is related to the fact that the ground-state band and the
first negative parity band are of the vibrational type. In this case the sign of the parity
splitting is determined by the difference in the energies characterizing the quadrupole
vibrations of the heavy fragment and the rotation of the light fragment around the heavy
one. Indeed, in the zero approximation E(I−) = 1

2ω(I− 1) + h̄2

2µR2 , E(I+) = 1
2ωI and

therefore S(I−)= h̄2

2µR2 − 1
2ω 2I

(2I+1) . Thus, for h̄2

2µR2 < 1
2ω , S(I−) can take negative values.

In the case of the rotational bands, the value S(I) must stay positive, achieving a zero
value for the ideal unperturbed rotational bands of a nucleus with a stable octupole
deformation.

The important feature of the spectra is an appearance at low energy of the second
excited negative parity band which contains the states of the even and odd angular mo-
menta. This band has an interesting features. The state with angular momentum I=2
is lower than the state with I=1. With increase of angular momentum the normal level
sequence is restored. The reason for such a behavior is related to a significant contri-
bution of the states

[| I+1
2

I+1
2 (I +1))×Y1

]
(I+1,M) and

[| I+1
2

I+1
2 (I +1))×Y1

]
(I+2,M) into

the wave functions for even and odd angular momenta, respectively. In the limit of V̂int
is going to zero these two states become degenerate.

It is assumed above that the intrinsic excitations of the heavy cluster are described
by the quadrupole harmonic oscillator model. We know that an excitation spectrum
generated by this model is characterized by a high degree of a degeneracy. So, it is
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FIGURE 6. B(E1)/B(E2) ratio as a function of the initial angular momentum for transitions in the
ground and the first negative parity bands. Experimental values (filled circles) are taken from [14].

interesting to know to what extent the traces of these degeneracies are seen in the
spectrum generated by the full Hamiltonian which contains also the interaction term.

First of all, it is interesting at what excitation energies appears the second excited 2+

state and the first excited 0+ state which has the same excitation energy as the 4+
1 state in

the case of the quadrupole harmonic oscillator. For 220Th we obtain E∗(2+
2 )=1161 keV

and E∗(0+
2 )=896 keV. For the E∗(4+

1 ) we have 717 keV.
Experimentally the excited bands of the positive parity have not been observed in

220Th. There are known 10+ and 8+ states with the excitation energies around 2 MeV.
However, it is not clear either these states are two-quasiparticle or they belong to the
excited rotational bands. Thus, the experimental information on the excitation energies
of the 2+

2 and 0+
2 states and on their characteristics is very important for the check of the

suggested model.
In Fig.5, the values of the ratio B(E2, I → I− 2)/B(E2,2+ → 0+) are presented as

a function of the initial angular momentum. As it should be in the case of harmonic
quadrupole oscillations of the heavy fragment the values of B(E2) increase linearly
with I. They does not show any changes in the behavior for transitions between the
members of the ground-state band and the first negative parity band since the underlying
quadrupole constituents in both bands are the same. Thus, the experimentally observed
staggering of the BE1/BE2 ratios can be attributed to the staggering of the B(E1) values
(see Fig. 6).

Such a staggering behavior of B(E1) can be qualitatively explained analyzing the
equation (36). We can see that the reduced transition probability B(E1) for the transition
from the state I of the ground state band to the state (I-1) of the first excited negative
parity band consist of two contributions, since both dipole transitions are allowed (see
Eqs.(19,22)): from the component

[| I
2

I
2(I))×Y0

]
(IM) to

[| I
2

I
2(I))×Y1

]
(I−1,M) and from
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the component
[| I−2

2
I−2

2 (I−2))×Y2
]
(IM) to

[| I−2
2

I−2
2 (I−2))×Y1

]
(I−1,M). In the op-

posite case of transition from the states of the negative parity band to the states of the
positive parity belonging to the ground state band, we have only one allowed transition,
namely, from the component

[| I
2

I
2(I))×Y1

]
(I+1,M) to the component

[| I
2

I
2(I))×Y0

]
(I,M).

The transition from
[| I+2

2
I+2

2 (I +2))×Y1
]
(I+1,M) to

[| I−2
2

I−2
2 (I−2))×Y2

]
(I,M) is for-

bidden because the dipole operator does not change a number of the quadrupole
phonons.

The B(E1)/B(E2) ratio as a function of an initial angular momentum is presented in
Fig.6. Calculated ratios for the odd initial angular momentum (i.e. for transitions from
the states of the negative parity) lie systematically lower than the ratios for the even
initial angular momentum (transitions from the state of the ground state band). This is
in agreement with the experimental data with the exception of two data points at 13−
and 14+ . As it is mentioned in [14] the large value of B(E1)/B(E2) ratio at 13− can be
attributed to the loss of E2 strength in the backbending. The rather small B(E1)/B(E2)
value for the 14+ attributed to the spread of E1 strength due to the presence of two 13−
final states.

CONCLUSION

We have suggested a cluster interpretation of the properties of the multiple negative par-
ity bands in 220Th. The collective motion related to the cluster degree of freedom leads
to the admixture of the very asymmetric cluster configurations to the intrinsic nucleus
wave function. To take into account the reflection asymmetric modes with nonzero val-
ues of K, the harmonic quadrupole oscillations of the heavy cluster is considered. The
resulting energy spectrum consists of the ground state band and several negative parity
bands which exhibit nearly equidistant behavior. The angular momentum dependence
of the parity splitting is described. The possibility for the negative values of the par-
ity splitting is related in the model to the interplay between the quadrupole vibrations
of the heavy fragment and the rotational motion of the light fragment. We describe the
observed staggering behavior of the B(E1)/B(E2)-rations as a function of the angular
momentum. The BE(1) transitions from the state of the negative parity to the state of the
positive parity is hindered, in this case in a contrast to the transitions from the positive to
the negative parity state the E1 transition operator relates only a part of the components
of the wave functions of the bands. The results of calculations are in overall agreement
with the experimental data. This work is a further development of the previously devel-
oped approaches [7, 10, 11].
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Abstract. The Web knowledge base on low-energy nuclear physics is described. The project
is aimed at developing models and corresponding computing codes for comprehensive theoret-
ical analysis of experimental data on low and intermediate energy nuclear reactions. Accumu-
lated knowledge base experimental data and computational codes are available on web-servers
http://nrv.jinr.ru/nrv/ and http://nrv.sun.ac.za/ with free accessibility to any remote user through any
web-browser of choice.
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INTRODUCTION

Over the past hundred years progress in nuclear physics has generated a vast amount
of the experimental data both on nuclear properties and on reactions induced by
nuclear particles. This data currently resides in literature or in special databases.
Advances in internet technology has however led to the development of Web based
nuclear databases in recent years. These nuclear databases, as a rule, supply users
with ordinary text files of tabular information are limited to specific information of
a specific type. An example of this is the web-server http://depni.sinp.msu.ru/cdfe
supported by the Center for photonuclear experiments data (INP MSU, Moscow)
that provides an access to a number of databases on properties of atomic nuclei and
their interaction with elementary particles, on giant dipole resonance parameters, on
nuclear scientific reference data and others. Part of these databases were adopted
from the data-servers in Lawrence Berkeley National Laboratory (http://ie.lbl.gov/)
and Brookhaven National Laboratory (http://www.nndc.bnl.gov/), which also provide
access through the Internet. Similar data archives were organized on the site of the
Nuclear Energy Agency (http://www.nea.fr/dbdata/). V.G.Khlopin Radium Institute in
collaboration with the U.S. Department of Energy, where a gamma ray spectra catalog
(http://www.atom.nw.ru/ skv/) has been developed. The Nuclear Data group at the Tri-
angle Universities Nuclear Laboratory (http://www.tunl.duke.edu/nucldata/index.shtml)
is responsible for the evaluation of light nuclei within the United States Nuclear Data
Network and the international Nuclear Structure and Decay Data Evaluators Network.
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The databases cited above form part of a long list web based databases currently
available.

Certainly cumulative data and its free accessibility assist in the day-to-day work of
a modern nuclear physicist. However, variety of data requirements, for example, in the
case of planning new experiments results in the work consisting of the following steps.
Firstly, a search for available experimental data in the databases. Secondly processing
the collected data, in some cases this includes the analysis of the data within appropriate
theoretical model. Thirdly, simulation of experiment and choice of effective parameters
of the experimental set-ups. Fourthly, when the experiment is completed, the measured
data have to be processed and analyzed with the help of the modern physical approaches.
All these steps require considerable amount of time, resources and experience.

In order to simplify this work our Web based database system combines databases on
nuclear properties and experimental cross sections of nuclear reactions along with com-
puter codes of theoretical models in a unique system which we name the Knowledge
Base on Low Energy Nuclear Physics. The system can be accessed on the web-servers
http://nrv.jinr.ru/nrv/ (FLNR JINR, Russia) and http://nrv.sun.ac.za/ (Stellenbosch Uni-
versity, South Africa). The nuclear physics Knowledge base adresses the following two
problems . (i) Fast and visual access of experimental data on nuclear structure and cross
sections of nuclear reactions, a possibility for processing and systematization of these
data, their comparison and plotting of the studied regularities. (ii) Analysis of exper-
imental data and modeling of the processes of nuclear dynamics within the modern
foolproof codes based on the well-established physical approaches all in a window of a
Web-browser. A set of coupled algorithms of nuclear dynamics, experimental data bases
on nuclear structure and nuclear reactions, and a system of special net codes for analy-
sis, management, representation and handling of user’s queries and obtained results of
calculations form altogether what is usually called "knowledge base".

KNOWLEDGE BASE ON LOW ENERGY NUCLEAR PHYSICS

Our Knowledge base differes from the current existing nuclear databases in three dis-
tinct ways. (i) In addition to the text information, the Knowledge base contains special
programs for graphic representation of data, performs comparative analysis of the data
and provides systematics of all kinds over a group of nuclei or the whole nuclear map.
(ii) Our databases on the experimental cross sections of nuclear reactions contain the
digitized data. Besides significant simplification of their control, this allows one to per-
form overall processing these data, make graphical comparison of the cross sections with
each other and, finally, analyze these data within theoretical models. All these actions
are made in the window of any Web-browser without installing any additional compu-
tational codes and graphical packages. (iii) The complicated computational programs of
modeling the low-energy nuclear dynamics form the main part of the developed system.
Taken together with the experimental data on nuclear properties they form the "nuclear
knowledge base". As far as we know, for the first time, the complicated computational
codes of modeling nuclear dynamics featuring a graphical interface for visual display
of data input and graphical representation and also handling of the obtained results in
the window of Web-browser, are available in the Internet without a necessity on the part
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of the user to download any of the programs. Beside easiness and convenience of use,
this method allows unifying,analysis and processing of the experimental data within the
well-established standard models.

The functioning components of the knowledge base are listed in Table 1. Below we
give a short description of its main parts.
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FIGURE 1. Nuclear Map – the databases on properties of an individual atomic nucleus in combination
with special software for graphic representation of the data, performing their comparative analysis and
obtaining systematizations of all kinds over a group of nuclei or the whole nuclear map.

Nuclear Map and Nuclear Reaction Data

Nuclear Map is a part of the knowledge base combining few databases on all kinds
of nucleus properties (see Table 1) adopted from different sources [1, 2, 3, 4, 5, 6, 7].
The Nuclear Map is organized in form of the hypertext table where each cell (colored
in correspondence with the main decay branch) represents the web-link to the page with
detailed information on the properties of corresponding atomic nucleus. It is demon-
strated in Fig. 1 (right side). In particular, on this page user may find the data on spin
and parity of the ground state of the nucleus, its binding energy and mass, charge radius
and ground state deformations, Q-values of possible decays. Information on observed
decay branches (with their probabilities) and structure of excited states are shown also
in graphical form (see Fig. 1). Finally, user obtains the data on metastable states, known
γ-radiation energies, the capture cross section of thermal neutron, and additional electro-
magnetic properties (magnetic momentum, transition probabilities and others).

In a number of cases it is necessary to compare certain characteristic over a group of
nuclei. This possibility is also realized in the Nuclear Map. With the help of a friendly
interface user may send a corresponding query to the Knowledge base. It results in a
web-page with the required data in graphical form. In Fig. 1 (at the bottom), in particular,
the nuclear half-life systematics is shown over all nuclear map. It is important to mention
that data are shown in separate Java window which has its own menu (see Fig. 2) and
provides the user with the possibility to process obtained data and, in particular, to save
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FIGURE 2. Experimental data on cross section of evaporation residue formation in reaction 4He +
197Au → 201Tl. Besides the cross section values the database contains information on authors, original
source of the data and details of experimental procedure. All information is downloadable in text or
graphical format.

it in textual (ASCII), bitmap (GIF, JPG, PNG) or post-script (EPS) format. The wide use
of Java applets makes the Knowledge base handy for the subsequent data processing.
The applets allow one to realize just within Web-browser window all the possibilities
like an application installed in a user computer.

The Knowledge base also includes databases on the cross sections of nuclear reac-
tions. Among them are (i) the elastic scattering cross sections for the reactions induced
by light nuclei (with mass A<20), (ii) the heavy-ion complete fusion cross section and
(iii) the evaporation residues cross sections. Last two databases are unique ones. They
contain experimental points, reference data and detailed information of the measurement
procedure (beam characteristics, target conditions, experimental set-up, measured prod-
ucts and others). The information for these databases were obtained either by digitizing
corresponding tables and plots published in main nuclear physical journals or directly
from authors. We covered a period of time from 1970 up to present days and keep the
databases in up-to-date state. At the moment the databases consist data on more then
1600 reactions, i.e. about 15 000 experimental points. As an example the data on the
evaporation residue cross section for the reaction 4He + 197Ag for various channels are
shown in Fig. 2.
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FIGURE 3. Web-form for preparation of the optical model parameters – reaction partners, collision
energy, experimental data, optical model potential, integration and fitting parameters.

Nuclear Models and Nuclear Reaction Models

It was mentioned above that one of the main features of the Knowledge base is
the possibility to run the computer codes modeling nuclear reaction dynamics. The
theoretical models available at the moment in the Web Knowledge base are listed in
Table 1. We include on the Knowledge base only the well-established models either
coded by us or adopted from the open sources (distributed by author, published or
stored in approved code-banks). Originally these codes are the Fortran text supplied
with complicated manuals describing the structure of input file. Often the preparation of
the input turns out to be difficult even for an experienced user with good knowledge the
theoretical approach in detail.

In order to avoid these difficulties we have developed a comprehensible web-form
which allows the user to define all input parameters for each theoretical model included
to the Knowledge base. As an example such a web-form is shown in Fig. 3. Using
this form user may prepare parameters and run the calculation of the differential cross
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FIGURE 4. Web page with the results of the optical model calculation performed within the Knowledge
base for 3He + 14C elastic scattering at the laboratory energy E = 72 MeV. Java applets represent data in
graphical form and provide additional possibilities to process the obtained results.

section of nuclear elastic scattering. Working with the model user may obtain advices on
the optical model parameters based on published systematics or may perform automatic
fit in order to find the optimal choice of the parameters. Optionally user may choose
different types of the optical potential, such as Woods-Saxon volume or surface potential
and their superposition, proximity potential and DDM3Y folding potential. It is possible
to request the experimental data on elastic scattering available in the corresponding
database of the Knowledge base or to input user’s own data. The short theoretical
description and main references are also given. The input information is visualized
with the help of Java applet incorporated into the web-form (see Fig. 3). Altogether the
web-form elements provide friendly interface for parameter preparation and subsequent
running the optical model code. Work within all the models of the Knowledge base are
organized in the same way.

Basing on the model parameters defined by user the system creates input file and runs
the calculation code. All codes of the Knowledge base are run on the sever side only.
User does not need to download and to install any executable files on his/her computer.
Special services (combination of Java applet and server-side service program) inform
user on the calculation progress and show intermediate results. This scheme allows us
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to run a long-time calculation such as a couple-channel model of heavy-ion fusion, for
example, and to be sure in getting the results even after many-hours of computation.
Note also that all user’s data (input parameters, experimental data and others) are stored
on the Knowledge base server in unique directory which is not accessible for other users.

When calculations are completed, the user obtains a final web-page which contains
the results in text and graphical representation. In particular, Fig. 4 demonstrates the
result of the optical model calculation of elastic scattering for 14C(3He,3He) reaction at
Elab = 72 MeV. One may see the initial parameters and the fitted ones, the total reaction
cross section and some reaction characteristics. Java applets in this web-page give a
visual representation of the optical model interaction, elastic S-matrix elements and
elastic scattering differential cross section. These Java applets are not static elements.
By clicking on the Java applet the user activates a separate Java window with menu
including many additional options for processing the obtained results. Particularly, in
the Java window showing the elastic scattering cross section the user is able to change
the scale of the graph, transform cross section to the laboratory or center of mass system,
plot cross section as a ratio to the Rutherford cross section and so on. The S-matrix
also can be replotted in different forms and different scales. One of the most important
options available in all the Java windows of the Knowledge base is a possibility to save
the obtained results to user’s hard-disk for further use. As it can be seen in Fig. 4 we
realize a possibility to save data both in text and graphical form.

The Knowledge base includes also Java classes for representation of 3-dimensional
objects. They are very useful in the case of plotting the multi-dimensional functions
like a nucleus-nucleus driving potential, shell-model nucleon wave functions, 3-D total
scattering wave function and others. In Fig. 4 (at the left), for instance, the 3-D scattering
wave function is shown for 3He + 14C elastic scattering at Elab = 72 MeV.

In addition to the obvious scientific application, the Knowledge base has an educa-
tional aspect as well. For instance, within the optical model we realize a tool that allows
a study of the dependance of the elastic scattering cross section on different parameters
of optical potential. By varying the optical model parameters and observing the corre-
sponding changes on the structure of the angular distribution, the student gets a feel of
the sensitivity of differerent parametes of the optical potential. In Fig. 5 (at the right) the
curves demonstrate the cross section calculated with the optical potentials different by
the value of radius of its real part. One can see the shift and stretch of the interference
structure of the angular distribution which can be easily related with the change of the
size of the scattering field. Thus, basing on the descriptions of theoretical models and
on the tools realized in different components of the Knowledge base one may develop a
series of practical exercises for students studying nuclear physics.

PERSPECTIVES

Recently a mirror server of the Knowledge base was placed in operation at Stellen-
bosch University (South Africa). Within this collaboration we are going to develop the
Knowledge base in order to give theoretical support to the experimental studies which
are planned or already performed in the laboratories of South African institutes, particu-
larly, in the iThemba LABS. Among new components of the Knowledge base it is worth
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FIGURE 5. (Left) With the help of the optical model code user can calculate, plot and save a 3-D total
scattering wave function. The wave function is calculated for 3He + 14C elastic scattering at Elab = 72
MeV. (Right) The optical model code provides the possibility to investigate the influence of the optical
model parameters on the elastic scattering angular distribution. In figure the dependence on the radius RV
of the real part of the optical potential is shown for 14C(3He,3He) reaction at Elab = 72 MeV.

mentioning the computer codes for the simulation of nuclear reaction experiments taking
into account the detectors loading by the elastic scattering and inelastic events, effects
of multiple scattering in a target sample, and providing the information on kinematical
properties of future experiments.

We also plan to extend the Knowledge base with the following elements: (i) computer
codes for the calculation of energy dependence of reaction cross section, (ii) codes
for calculation of the inelastic scattering and transfer reactions in heavy-ion collisions
within semiclassical approximation, (iii) codes for the phase shift analysis of resonant
scattering of light nuclei, (iv) calculation of radioactive capture cross section at low
astrophysical energies, (v) description of properties of different nuclear decay modes,
(vi) creation and filling of new databases on nuclear properties, in particularly, databases
on reduced transition probabilities B(Eλ ) for heavy ions, and others.
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Abstract. We study the theoretical description of many nuclear reactions where the evolution of
the nuclear system is described as a trajectory in multidimensional deformation space. We propose
a strategy for revealing the trajectories in the space of experimental observables, at prescribed
confidence levels.
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In an earlier study we proposed a novel approach for extracting information from
known mass-energy distributions of the nuclear reaction products by processing the 2D
data directly [2]. A typical M−E fragment distribution, for instance in the 233U(nth, f )
reaction, looks like at first sight like a smooth hill. Closer inspection shows that each
E = const slice of this distribution (see Fig. 1) is not absolutely smooth but rather display
local irregularities (peaks), as indicated by the arrows.

The origin of the peaks becomes clear from the following considerations. The yield
Y (M|E) of the fission fragment (FF) with mass M at a fixed value of E is equal to,

Y (M|E) = ∑
Z

Y (M,Z|E) (1)

The marginalization in expression ( 1) is done over all possible values of the FF nu-
clear charge Z. Thus, the spectrum shown in Fig. 1 is a superposition of the partial mass
spectra at fixed charges (so called isotope distributions) known from experiments [3].
Let us define the term: "fine structure" (FS). By definition, it is the local areas (peaks) of
the 2D distribution indicating increased yields of FFs above a smooth background. As
can be inferred from Fig. 1 the FS in this case is due to larger yields of the even-charged
FFs. It is the well-known "odd-even staggering", based on proton pairing [1]. The peaks
in the adjacent sections E = const are correlated, forming regular structures on the E−M
plane in the form of ridges parallel to the E-axis [3]. Henceforth this structure will be
referred to as "vertical ridges".

We pose the question, is there any fine structure in the FF mass-energy distribution,
different from the vertical ridges produced by odd-even staggering and caused, conse-
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FIGURE 1. Section of the E−M distribution for the energy of the fragment E = (100.5±0.5) MeV [3].
The partial yields for the fixed nuclear charges are shown by dot lines.

FIGURE 2. Snake-like FS exhibited by the TKE-M distributions of fragments from the reactions
233U(nth, f ) (a) and 238U + p (60 MeV) (b). See text for details.

quently, by different physical processes? In order to automatically suppress the vertical
ridges while searching for the fine structure, the sections M = const are investigated,
known to display local peaks [4, 5]. Methods based both on peak identification algo-
rithms in gamma-ray spectroscopy and stochastic image processing are used in our in-
vestigations [2]. Fig. 2 shows examples of the FSs revealed in the total kinetic energy-
mass (TKE-M) distributions of the fragments. Initial data were obtained using time-of-
flights spectrometers described in [6, 7]. Darker points in the gray scale map (see Fig. 2a)
correspond to higher intensities of the effect. Only the lighter mass peaks of the fission
fragments are shown.

The symmetry shown in Fig. 2b is due to both the method of measurement of the
fragment mass ("two velocities" method [1]), and the filter used [8].

Basically the FS represents a series of snake-like curves sometimes exhibiting bifur-
cation points [2, 8].

What are the reasons for investigating the specific FS observations? In the modern
view, the evolution of the decaying nuclear system, for instance in fission, is mainly
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determined by the potential energy of the system as a function of the parameters of
its deformation or, in a 3D presentation by a potential energy surface (PES). Distinct
potential valleys of the PES [11, 12] give rise to the preferable trajectories (realizations)
of the system in the deformation space. As is shown by [13], at any point of the
system’s descent down the fission valley a scission can appear to occur, indicating a
fission event in the space of experimental observables. In other words, the trajectories
in the deformation space as a continuous sequence of nuclear states in the fission
valley is mapped to continuous trajectories (smooth curves) in the plane of experimental
observables [14], choosing the FF total kinetic energy and mass chosen variables in
Fig. 2, for example. Thus we believe [15] the FS under discussion to be an image of the
distinct fission process.

So far the weak point of the proposed data processing procedure is an absence of
a quantitative confidence in the persistence of the extracted FS. Here the problem
is exacerbated by the fact that we are looking for a new phenomenon, i.e. no prior
knowledge about the shape of the structures is available.

In order to address this difficulty the following approach, based on the morphological
methods of image analysis proposed in [9], is developed.

Let f̃ be an experimentally measured signal (i.e., the mass-energy distribution) that
can be represented as follows

f̃ = S +h+ν , (2)

where S is the image of a smooth "substrate", h a signal that might contain several
instances of FSs, and ν additive noise (i.e. generated by some probability density
function). At the first stage, the smooth underlying substrate S is extracted from the
signal f̃ , yielding f = h + ν . Different methods can be used to extract S, using spline
interpolation for example [2, 16]. During the second stage, the FS is extracted from the
signal f , using methods based on morphological image analysis.

Let us briefly recall some of the definitions of morphological image analysis. An
image f (·) is a square-integrable, integer valued function on a subset X of the Euclidean
plane R2. X is called the field of vision, with f (x) the brightness of the point x ∈ X . In
the case under consideration X = {x1, . . . ,xn}, and the images f̃ (·) f (·), S(·), h(·), and
ν(·) of (2) are defined at exactly the same points and are considered to be the elements
of the Euclidean plane Rn. The measurement error ν ∈Rn is considered to be a random
image having zero mean, Eν = 0, and covariance matrix σ2I, where I ∈ (Rn →Rn) is
the identity matrix, with σ2 unknown.

The image of the FS is written as ω(·) and is defined on a variable shape, variable
size subset Ω of the field of vision X . Let us define the shape of the image ω(·), as the
set of images

Vω = {ω(·),ω(x) = c1χA1(x)+ c2χA2(x), c1 ≥ c2, c1,c2 ∈R1, x ∈Ω}, (3)

with
χAi(x) = 1, x ∈ Ai; and χAi(x) = 0, x 6∈ Ai; (i = 1,2)

Vω is a convex closed cone in R2 and in Rn. In this definition A1 and A2 are different
regions of Ω of constant brightness. According to this definition, the shape of the image
of an object therefore consists of all images of the object that differ in brightness in
regions of Ω of constant brightness.
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FIGURE 3. Example of regions A1,A2 ⊂Ω of constant brightness of an image of the FS

In Fig. 3 regions A1,A2 ⊂ Ω of constant brightness of a FS image are shown. In this
figure, the field of vision is split into regions A1,A2, with A1 the "fine structure" itself,
and A2 the surrounding region. The shape (in the usual sense) and the size of the regions
A1 and A2 are defined by the researcher. Note that the expected shape is postulated by
the user, this procedure returns the confidence in the actual presence of the shape in the
image. In our case the the postulated shape is derived from Fig. 2. The brightness of
regions A1 and A2 are supposed to remain constant. The fact that the brightness at points
that belong to the "fine structure" is greater than at surrounding points is reflected by the
condition c1 ≥ c2 in (3).

The projection P, defined below, of some image g(·) defined on Ω, onto the shape
Vω is the image (PVω g)(·). It exists and is unique, because Vω is convex closed cone
(see [9]),

(PVwg)(x) = ĉ1χA1(x)+ ĉ2χA2(x), x ∈Ω, (4)

where ĉ1, ĉ2 are the solutions of the following minimization problem,
∫

Ω

(g(x)− ĉ1χA1(x)− ĉ2χA2(x))
2 dx = min

c1,c2∈R1c1≥c2

∫

Ω

(g(x)− c1χA1(x)− c2χA2(x))
2 dx

(5)
We now consider the problem of FS extraction within the framework of the above

formulated signal registration model as a statistical hypothesis testing problem, H – for
image f there exists a fragment fω , represented as

H : ∃ fω = g+ν , ∃t ∈ T, g ∈ t(Vω), ν ∈ (0,σ2I), σ2 > 0, ‖ν‖2 << ‖g‖2, (6)

where the shape of g, up to translation and scaling coincide with (3), and t ∈ T is a
translation and scaling transformation with T the set of all such transformations. The
alternative hypothesis K simply states: such a fragment does not exist.

To solve this hypothesis testing problem the following functional is used [9],

j(z) =
||(I−PVω )z||2
||(PVω −PVU )z||2 . (7)
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where z is the image under consideration, PVU z is a projection of the image z(·) onto the
shape U of the uniform field of vision,

U = {u(·),u(x) = const ·χΩ(x), x ∈Ω} . (8)

The functional (7) has following properties:

1. Assume that the fragment fω exists and satisfies the condition (6), but cannot be
represented as

fω = g+ν ,∃t ∈ T, g ∈ t(U),ν ∈ (0,σ2I), σ2 > 0. (9)

The numerator in (7) equals ||(I − PVω )ν ||2, the denominator equals ||(PVω −
PVU )ν + (PVω −PVU )g||2 and has values of O(‖g‖2). Thus the value of the func-
tional (7) is small, because ‖ν‖2 << ‖g‖2.

2. Assume that the fragment fω exists and satisfies the condition (9). In this case the
numerator in (7) equals ||(I−PVω )ν ||2 and has values of O(‖ν‖2). The denominator
equals ||(PVω − PVU )ν ||2 and also has values of O(‖ν‖2). The functional j(z) is
therefore O(1).

3. Assume that the fragment fω satisfying the condition (6) or (9) does not exist.
The numerator in (7) equals ||(I−PVω )ν + (I−PVω )g||2 and is of O(‖g‖2). The
denominator, which equals ||(PVω −PVU )ν + (PVω −PVU )g||2, is also of O(‖g‖2),
and again the functional j(z) is O(1).

Hence, only in the first case is the value of the functional (7) small, because ‖ν‖2 <<
‖g‖2.

The decision rule is as follows: hypothesis H is accepted if by means of translation
and scaling, a fragment fω , such that j( fω) ≤ A can be found, where A is a constant
empirically determined, as explained below. Otherwise H is declined.

The value of the functional (7) is considered as a measure of the closeness between
image z and the image with shape (3). Note that the functional (7) is invariant with
respect to variations of the image’s brightness and contrast values, i.e. to transformations
z→ αz+β , where α is a number, and β is an image defined on Ω.

The value of the constant A is defined as follows. First of all using experimental data
the value of A determined that appears acceptable for an image of the proposed FS.
A value of A = 40 appears to be appropriate. The reliability of this value is verified
by means of experiments on synthetic data. We use 10000 synthetic images of smooth
substrates S with additive Poisson-distributed noise. The noise parameters were the same
as in real experiment. The methods that have been proposed in [2, 16] are used to remove
the noise from the smooth substrate. Subsequently an empirical distribution of the values
of the functional (7) at the specified noise levels is determined. Based on this distribution
the probability is estimated as P( j ≤ A) = 0.001, see Fig. 4. This is the probability
of erroneously accepting the hypothesis against the closest alternative, "uniform field
of vision". According to the properties of the functional (7), this probability estimates
an upper bound for the probability of erroneously accepting the hypothesis against the
alternative, "fragment does not exist". This criterion is analogous to the principle of the
locally uniformly of the most powerful criterion [17].
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FIGURE 4. (a) The fine structure revealed at the same TKE-M distribution, as is shown at Fig. 2 (b). (b)
The spectrum of functional (7) values, obtained based on model data. The dotted line shows the threshold
value A, for which P( j ≤ A) = 0.001.

According to this statistical analysis, the probability that the "fine structure" obtained
from real experimental data is due to noise, is small. Fig. 4a) shows the result of the "fine
structure" extracted from real experimental data using the method described above, as
compared with the result obtained earlier in Fig. 2b).

The proposed method enables one to search for structures that have different shapes,
and should also be useful in other contexts.

In summary, we emphasize the two main aspects of this approach to the analysis
of two-dimensional distributions of experimental observables originated from nuclear
reactions.

1. Multi-valley structures of the potential energy surface of nuclear system, at least in
fusion, fission and quasifission reactions, describe different discrete reactions along
these valleys. Each reaction manifests itself as a trajectory in the space of experi-
mental observables such as mass-asymmetry and total kinetic energy, coupled with
prescession elongation of the system. Visualization of these trajectories (revealing
the fine structure) can give access to unique physical information, unknown in the
past.

2. In order to obtain quantitative estimates of our confidence in the extracted struc-
tures, we developed a mathematical approach based on morphological methods of
image analysis. Within its framework, one estimates the probability of random (due
to the noise) realizations of the structure (or its scaled versions). This provides nec-
essary confidence in the observations for subsequent physical analysis.
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Abstract.
6Be spectrum populated in the charge-exchange 1H(6Li,6Be)n reaction was studied experimen-

tally. The known 0+ ground state (g.s.) and excited 2+ state were observed. Above the 2+ state a
broad energy hump extending up to 15 MeV is present in the spectrum. This hump is apparently
composed of negative parity states and its interpretation as the isovector soft dipole mode connected
to the 6Li g.s. is suggested.
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INTRODUCTION

The 6Be isotope has been for a long time the subject of experimental study. Out of the
first series of experimental works the last one [1] was published far ago and only very
recently two new experimental works [2], [3] were carried out. One should emphasize
the two aspects of interest of this nucleus.
(i) The g.s. of 6Be is particle unstable and this nucleus is the lightest ground state
true two-proton (2p) emitter. 2p radioactivity is an exclusive quantum-mechanical phe-
nomenon when a sequential decay is not possible and the three final-state fragments are
emitted simultaneously [4].
(ii) The 6Be nucleus is an isobaric partner of 6He which is a classical halo nucleus.
Enormous efforts has been invested in the recent two decades in the studies of the halo
aspect of the 6He structure. To examine the correlation in the neutron halo one has to
excite or destroy the 6He nucleus. This embarrasses the interpretation of experimental
data because one has to take into account the reaction mechanism. Recently it has been
demonstrated in Ref. [2] that a valuable alternative to study of 6He itself could be a
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precision study of correlations in the decay of 6Be states.
This work is aimed at the study of the properties of the 6Be continuum above the

first excited state (2+ state at ET = 3.03 MeV; ET is energy above the two-proton
breakup threshold [6]). This part of 6Be spectrum will be explained by the population
of negative parity states. We will interpret such an exclusive population as a novel
effect: the isovector soft dipole excitation mode. Having in mind the interest attracted
by soft dipole mode studies in exotic dripline halo nuclei as a tool for nuclear structure
and nuclear astrophysics we dedicate this work to prove the existence of such a new
phenomenon.

EXPERIMENTAL SETUP

The experiment was carried out at the U400M cyclotron in the Flerov Laboratory of
Nuclear Reactions, JINR (Dubna, Russia). The 6Be spectrum was populated in the
charge-exchange 1H(6Li,6Be)n reaction. On one hand, this reaction was chosen because
of its presumably simple mechanism. On the other hand, in this inverse kinematic case,
the 6Be decay products (α + p + p) fly out in relatively narrow cone in the forward
direction in laboratory frame. The latter makes possible to detect all decay products with
reasonable efficiency in a wide range of 6Be excitation energy. Such condition allowed
us to study the reaction in the whole angular range.

The 32 MeV/A 6Li beam was delivered by the cyclotron and transported by the
ACCULINNA fragment separator [5] into an experimental chamber. The beam with
typical intensity of 3×107 s−1 was focused in an area of diameter 5 mm in the center of
the cryogenic hydrogen target. 4 mm thick gas cell was filled with hydrogen at pressure
of 3 bar and cooled down to a temperature of 35 K.

FIGURE 1. (color online) Detector system setup.

Reaction products were detected using two identical telescopes positioned 91 and 300
mm downstream of the target (see Fig. 1). Each telescope consisted of a 300 µm thick
annular double side silicone strip detector (DSSD) and of a 1000 µm thick annular single
side silicone strip detector (SSSD), both of them had an active area with the outer and
inner diameters of 82 and 32 mm, respectively, and a 28 mm central hole. The silicon
detectors were backed by 19 mm thick CsI(Tl) detectors forming an array with outer
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and inner diameters of 97 and 37 mm, respectively. The DSSD were segmented into
32 sectors on front side and 32 rings on back side providing position information of
the measured particles. The SSSD and CsI(Tl) array were segmented into 16 sectors.
Particle identification was performed by standard ∆E-E method. The angular ranges of
the far and the near telescope were 3.2◦− 7.5◦ and 10.9◦− 24.2◦, respectively, in the
laboratory system.

DATA ANALYSIS

In this work only the triple α + p + p coincidences, originating from the 6Be decay,
were analysed. Registration of the triple coincidences corresponded to the complete
kinematical measurement for the 1H(6Li,6Be)n reaction and allowed us to reconstruct
all possible spectra and correlations.

Invariant mass spectrum

Invariant mass spectrum of 6Be measured in the whole angular range is presented in
Fig. 2. Two peaks in the spectrum at the energies ET = 1.3 MeV and ET = 3.0 MeV show
the population of the known ground 0+ and excited 2+ states ([6] and Refs. therein). The
width of the g.s. is 0.092 MeV [6]. Measured width of the 6Be g.s. peak (∼0.5 MeV) is
determined by our experimental resolution.

FIGURE 2. 6Be invariant mass spectrum.

The main part of the counts in the spectrum comes from a broad hump centred at about
8 MeV. It should be noted that the shape of the spectrum shown in Fig. 2 is affected by
the detection efficiency. In the case of triple coincidences the efficiency depends on many
parameters. Generally, this function depends on the energy and angular correlations of
the decay products. The calculations of efficiency were carried out on the basis of Monte
Carlo simulations which take into account all details of the experimental setup.
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Angular distribution

Fig. 3 shows a two-dimensional plot of the invariant mass energy versus the CM angle
of 6Be from the 1H(6Li,6Be)n reaction. The left panel presents the measured data, the
right panel shows the same data after correction for efficiency. In the presented spectra
there are well pronounced three regions saving the positions of its maxima at different
angles θBe. This fact allowed us to assume that this peaks correspond to the population
of separate states and allowed us proceed to the analysis of this phenomena. As the first
step of analysis we made effort to clarify the angular behaviour of the measured spectra
(see Fig. 3). The whole angular range of the invariant mass spectrum was divided into
18 equal bins and each bin was corrected for efficiency. The whole spectrum could be
represented as a sum of three terms corresponding to the known 0+, 2+ states and the
broad structure above 4 MeV:

dσ
dET dθBe

=
3

∑
i=1

fi(θBe)Fi(ET ) (1)

Peaks at energies about 1.3 and 3.0 MeV were fitted using the Breit-Wigner profiles.
For the broad hump between ET = 4 MeV and ET = 14 MeV the function suited to
approximate the experimental data was chosen as.

σJπ ∼ ΓJπ (E)

(E−Er)
2 +

(
ΓJπ (E)

2

)2 , (2)

ΓJπ (E)∼ α
(

E
(Jπ)Er

)2

+(1−α)
(

E
(Jπ)Er

)4

,

α ∼ 0.65 , Jπ = 0+,2+ ; Γ1− ∼ E3/2
r

An example of such a decomposition for an angular range of 30◦− 40◦ is given in
Fig. 4. The integral of (2) gives the population cross section for each state in the invariant
mass spectrum (see Fig. 4).

The most forward focused state is 0+, the first excited state 2+ cross section is shifted
to backward angles. The broad hump has a maximum in between of the g.s. 0+ and first
e.s. 2+ maxima. Based on this feature of the observed angular distributions we assume it
reasonable to attribute a ∆L = 1 angular momentum transfer to the origin of this hump.
Such a momentum transfer corresponds to the population of states in 6Be with the most
probable spin-parity Jπ = 1−. It should be emphasised that the cross section for the
population of these negative parity states highly exceeds the population of the known 0+

and 2+ states. So we are dealing here with the strong effect in the population of the 6Be
continuum.
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FIGURE 3. (color online) Invariant mass 6Be energy versus θBe. The measured spectrum is shown in
the left panel, the same data after correction for efficiency are shown in the right panel. In both spectra
there are well visible three peaks depicted by dashed elipses. Position of these peaks does not depend on
the angle θBe.

FIGURE 4. (color online) Left: Example of the decomposition of experimental spectrum measured in
angular range θBe ∈ (30◦,40◦) and corrected for efficiency (see explanation in the text). Right: Angular
distribution for the 1H(6Li,6Be)n reaction. Cross section is presented in arbitrary units. Circles and squares
correspond to population of g.s. 0+ and first e.s. 2+. Triangles depict the population of the broad bump
centered at energy of about 10 MeV.

CONCLUSION

The spectrum of 6Be was studied experimentally in the charge-exchange 1H(6Li,6Be)n
reaction. The spectrum up to 15 MeV of excitation is completely described by population
of three states 0+ at 1.37 MeV, 2+ at 3.05 and 1− at∼ 4−12 MeV. The 1− continuum is
interpreted as a novel phenomenon – the isovector soft dipole excitation mode – opening
qualitatively new opportunities of the nuclear structure studies. We expect that the
further analysis will confirm our supposition and will give some additional information
about the 6Be structure.
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Abstract. Evaporation residues(ER’s) formation channels in low energy heavy ion collisions is
investigated within di-nuclear system model(DNS) [1] for the reactions 20Ne+208 Pb, 25Mg+206 Pb
and 36S +nat Pt. The channels which involve cluster emission from excited intermediate system
are investigated. The experimental data on velocity distributions of ER’s can give a hint about the
formation channels and it is in agreement with calculated average velocities for a certain ER’s. For
the reaction 64Ni +164 Dy, dependence of such cluster emission channels from bombarding energy
is predicted.
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INTRODUCTION

Study of nuclear reactions induced by heavy ions (HIs) is a topic of interest for last
many years. At relatively low bombarding energies and values of impact parameters, HI
reaction mechanism can be classified into complete fusion(CF), incomplete fusion(ICF)
processes. In case of CF, the projectile is completely absorbed by the target nucleus,
forming an excited composite system from which nuclear particles and/or gamma rays
may be emitted subsequently. However, in case of ICF, the incident ion is assumed to
break up into the fragments in the vicinity of nuclear field of the target nucleus, followed
by fusion of one of the fragments with the target nucleus, while the remaining part of
projectile goes on moving almost along the beam direction with approximately beam
velocity. Theoretical and experimental studies of decay products in heavy ion collisions
is very important to establish the role of different reaction mechanisms in producing the
final reaction products, also it gives us a very important knowledge about the nuclear
processes and structure of the nuclei. The reaction products can be divided into light
evaporation particles, complex fragments, fission products and evaporation residues. In
low energy nuclear reactions, for the relatively light systems, the evaporation particles
and evaporation residues are the main reaction products, while for the heavy systems,
fission process is responsible for the main reaction products. For both light and heavy
systems, complex fragment emission channel is also always present, with relatively
small cross sections comparing to the cross sections for the main reaction products. For
the relatively light systems, the detailed investigations of complex fragment emission in
complete fusion reactions was carried out both theoretically [2] and experimentally [3].
For the heavy systems, a good example of cluster emission is an observed cluster
radioactivity of some heavy nuclei [4]. If the cluster decay is possible from ground state
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of heavy nuclei, then with increasing excitation energy, it must become more easier. For
experimental observation of cluster emission in heavy systems, these clusters should be
measured in coincidence with a heavy partners. Also, velocity distributions of heavy
partners(or ER’s) can give a hint about such processes.

Here we investigate the mechanism of ER’s formation in complete fusion reactions
induced by HIs and we analyze all possible reaction channels which lead to the final
ER’s in the reactions 20Ne +208 Pb, 25Mg +206 Pb and 36S +nat Pt. Cluster emission is
treated under the assumption that light clusters are produced by collective motion of the
nuclear system in the charge asymmetry coordinate, with further thermal escape over
the Coulomb barrier. Emission barriers for complex fragments are calculated within
the DNS model by using the double-folding procedure (with the Skyrme-type density-
dependent effective nucleon-nucleon interaction) for the nuclear part of the nucleus-
nucleus interaction potential. Both evaporation and binary decay are treated in the same
way.

FORMATION AND DECAY OF THE COMPOUND NUCLEUS (CN)
AND DINUCLEAR SYSTEM (DNS)

The emission process of complex fragments from the excited intermediate system,
formed in heavy ion collisions, involves the motions in charge and mass asymmetry
coordinates, which are defined here by the charge and mass (neutron) numbers Z =

Z1 and A = A1 (N = N1 = A − Z) of light nucleus of the DNS [1] formed by two
touching nuclei, and the motion in the relative distance R between the centers of mass
of nuclei. In the decoupled approximation the binary decay consists of two steps: (i)
clustering or the formation of asymmetric DNS in the excited state with some probability
and (ii) the decay of this DNS by the thermal overcoming the barrier in the nucleus-
nucleus potential. The probability of cluster formation is calculated statistically by
using the stationary solution of the master equation with respect to the charge and mass
asymmetries and depends on the potential energy of the DNS configurations at touching
distance and thermodynamical temperature of the system. The probability of the DNS
decay in R coordinate is calculated by using the transition state method. This decay
process depends on the termodynamical temperature of the DNS and the difference
between the potential energies of the DNS configurations at the touching distance and at
the barrier position.

The cross section of the charge particle emission from the excited intermediate system
is calculated as follows

σZ,A(Ec.m.) =

Jmax∑

J=0

σZ,A(Ec.m., J) =

Jmax∑

J=0

σcap(Ec.m., J)PCN(J)WZ,A(E∗CN , J), (1)

where σcap(Ec.m., J) is the partial capture cross section and WZ,A(E∗CN , J) is the emission
probability of a given particle from the excited nuclear system. Here, we consider the
decay of excited intermediate system as a sequential light particle evaporation, which
includes neutrons, protons, deuterons and tritones, and a cluster (Z ≥ 2) emission.
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CN formation and its consequent decay are not necessarily the ultimate results of the
evolution of the initial DNS. In addition to contributions from a CN decay, the binary
decay component is related to the quasifission (or multinucleon transfer) mechanism.
In our model the fragments are produced as binary decay products of the DNS formed
during the diffusion process along the mass (charge) asymmetry coordinate with and
without stages of CN formation. The dominant reaction mechanism (complete fusion or
quasifission) depends on the entrance channel and on the value of the angular momentum
deposited into the system. In our model both components are taken into consideration.

Dinuclear system formation

The partial cross section for the formation of a dinuclear system is given as

σc(Ec.m., J) = πo2(2J + 1)Pcap(Ec.m., J), (2)

where o2 = ~2/(2µEc.m.) is the reduced de Broglie wavelength and µ the reduced mass.
The value of σc(Ec.m., J) defines the transition of the colliding nuclei over the Coulomb
barrier with the probability Pcap(Ec.m., J) and the formation of initial DNS when the
kinetic energy Ec.m. and angular momentum J of the relative motion are transformed
into the excitation energy and angular momentum of the DNS. The transition probabil-
ity is calculated with the Hill-Wheeler formula Pcap(Ec.m., J) = (1 + exp[2π(V(Rb, J)−
Ec.m.)/~ω(J)])−1, where the effective nucleus-nucleus potential V is approximated near
the Coulomb barrier at R = Rb by the inverted harmonic-oscillator potential with the
barrier height V(Rb, J) and the frequency ω(J).

The total capture section is

σc(Ec.m.) =

Jmax∑

J=0

σc(Ec.m., J) = πo2
Jmax∑

J=0

(2J + 1)Pcap(Ec.m., J), (3)

where the maximum value of angular momentum Jmax in general case is limited by the
critical angular momentum Jcr, for which potential pocket for the entrance channel dis-
appears. But here, since we are interested on evaporation residues formation channels,
we set the maximal angular momentum as Jmax = 20~. For larger angular momentums,
the initial DNS formed at the beginning of the reaction, mainly goes towards symmetric
configuration and quasifission occur. So, higher angular momentums gives small contri-
bution to ER’s cross sections.

The excitation energy of the formed CN is determined as

E∗CN(J) = Ec.m.+ Q−Erot
12 (J), (4)

where Q-value is determined as Q = B1 + B2 − B12 and the rotational energy Erot
12 is

not available for the internal excitation. Then the temperature of the CN is TCN(J) =√
E∗CN(J)/a within the Fermi-gas model. The level density parameter a is taken as

a = 0.114A + 0.162A2/3 from Ref. [5].
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FIGURE 1. Driving potential(left side) and nucleus-nucleus potential(right side) for initial DNS for
the 25Mg +206 Pb reaction. Fusion barrier B f us, barrier for going to symmetric configuration Bsymm and
quasifission barrier Bq f are given.

Evolution of dinuclear system and decay

The time evolution of nuclear system in the charge and mass asymmetry coordinates
is usually described in the framework of the transport model. In this approach the time
dependence of the probability PZ,A(t) to find a system at the moment t in the state with
charge Z and mass A asymmetries is calculated by the master equation [6]

d
dt

PZ,A(t) = ∆
(−,0)
Z+1,A+1 PZ+1,A+1(t) +∆

(+,0)
Z−1,A−1 PZ−1,A−1(t)

+ ∆
(0,−)
Z,A+1 PZ,A+1(t) +∆

(0,+)
Z,A−1 PZ,A−1(t)

− (∆(−,0)
Z,A +∆

(+,0)
Z,A +∆

(0,−)
Z,A +∆

(0,+)
Z,A ) PZ,A(t), (5)

with initial condition PZ,A(0) = δZ,Zi=0δA,Ai=0, i.e. the CN (Zi=0 or 1 and Ai=0 or 1 or
2 or 3) is treated as one of the available asymmetries. The transport coefficients (∆(+,0)

Z,A ,

∆
(0,+)
Z,A ) characterize the proton and neutron transfer rates from a heavy to a light nucleus

or in opposite direction (∆(−,0)
Z,A , ∆

(0,−)
Z,A ). In Eqs. (5) we take only the transitions Z
 Z±1

and N
 N ±1 into account in the spirit of the independent-particle model.
For more clear understanding of DNS evolution, we present the most probable path in

the potential energy surface to the complete fusion and symmetric DNS configurations.
This path corresponds to the minimum of potential energy with respect to mass number
A and relative distance coordinate R between DNS nuclei and called as driving potential.
In Fig. 1, we present the driving potential for the 25Mg +206 Pb system and the nucleus-
nucleus potential for initial DNS, where the corresponding barriers are pointed. The
details of the calculation of potential energy surface(PES) and driving potential can be
found in [7, 8].

Thus, the initial DNS evolves by nucleon transfer in three direction: to the complete
fusion, to the quasifission from entrance channel and to the symmetric DNS configu-
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rations. In the statistical approach, the probability of complete fusion(or overcoming
fusion barrier) can be calculated as

PCN =
ρ f us

ρ f us +ρq f +ρsymm
, (6)

where ρ f us,ρq f ,ρsymm are the level densities at the fusion barrier, quasifission barrier for
the entrance channel and at the barrier in the way to symmetric DNS. The part of the
system, which moves towards symmetric DNS configuration, goes to the quasifission
channel. The quasifission barrier for the symmetric DNS is relatively small for heavy
systems and the motion in relative distance R coordinate causes quasifission to occur.
For the asymmetric DNS configurations, quasifission barrier is relatively high, and the
lifetime of such a system is predestined by the time of neutron emission or fission,
which can be sufficiently long to reach the mass and charge equilibrium limit in Eq. (5)
for the asymmetric DNS and CN configurations behind the fusion barrier. So, the part
of the system, which moves towards CN configuration will be localized mainly in
that asymmetric DNS(or CN) configuration, for which potential energy surface has
deepest minimum and will be statistically distributed among all possible asymmetric
DNS and CN configurations. Thus, in the treatment of the formation of asymmetric
DNS configurations, the equilibrium limit of the master equation can be imposed so that
the probability PZ,A(E∗CN , J) is proportional to the relevant level density ρ. At fixed total
energy of the system the level density is proportional to exp[−U(Rm,Z,A, J)/TCN] [6]
and, thus, the DNS formation probability is written in the following way:

PZ,A(E∗CN , J) =
exp[−U(Rm,Z,A, J)/TCN(J)]

1 +
∑

Z′=2,A′ exp[−U(Rm,Z′,A′, J)/TCN(J)]
, (7)

where Z′ and A′ goes over all charges and masses of DNS configurations, which is
behind the fusion barrier.

Since the potential energy of the DNS is determined relatively to the CN potential
energy, the local excitation energy of each DNS is

E∗Z,A(J) = E∗CN(J)−U(Rm,Z,A, J). (8)

If E∗CN(J) < U(Rm,Z,A, J), then the system can not reach the DNS configuration with
charge Z and mass A asymmetries and its binary decay is energetically forbidden.
To determine the temperature of the DNS, we use the Fermi-gas model expression
TZ,A(J) =

√
E∗Z,A(J)/a.

The probability of the thermal penetration of the Coulomb barrier (the decay of the
DNS in R into two fragments or the binary decay with Z ≥ 2) can be written in complete
analogy with the fission probability in the transition state formalism (we use here high
temperature limit) as

PR
Z,A ∼ exp[−Bq f

R (Z,A, J)/TZ,A(J)]. (9)

The theoretical description of the binary decay and the light particle evaporation pro-
cesses should be on the same basis and we use the same expression (9) for cal-
culating the probabilities of the neutron, proton, deuteron and tritone emissions. In
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the calculations the temperature and emission barriers for these particle are the fol-
lowing: TZ=0,A=0(J) = TZ=0,A=1(J) = TZ=1,A=0(J) = TZ=1,A=1(J) = TZ=1,A=1(J) = TCN(J)
and Bq f

R (Z = 0,A = 1, J) = Bn for the neutron with binding energy Bn, Bq f
R (Z = 1,A =

0, J) = Bp + V (p)
C for the proton with binding energy Bp and the Coulomb barrier V (p)

C ,
Bq f

R (Z = 1,A = 1, J) = Bd +V (d)
C for the deuteron with binding energy Bd and the Coulomb

barrier V (d)
C , and Bq f

R (Z = 1,A = 2, J) = Bt + V (t)
C for the tritone with binding energy Bt

and the Coulomb barrier V (t)
C . The Coulomb barriers for outgoing proton, deuteron and

tritone are taken as in Ref. [9]

V (i)
C =

e2(Z′−1)

1.7[(A′−mi)1/3 + m1/3
i ]

, (10)

where Z′ and A′ is a charge and mass numbers of nucleus which emits the light charge
particle ′′i′′ (i=p, d, t) and mi is the mass number of the light charge particle.

The binary cluster emission process is imagined as a two step process. The system
evolves in charge and mass asymmetry coordinates to reach a statistical equilibrium
in mass asymmetry coordinate so that the probability of finding the system in each
asymmetric DNS configuration and CN configuration depends on the potential energy
U(Rm,Z,A, J). After the formation, the excited DNS can decay in R coordinate into the
two fragments if the local excitation energy of DNS is enough to overcome the barrier in
R. If the system reaches B.G. point, then it goes to the fission channel, since the potential
energy decreases towards symmetric DNS configurations. So the fission probability is
equal to the probability of reaching B.G. point in driving potential. We note, that such a
treatment is only valid if the particle emission barrier and B.G. point height is sufficiently
high relatively to local barriers in charge(mass) asymmetry coordinate, otherwise it is a
rough approximation.

So, the emission probability WZ,A(E∗CN , J) of a certain cluster from the excited CN is
the product of the DNS formation probability and the DNS decay probability:

WZ,A(E∗CN , J) =
PZ,APR

Z,A∑
Z′,A′ PZ′,A′PR

Z′,A′

=
exp[−U(Rm,Z,A, J)/TCN(J)]exp[−Bq f

R (Z,A, J)/TZ,A(J)]
∑

Z′,A′ exp[−U(Rm,Z′,A′, J)/TCN(J)]exp[−Bq f
R (Z′,A′, J)/TZ′,A′(J)]

. (11)

Here, U(Rm,Z,A, J)=0 for the n, p, d and t-evaporation channels and
exp[−Bq f

R (Z′,A′, J)/TZ′,A′(J)] = 1 for the B.G. point DNS configuration, since it de-
scribes the fission channel. In this sense, the height of B.G. point relatively to CN energy
is equal to the fission barrier. Thus, the competition between the evaporation channel,
the cluster emission channel and the fission channel is taken into consideration in the
very natural way.

173



83 84 85 86 87 88 89 90 91
1E-3

0,01

0,1

83 84 85 86 87 88 89 90 91

1E-3

0,01

0,1

 

 

σ(
m

b)

Z

20Ne+208Pb at E
lab

=11.4 MeV/n

 

 

 
σ(

m
b)

20Ne+208Pb at E
lab

=8.6 MeV/n

FIGURE 2. Evaporation residues charge distributions in the reaction 20Ne +208 Pb at bombarding
energies Elab = 8.6MeV/nucleon and Elab = 11.4MeV/nucleon

For the binary decay channel, the excitation energies of the emitted complex fragment
and residue nucleus are, respectively,

E∗L(Z,A, J) = [E∗Z,A(J)−Bq f
R (Z,A, J)]

A
At
,

E∗H(Z,A, J) = [E∗Z,A(J)−Bq f
R (Z,A, J)]

A2

At
, (12)

where At = A + A2 is the total mass number of the DNS and E∗Z,A(J)− Bq f
R (Z,A, J) the

excitation energy of the DNS at the Coulomb barrier. We assume that the excitation
energy and the angular momentum of the DNS is shared between the DNS nuclei
proportionally to their mass numbers and moment of inertia, respectively.

CALCULATED RESULTS

In the calculations, we use the formulas (1), (6) and (11) to treat the sequential
statistical decay (the evaporation of light particles and/or the binary decay) of the excited
intermediate system. The generation of whole cascade of decay channels is performed by
the Monte Carlo method. We continue to trace the decay processes until all fragments
become cold (the excitation energy of fragments is smaller than its neutron emission
threshold). The number n of generation of the events in the Monte Carlo technique
was chosen according to the smallest decay probability which is ∼ 1/n. The generated
events were written in output files and then the all decay channels which leads to ER’s
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FIGURE 3. Dependence of cluster emission in the 64Ni +164 Dy reaction from bombarding(excitation)
energy

were analyzed. The average values of ER’s velocities is calculated from kinematics,
namely from the energy conservation and momentum conservation laws, with taking
into account possible particle evaporation along with binary decay.

To check the validity of our model for heavy systems, we compare the calculated
charge distributions for evaporation residue products for the reaction 20Ne +208 Pb at
bombarding energies Elab = 8.6MeV/nucleon and Elab = 11.4MeV/nucleon. The exci-
tation energy of CN is Eex = 98.8MeV and Eex = 150MeV , respectively. In Fig. 2 the
calculated ER’s cross sections

σZ(Ec.m.) =
∑

A

σZ,A(Ec.m.) (13)

are in good agreement with the experimental data [10]. The experimental behavior of
the charge distributions are reproduced for both bombarding energies. The odd-even
effects are visible in the charge distributions for ER’s. This fact indicates the influence
of shell structure of the DNS nuclei on the evolution and decay of the system. Thus, the
presented model is able to reproduce experimental ER’s cross section both in shape and
quantity.

The evaporation residues formation channels for the reaction 20Ne +208 Pb at bom-
barding energies Elab = 8.6MeV/nucleon and Elab = 11.4MeV/nucleon are tabulated
in Table 1. The contribution for total cross section from each channel is given as
in percentage. From the table, one can say which residual nuclei are formed with a
cluster emission. The same analysis was performed for the reaction 25Mg +206 Pb at
Elab = 5.9MeV/nucleon and Elab = 8.7MeV/nucleon, for which the experimental study
was done recently in GSI with velocity filter SHIP [11]. The cross sections and veloc-
ity distributions of residual nuclei have been measured.Only reaction residues leaving
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TABLE 1. The competition between ER-channels in 20Ne+208

Pb at E = 8.6MeV/A(first two column) and E = 11.4MeV/A(last
two column).

COMPETITION
CHANNELS

Rate
(percent)

COMPETITION
CHANNELS

Rate
(percent)

6n,2p,14C 37 12n,4α 10
Po 8n,α,12C 18 (12-11)n,α,12,14C 15

8n,18O 18 10n,2p,α,8Be 10
6n,2p,3α 18 11n,2p,3α 50

6n,2p,α,8Be 9 10n,4p,2α 15

8n,1p,12,14C 42 (13-12)n,1p,12,14C 10
At 7n,1p,3α 50 12n,1p,3α 20

7n,1p,α,8Be 8 12n,1p,α,8Be 6
11n,3p,2α 55

11n,2p,3,2H,2α 5
11n,5p,α 4

(10-9)n, 12,14C 12 14n, 12C 1
Rn 8n, 3α 40 13n, 3α 4

8n,8Be,α 10 13n,2p,8Be 5
8n,8Be,2p 4 12n,2p,2α 45
8n,2p,2α 32 12n,1p,3,2H, 2α 5

6n,2p,2 3,2H,α 2 12n,4p,α 35
11n,3p,3,2H,α 5

7n,2p,3,2H,α 10 (14-13)n,3p,α 57
Fr 8n,1p,2α 90 13n,1p,2α 16

14n,5p 20
11n,4p,3,2H 7

10n,2α 37 14n,2α 5
Ra 9n,2p,α 63 (15-14)n,2p,α 52

14n,4p 40
13n,3p,3,2H 3

the target at angles of up to 2◦ with respect to the beam direction are accepted by the
entrance aperture of SHIP. It corresponds to the fact, that the measured velocity distri-
butions correspond to the light particle emission channels and/or the cluster emission
channel in which cluster were emitted in opposite or along the direction to the beam
direction. When cluster is emitted in opposite(along) direction, from kinematics we get
the velocity of residue nucleus which is larger(smaller) than compound nucleus veloc-
ity. We note here, that in our calculations, the contributions from compound nucleus,
quasifission process and multinucleon transfer are not separated, since our model treat
these processes in the same basis, so the results here represent contributions from all
of these processes. Velocity distributions which is presented in [11] are in a very good
agreement with our estimations from the kinematics of cluster decay. It is very important
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TABLE 2. The competition between ER-channels in 25Mg +206

Pb at E = 8.7MeV/n(E∗ = 118MeV).

COMPETITION
CHANNELS

Rate
(percent) ER

COMPETITION
CHANNELS

Rate
(percent)

n,Ne20,22 30 n,3α 40
Po n,1p,F19 10 n,2p,2α 40

n,2α,12,14C 30 Ra n,4p,α 10
n,α,O16,18 15 n,α,8,10Be 5

n,5α 10 n,12,14C 5
n,3α,8,10Be 5

n,1p,α,12,14C 34 n,3p,α 90
At n,1p,4α, 34 Ac n,1p,2α 5

n,1p,2α,8,10Be 10 n,2p,Li7 5
n,1p,O16,18 17

n,2p,N15 5

n,O16,18 5 n,2α 5
Rn n,4α 15 Th n,2p,α 85

n,α,12,14C 15 n,4p 5
n,2α,8,10Be 5

n,2p,3α 60

n,1p,12,14C 5
Fr n,1p,α,8,10Be 10

n,3p,2α 15
n,1p,3α 70

support for our suggested mechanism of evaporation residue formation, since with other
mechanisms than cluster decay, the residual nuclei will have very similar velocity to the
compound nucleus velocity. One more possibility is incomplete fusion(ICF), where it
takes place not full momentum transfer, thus the residual nuclei will have smaller ve-
locities. But at this bombarding energies, the contribution from ICF process expected
to be very small. The competition channels for the case of Elab = 8.7MeV/nucleon is
presented in Table 2. In Fig. 3 we presented the dependence of cluster emission chan-
nels in the reaction 64Ni +164 Dy, which leads to the evaporation residues Fr,Ra, from
bombarding energy. The residual nuclei and the emitted clusters are written for each
bombarding energy. The cross sections are rather small comparing with the reaction
20Ne +208 Pb at bombarding energy Elab = 8.6MeV/nucleon. It is so, because complete
fusion probability(or probability of overcoming fusion barrier) PCN in equation (1), is
smaller for the reaction 64Ni +164 Dy then for more asymmetric reaction 20Ne +208 Pb.
The optimal bombarding energy to observe the cluster emission from heavy nuclei de-
pends on the excitation energy of intermediate system formed during the collision. For
the 64Ni +164 Dy reaction, the optimal excitation energy is around 90 MeV, and it corre-
sponds to the bombarding energy 5.5−5.6MeV/nucleon.
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SUMMARY

Cluster decay of the excited intermediate system formed in heavy ion collisions is
described in the framework of dinuclear system concept. The mechanism of cluster
emission is treated under the assumption that the light clusters are produced by a
collective motion of the nuclear system in the charge asymmetry coordinate with further
thermal penetration through the Coulomb barrier. The emission barriers for complex
fragments are calculated by using the double-folding formalism for the nuclear part
of the nucleus-nucleus interaction potential. The competition between the evaporation
channel and binary decay channel is taken into consideration in a unique way. Our
approach describes well the experimental production cross sections for evaporation
residues. Performed analysis of all possible channels leading to evaporation residues are
very helpful for the interpretation of experimental observations. The measured velocity
distributions are in good agreement with the suggested mechanism of cluster decay.
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Abstract. Experimental results in favour of the existence of a new type of cluster decay called
"collinear cluster tri-partition", CCT, are presented. They are based on two different experiments
with binary coincidences and measurements of the masses and energies of the two fragments, as
well as using in one of the experiments observables sensitive to the nuclear charge of the fission
fragments. A relatively high yield of the CCT-effect (more than 10−3 per binary fission) is likely
due to the favourable Q-values (more positive than binary) and is expected due to a collective motion
through very elongated (hyper-deformed) pre-scission shapes of the mother system. The process is
considered to result from a sequential process, where a heavy cluster (lead as in the case of known
cluster radioactivity) is replaced by pairs of two lighter clusters such as the magic isotopes of Sn/Ni
or Sn/Ge.

Keywords: ternary fission, cluster decay
PACS: 23.70.+j; 25.85.Ca; 25.85.Ec

INTRODUCTION

Nuclear fission, a process where a heavy nucleus decays into two fragments of inter-
mediate mass (e.g. Ba + Kr) has been identified by Hahn and Strassmann in 1938. It
was discovered by chemical analysis while iradiating natural Uranium with thermal neu-
trons [1]. Shortly afterwards Petrzhak and Flerov [2] observed spontaneous fission of the
238U isotope. The energy release in the fission process was immediately calculated by
all leading physicists at that time to be very large, typically 200–205 MeV (e.g. Meitner
and Frisch [3]). The large value is due to the larger binding energy per nucleon (EB/N)
in the mass range around mass A = 54 (iron, EB/N = 8.2 MeV), as compared to the value
at the end of the periodic table, EB/N = 7.2 MeV. This fact could have been noticed four
years before these discoveries, because of the existence of the liquid drop model and
the nuclear mass formula of Bethe and Weizsäcker [4]. However, the large collective
motion through a large deformation (today called super-deformation) was considered to
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be unlikely.
Fission of heavy low-excited nuclei into three fragments of comparable masses, so

called "true ternary fission", has been intensively investigated soon after the discovery
of fission. Swiatecki [5] has shown within the framework of the liquid drop model that
fission into three heavy fragments is energetically more favourable than binary fission
for all nuclei with fission parameters 30.5 < Z2 / A < 43.3. In 1963 Strutinsky [6] has
calculated the equilibrium shapes of the fissioning nucleus and has shown, that along
with the ordinary configuration with one neck, there is the possibility of more compli-
cated elongated configurations with two and even three necks, at the same time it was
stressed, that such configurations are much less probable. Later Diehl and Greiner [7, 8]
have shown a preference for prolate over oblate saddle-point shapes for the fission of a
nucleus into three fragments of similar size. Such pre-scission configurations could lead
to almost collinear separation of the decay partners, at least in a sequential fission pro-
cess. Actually the Coulomb interaction in the total potential energy is the smallest for
linear arrangements of the three fragments. Furthermore results demonstrating a deci-
sive role of shell effects in the formation of the multi-body chain-like nuclear molecules
were obtained also by Poenaru et al. [9].

On the experimental side there have been multiple attempts to find the true ternary
fission in low energy fission by means of counting techniques and in radiochemical
studies. The schemes of the spectrometric experiments were based on the assumption of
comparable angles between all three fragments emitted [10, 11]. Masses of the fragments
were calculated in this case based on experimental values of the energies and angles.
Contradictory results have been obtained; these were treated as showing the absence of
fission fragments in the vicinity of mass fifty both in binary and ternary fission [12]. At
the same time almost collinear ternary decays of excited heavy nuclear systems were
known from the experiments in Ref. [13, 14] at the early stage of our work.

Bearing in mind the results mentioned above, we came to the conclusion, that collinear
tri-partition of low-excited heavy nuclear systems would be a promising field of re-
search. In our first experiments dedicated to this problem [15, 16] some indications of
such processes were already observed. At least one of the decay products detected was a
magic nucleus. By analogy with known cluster decay (or lead radioactivity), the process
has been called "collinear cluster tri-partition" (CCT).

EXPERIMENTS

In the present work we describe the results of two different experiments devoted to the
search for collinear tri-partition of heavy nuclei. In these experiments binary coinci-
dences with two detector systems placed at relative angles of 1800 are measured, see
Figs. 1 and 2. Among all known detection methods to measure the masses of nuclear
reaction products, the TOF-E (time-of-flight vs energy) method is the only one which
uniquely allows the study of multi-body decays. In this method both, the fragment ve-
locities V, obtained by means of TOF and the energy E, are measured for each detected
fragment individually. The fragment mass MT E is calculated simply using the equation
MT E = 2E/V2. For a three-body decay six variables determine the kinematics (e.g. 3
masses and 3 velocities). Adding momentum and energy conservation reduces the num-
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FIGURE 1. Scheme of (Ex1) for coincidence measurements of two fragments of the fission decay of
252Cf. This experiment has been performed at the FOBOS setup [17]. Here: 1 – Cf source, 2 – source
backing, 3 – micro-channel plate (MCP) based timing "start" detector, 4 – position sensitive avalanche
counter (PSAC) as "stop" detector, 5 – ionization chamber (BIC) with the supporting mesh, 6 – the mesh
of the entrance window. The front view of the mesh is shown in the insert a), an enlarged mesh section
is presented in the insert b). After passage of the two fragments through the source backing, two light
fragments L1 and L2, are obtained with a small angle divergence due to multiple scattering. In (b) we
show that one of the fragments (L1) can be lost hitting the metal structure of the mesh, while the fragment
L2 reaches the detectors of the arm 1. The source backing (2) exists only on one side and causes the
mentioned angular dispersion in the direction towards the right arm1.

ber of independent variables to four. In our experiments two masses and two velocities
are determined for two fragments observed at a relative angle of 1800. All the results
presented below are obtained within the framework of the "missing–mass" approach.
With the two-arm spectrometers binary coincidences have been measured, with a spe-
cial mechanism, which blocks the registration of a third fragment, as explained below
and in Fig.1. This means that only two fragments were actually detected in each fission
event and their total mass, the sum Ms will serve as a sign of a multi-body decay if it is
significantly smaller than the mass of the initial system.

Experiment Ex1

In the first experiment (Ex1, Fig. 1), performed at the FOBOS [17] setup in the Flerov
Laboratory of Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research
(JINR) in Dubna [17], about 13×106 coincident binary fission events of 252Cf were
collected. The TOF of the fragment was measured over a flight path of 50 cm between
the "start" detector, label (3) in Fig. 1, which is based on micro-channel plates (MCP)
placed next to the 252Cf-source and "stop" obtained by position sensitive avalanche
counters (PSAC, 4). The source activity was 370 fissions/sec, it was deposited on a
Al2O3 backing of 50 µg/cm2 thickness and 18 mm in diameter – (1). Through the
measurements of the position of the fragments in the PSAC’s, this information provided
also the fragment’s emission angle with a prescission of 10. The energies of those
coincident fragments which passed through the PSACs were measured in the Bragg
ionization chambers (BIC, label 5 in Fig. 1). The entrance windows of the large BIC
are made of 1 µm thick aluminized Mylar, with a diameter of 385 mm. To withstand
the pressure of the counting gas, the delicate window foil has to be supported by a two-
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FIGURE 2. The scheme (Ex2) of the mini-FOBOS spectrometer which includes a "start" avalanche
counter with an internal target (1), Bragg ionization chambers (BIC) (2) and "stop" position-sensitive
avalanche counters (PSAC) (3). The target is irradiated by a collimated beam of thermal neutrons (4).

fold structure – a concentric heavy carrier of a transparency of 94% and an adjacent
etched Ni-mesh having a cell dimension of 2.7 mm in diameter and 0.9 mm bulkhead
in between the open pores. The thickness of the mesh is about 1 mm. The geometrical
structure of the mesh is hexagonal, its front view is shown in the insert, a), of Fig. 1,
a mesh section is presented in the insert b). The mesh reduces the total transparency to
75%. This mesh is a very important peculiarity of the present experiments as explained
below (see Fig. 1).

Experiment Ex2

For a better understanding of the unusual decay channel in 252Cf (sf) we planned to
investigate different fissile systems at different excitation energies up to the threshold
of the survival of nuclear shells. One of the reactions we had chosen in an additional
experiment was fission induced by thermal neutrons in 235U(nth, f ).

The experiment (Ex2) was performed with a beam of thermal neutrons of the IBR-2
reactor in the Frank Laboratory of Neutron Physics of the JINR with the help of the
double-armed TOF-E setup in the mini-FOBOS [18] spectrometer. The overall statistics
processed in this experiment was about 2×106 fission events. The scheme of the setup is
shown in Fig. 2. The spectrometer is also based on FOBOS detector modules. The start
detector is a symmetrical avalanche counter with an internal target. An active layer of the
target material was prepared by evaporation of 100 µg/cm2 of 235U on an Al2O3 backing
of 50 µg/cm2 thickness. In this case along with measuring the fission fragment (FF)
time-of-flight (TOF) and their energies (E), two more parameters being sensitive to the
nuclear charge are added. The drift time of a track formed after stopping of a fragment in
the gas volume of the BIC is known to be linked with the fragment nuclear charge [19].
The corresponding parameter was measured as the time difference between the PSAC
signal and the signal from the Frisch grid of the BIC. Special calibration procedures
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FIGURE 3. Correlation of the mean values of the experimental mass <MT E> (post-neutron emission)
vs mass ,MT T , obtained in the present TOF-TOF analysis. The shift due to neutron emission ν(MT T ) [22]
has been taken into account.

have been worked out for the FF nuclear charge determination [20]. According to the
tests carried out before, the charge resolution does not exceed 3.8 units (FWHM) for the
FF from the light mass peak, while the mean values for each fixed charge are correctly
determined.

The second independent variable, which is also sensitive to the nuclear charge, is the
specific energy loss of the FF in the gas volume of the PSAC [17]. This parameter proved
to be very useful also for the selection of the CCT events.

In both experiments similar procedures for the TOF-E calibration and the calculation
of the MT E masses were used. In brief, the mass spectrum of binary decays, which
depends on the measured variables and parameters to be determined, was forced to
fit the known mass spectrum of 252Cf fission [21]. The data presented in Fig. 3 were
obtained in the following way. For each fixed experimental MT T (TOF, TOF) mass a
corresponding mean value of MT E was obtained. MT T

(1) (primary i.e. before neutron
emission fragment mass) was calculated as M(1)

T T = Mc/ (1 + V1/V2), where Mc – the
mass of the fissioning system, V1,2 – velocities of the coincident fragments (indexes
correspond to the numbers of the spectrometer arms). The values <MT E> are compared
with the value expected for i.e. MT T - ν(MT T ), where ν(MT T ) – mean number of
neutrons emitted from the fragment with mass MT T , taken from Ref. [22]. Thus, Fig. 3
demonstrates an absence of shifts (essential nonlinearity) in the calibration of the MT E
masses. This point is very important for the correct treatment of the data, especially for
the mass characteristics and the peculiarities discussed below such as peaks and ridges
in the spectra and distributions, respectively.

RESULTS AND ANALYSIS

The analysis is based on the presentation and discussion of two-dimensional diagrams
of the registered masses (M1 and M2), in which the sum Ms of the two masses can be
discussed. The events with total masses Ms = M1 + M2 will appear as diagonal lines in
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FIGURE 4. (Color online) Contour maps (in logarithmic scale, the steps between colors are approxi-
mately a factor 2.5) of the mass-mass distribution of the collinear fragments, detected in coincidence in
the two opposite arms of the FOBOS spectrometer in (Ex1). The additional bump (7) in arm1 is inducated
by an arrow. See text for more details.

the mass correlation plot. From these two-dimensional presentations further projections
onto the individal axes M1 or M2 are made.

Results of experiment Ex1, 252Cf (sf)

Fig. 4 shows in a logarithmic scale the two-dimensional distribution (M2 – M1) of
the two registered masses of the coincident fragments in the experiment (Ex1). In this
FOBOS setup M1 is defined as the fragment mass derived from the arm pointing to wards
the detector arm with the additional dispersive (scattering) materials. Only collinear
fission events with a relative angle of 180±20 were selected, which corresponds to the
typical angular spread for conventional binary fission fragments.

The "tails" in the mass distributions marked 3–6 in Fig. 4 extending from the regions
(1) and (2) which are used to mark the conventional binary fission, are mainly due to the
scattering of fragments on both the foils and on the grid edges of the "stop" avalanche
counters and the ionization chambers. Once again we emphasize the small but important
asymmetry in the experimental arrangement for the two arms, which consists in the
thin source backing (50 µg/cm2 of Al2O3) for the "rear side" of the target and the "start"
detector foil located only in arm 1 (Fig. 4). An astonishing difference in the counting rate
and in the shapes of the "tails" (3) and (4) attracts attention. In the case shown in Fig. 4
there is a distinct bump, marked (7), on top of the latter "tails" (4). The bump is located
in a region corresponding to a large "missing" mass. In Fig. 4 the line for the measured
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FIGURE 5. The bump ”7” from (Ex1) in Fig. 4 is analyzed. In Fig. 5a) the spectra of the summed
masses Ms for the "tails" (4 and 3) shown as spectrum a and b, respectively, are compared. The result of
the subtraction of spectrum, b, from spectrum, a, (difference spectrum) is marked as c. On the rigth side,
part b), the projection of the bump onto the M1 axis is shown.

total mass Ms = M1 + M2 = 225 amu is shown as a border line separating these
interesting events from normal binary fission. The statistical significance of the events in
the structure (7) can be deduced from Fig. 5, where the spectra of total (summed) masses
Ms for the "tails" (4) and (3) are compared. The yield of the events in the difference
spectrum c, is (4.7±0.2)×10−3 relative to the total number of events in the distribution
shown in Fig. 4. It is only a lower limit of the yield due to the reasons discussed below.
In order to explain the differences in the "tails" (4) and (3) mentioned above (see also
Fig. 7), the following scenario is proposed, the corresponding geometry has been shown
in Fig. 1 (insert b). We assume that in ternary fission the three fragments are emitted
collinearly due to two sequential binary decays. Two of the fragments are emitted in one
direction but become separated in their velocity vectors with a small angle difference
of ∼10 after passing the scattering media, due to multiple scattering [23]. These media
are the backing of the source and the foil of the start detector both located only on the
side of tail (4). For instance, for a 70Ni fragment with the energy 70 MeV the mean
angle of multiple scattering in the backing is equal to 0.640 while the tail of the angular
distribution extends up to 20. As a result two fragments continue to fly in the same
direction with a small angle divergence. It should be stressed that the influence of the
backing onto the yield of ternary events was mentioned already in Ref. [11].

Thus, if both fragments pass on and enter into the (BIC), we register a signal corre-
sponding to the sum of the energies of the two fragments. In this case the event will be
treated as binary fission with the usual parameters. In the other cases only the proper en-
ergy (mass) of one of the light fragments is measured, because the second one is stopped
(lost) in the supporting grid of the ionization chamber. Just the absence of a similar grid
is likely the reason why the authors of the work in Ref. [24] have failed to observe
collinear ternary decays of 252Cf (sf) using the time-of-flight method.

For a more detailed analysis of the bump we have constructed the contour map of the
two-dimensional mass-mass distribution obtained by subtraction of the "tail" (3) from
the "tail" (4) (Fig. 6a). No additional normalization was used.
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FIGURE 6. Left side, a).: The figure depicts as a 2D-contour map (M1 vs M2) the difference between
the "tails" (4) and (3), for the events measured in Ex1, with the system shown in Fig. 1; note the expanded
scale for the lighter mass fragments (M1). Dashed lines tilted by 450 with respect to the M2 axis correspond
to a fixed total mass of the two detected fragments Ms = M1 + M2 = const. Part b): the same as in a),
however, passed through a second derivative filter which emphasizes local peaks in each section of Ms
= const. The ridges correspond to different values of Ms (204, 208, 212 and possibly 214 amu). The
arrows in the figures mark positions of magic isotopes on the mass axis. Their role in the CCT process is
discussed in the text.

This distribution is almost free from experimental background originating from scat-
tered fragments of normal binary fission. Some features of this 2D plot can be further
emphasized by a process, where a second derivative filter is applied (Fig. 6b), a method
which is typically used in the search for peaks in gamma spectra and which is explained
in more detail in Refs. [25, 26]. The vertical scale for the squares is defined in the in-
sert to this figure. The maxima of the peaks extend over certain linear regions of M2
= const, which are found predominantly as discrete diagonal lines, marked in Fig. 6b).
Note that they correspond to the total masses Ms = const with values of 204, 208, 212
and perhaps 214 amu, respectively. To show the positions of the tilted ridges on the map
of the bump they are marked by the dashed lines in Fig. 6a). As can be deduced from the
figure, the ridges go through crossing points corresponding to different combinations of
two fragments with magic nucleon numbers (marked by the dot-dashed arrows). These
marked points could be related to mass values with magic subsystems, well-known from
binary fission [27, 28] as follows (corresponding Q values for ternary decays expressed
in rounded numbers are marked in braces): 204 → 70Ni (Z = 28) + 134Te {241 MeV}
or 72Ni + 132Sn (Z = 50) {251 MeV}, 208 → 80Ge + 128Sn {261 MeV} and for 212 →
80Ge + 132Sn {257 MeV}, 78Ni + 134Te {228 MeV} or 68Ni + 144Ba {217 MeV} and
for Ms = 214 → 82Ge + 132Sn {226 MeV}. It should be reminded that the Q value that
corresponds to the most probable binary partition of 252Cf is about 216 MeV.

Of course, at the moment this interpretation of the tilted ridges is only a hypothesis to
be confirmed by other results shown below.

The ridges discussed are crossed as well by the horizontal ridge (seen via a bunching
of contour lines in Fig. 6a). The projection of the bump onto the M1 axis (Fig. 5b)
confirms this conclusion. The effect can be linked with the isotopes of 68,70Ni, which
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FIGURE 7. (Color online)a) The FF mass-mass distribution (logarithmic scale) obtained for the
235U(nth, f ) reaction. b) Projections of the bump onto the M1 axis for comparison of the reactions discussed
here. c) Projections of the bump onto the direction Ms = M2 + M1 = const.

are also magic [28].

Results of experiment Ex2, 235U(nth, f )

The mere fact of the existence of the bump in the total mass on one side as discussed
above, as well as the presence of its internal structure was confirmed in an experiment
(Ex2) devoted to the 235U(nth, f ) [29], in which nuclear charges were measured in
addition.

A bump similar to that marked by an arrow in Fig. 4 is again well pronounced as
shown in Fig. 7a). The yield of the events in the bump is (5.1±0.4)×10−3 relative to the
total number of fission events detected. As in the previous case the bump is observed
only in one spectrometer arm (marked by number 1) facing to the target backing. The
projections of the bump onto the M1 axis for both reactions are compared in Fig. 7b). The
pronounced peaks in both cases are centered at the masses (68 ÷ 70) amu, associated
with the magic isotopes of Ni. Projections onto the Ms = const direction are shown in
Fig. 7c). Although the total masses of the corresponding two fissioning systems differ
by 16 amu the projections of the bump onto this direction are shifted no greater than
6 amu. Such shift of the top yield in the frame of the wide peak could be assigned to
the different population of the fission modes based on magic pairs of Sn/Ge or Sn/Ni
isotopes in Cf and U* nuclei.
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FIGURE 8. Nuclear charge spectra from the FF from the reaction 235U(nth, f ), the FF are detected in
the two opposite spectrometer arms. A difference in the yields (bump) presented in the upper panel in a
linear scale is visible for the charges around Z = 28 (isotopes of Ni).

FIGURE 9. Upper row, a), mass-mass distribution of the fission events from the reaction 235U(nth, f )
selected by the additional gate on the velocity-energy-loss, the V–dE matrix; b) Projection onto M1 + M2
= const direction. Parabolic and spline least squares fits are shown by dash-dot and dot lines respectively.
c), Projection of the distribution onto M1 axis; and d) Projection onto the M2 axis for the events from the
range M1 = (60÷80) amu . See text for details.
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We show the comparison of the spectra of nuclear charges of the measured FF in the
two opposite spectrometer arms in Fig. 8. The result for the measured charges confirms
the previous finding with the mass distributions, namely the existence of an additional
bump in the arm with the scattering media. It confirms the hypothesis that the upper
boundary of the additional bump (Fig. 7a), and b) is actually connected with Ni isotopes.

As was mentioned above, the presence of the tilted ridges Ms = const for the 252Cf
nucleus was revealed using a special mathematical process for the FF mass-mass dis-
tribution. This fact has been confirmed independently for the 236U* system by using a
selection with an additional parameter, the specific energy losses dE of the FF in the
"stop" avalanche counter.

In Fig. 9 we show the mass-mass distribution of those FF, selected by the additional
parameter of an increased energy loss in comparison to FF from the light mass peak
of normal binary fission. In this way we can select the events when a "fork" of two
fragments of a ternary decay fly into the same first spectrometer arm namely where the
bump is observed. Total energy losses of these two fragments in the same counter have
values, which are higher compared with the dE values for ordinary light fragments. It
should be stressed that in this case the experimental variables used for gating (specific
energy losses vs velocity) are not distorted due to scattering on the entrance grid of the
BIC, being the main source of the background events.

In the bump region a tilted valley structure with reduced event density is clearly seen
indicating the presence of ridges with specific total masses, Ms = const (Fig. 9a). It is
marked by the tilted arrow. A projection of the bump onto this direction is shown in
Fig. 9b), the left bracket in the spectrum shows the mass region of potential location of
pairs of magic isotopes 128,132Sn / 68,70,72Ni. Similarly the right bracket corresponds to
pairs 128,132Sn / 80,82Ge. At least two peaks centered at the partitions marked in the figure
(70/132 and 80/128 amu) are statistically significant. Actually, a parabolic (structureless)
fit shown by the dot-dash line gives χ2/f = 2.1 (chi-square per degree of freedom), while
a least squares approximation by the cubic spline (dot line) shows χ2/f = 1.04.

A peak centered at 68 amu comes out in the projection of the bump onto the M1 axis
in Fig. 9c). Further as can be inferred from Fig. 9a) the heavy fragments involved in the
bump are bounded by the mass numbers in the region 128–144 associated with magic
nuclei of 128Sn and 144Ba. This conclusion is confirmed by the projection of the bump
onto the corresponding axis (Fig. 9d), where the boundaries for Sn and Ba are shown. It
should be noted that the internal structure of the bump seen in Fig. 9a) is reproduced as
well if the selection is made using a gate based on the drift time [30].

SUMMARY

The present work has been devoted to the observation of a new multi-body decay
channel called by us "collinear cluster tri-partition" (CCT). We observe in the mass-
mass distributions (2D) a bump linked with large missing masses in the FF mass-mass
distribution for cases, where one of the fragments passes through a scattering medium
providing an angular divergence between the two CCT partners flying towards the same
spectrometer arm. The second principal feature of the spectrometer to be stressed is the
presence of the blocking structure (grid or mesh) at the entrance to the BIC. Only due
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FIGURE 10. Cluster scheme for the comparison of the lead radioactivity with collinear cluster tri-
partition.

to the sequential action of these two technical details, namely scattering and blocking
allows the detection of a CCT event, in the frame of the missing mass method. Earlier
studies of spontaneous fission of 252Cf in the series of our experiments performed at
different time-of-flight spectrometers [31] gave the same observation when both masses
of the coincident fragments were identified in the frame of the velocity-energy (V–E)
method. Bearing in mind, that potentially the scattering of fragments at the entrance
to the E-detector could imitate these effects, we have used another approach with
different experimental observables, being methodically independent from FF masses
were needed. Such approach was realized in the other experiment Ex2 discussed in the
present paper.

We have shown in Ex2 (Fig. 9), that the selection of the fission events using V–dE
velocity-specific energy losses, confirmed not only the presence of the bump in the FF
mass-mass distributions from the 235U(nth, f ) reaction, but also confirmed its internal
structure. In particular an effective cleaning of the bump region from the background in
this case, allowed us to observe directly the tilted ridges (and, respectively, the valleys
in between). These again were found to correspond to total masses of pairs of magic
clusters namely (Ni/Sn) or (Ge/Sn). The ridges under discussion are actually linked with
pairs of magic clusters, they are the same for the two fissioning systems, namely in 252Cf
and in 236U*. These systems differ by 16 mass units, the position of the ridges stayed
unchanged. It is believed that the ternary decay modes stand behind the tilted ridges and
make clear physical sense formulated below in the "conclusions". In addition to the dE
variable being absolutely independent from experimental mass values an estimation of
the nuclear charge (Z) via the drift time in the ionization chambers is linked as well
with the experimental fragment mass [20]. Thus the correct position of the bump in the
nuclear charge of the fragments (projection on the Z axis in Fig. 8), gives clear arguments
for the correctness of the origin of the bump.
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CONCLUSIONS

Experimental results suggesting the existence of a new decay mode, the collinear cluster
tri-partition (CCT) decay channel, have been presented. This decay mode manifests itself
due to a particular bump corresponding to a specific missing mass in the FF mass-mass
distributions. One of the decay modes which contribute to the bump can be treated as a
new type of cluster decay as compared to the well known heavy ion or lead radioactivity.
Key features of both are summed up in Fig. 10. The relatively high CCT yield can
be understood if one assumes collective motion through hyper-deformed pre-scission
shapes of the mother systems, which is supported by the fact that the linear arrangement
realizes the lowest Coulomb potential energies of three clusters. We also emphasize,
that the Q values for ternary fission are by 25–30 MeV more positive, again due to the
formation of magic fragments, as in binary fission. The ternary fission process must
be considered to proceed sequentially, with two neck ruptures in a short time sequence
characteristic for binary fissions.

POSTSCRIPTUM

Discovering of the new type of multi-body decays of nuclei called CCT discussed here
has rather long term history. First observation of the "strange" correlated events below
the loci of conventional binary fission at the FOBOS setup was only first indication of
the effect. Series of experiments at different time-of-flight spectrometers was needed to
receive evidence that the effect is statistically reliable and well reproduced [31]. Strong
arguments in favor of its physical nature presented above were obtained by attracting
new experimental variables sensitive to the nuclear charge. Another experimental vari-
able methodically independent from the fragments masses is a multiplicity of neutrons
emitted in fission event. Most recent results in analysis of the neutron gated data are
presented briefly below.

The experiment was performed at the FLNR of the JINR using COMETA (Correlation
Mosaic E–T Array) setup [32, 33] (Fig. 11). It is double arm time-of-flight spectrometer
which includes micro-channel plate (MCP) based "start" detector with the 252Cf source
inside, two mosaics of eight PIN diodes each and a "neutron belt" comprises 30 3He
filled neutron counters. The geometry of the belt provides preferential detection of the
neutrons emitted isotropically.

Fission fragments mass-mass distribution drown for the events where three neutrons
(n = 3) were detected is shown in Fig. 12. The rectangle bounded by the magic nuclei
attracts attention in the upper part of the figure. The tilted line corresponding to the fixed
total mass of two detected fragments Ms = M1 + M2 = 208 amu (marked by the dash
line) was also observed earlier.

Rectangular structure similar to this shown in Fig. 12b) was already discussed above
(Fig. 9a). The evident difference between Figs. 9a) and 12b) consists in the masses
of the light magic clusters namely 98Sr and 108Mo forming two opposite sides of the
rectangle. Thus, we obtain independent confirmation of existence of the bump-like
structure discussed earlier. We conclude as well that different pairs of magic clusters can
be decisive for formation of the bump-like structures in the FF mass-mass distributions.
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FIGURE 11. Scheme of the COMETA setup a), overall view of the spectrometer b).

FIGURE 12. Velocity-energy distribution of the FF from 252Cf (sf) under condition that three neutrons
were detected in coincidence a). Mass-mass plot for the events beyond the loci of conventional binary
fission in previous distribution b). Results were obtained at the COMETA setup.

It should be stressed that the COMETA setup was designed as an instrument for direct
detection of all the partners of multi-body decays. Corresponding results obtained are
the gratifying stuff for forthcoming presentations.
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Transition form factors of pseudoscalar mesons:
theory vs experiment
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Abstract. Recently, the BABAR collaboration reported the measurments of the photon-pion tran-
sition form factor Fπγγ∗

(
Q2

)
, which are in strong contradiction to the predictions of the standard

factorization approach to perturbative QCD. In the present talk, based on a nonperturbative approach
to the QCD vacuum and on rather universal assumptions, we show that there exists two asymptotic
regimes for the pion transition form factor. One regime with asymptotics Fπγ∗γ

(
Q2

)∼ 1/Q2 corre-
sponds to the result of the standard QCD factorization approach, while other violates the standard
factorization and leads to asymptotic behavior as Fπγ∗γ

(
Q2

) ∼ ln
(
Q2

)
/Q2. Furthermore, consid-

ering specific nonlocal chiral quark models, we find the region of parameters, where the existing
CELLO, CLEO and BABAR data for the pion transition form factor are successfully described.

Keywords: Pseudoscalar mesons, transition form factor, QCD
PACS: 14.40.Be,12.39.Ki

INTRODUCTION

The theory of hard exclusive processes, formulated within the factorization approach to
perturbative quantum chromodynamics (pQCD), is based on the operator product ex-
pansion (OPE), the factorization theorems, and the pQCD evolution equations. In this
context, the form factor for the photon-pion transition γ∗γ∗→ π0, with both photons be-
ing spacelike (with photon virtualities Q2

1,Q
2
2 > 0), was considered in [1, 2]. Since only

one hadron is involved, the corresponding form factor Fπγ∗γ∗(Q2
1,Q

2
2) has the simplest

structure for the pQCD analysis among the hard exclusive processes. The nonperturba-
tive information about the pion is accumulated in the pion distribution amplitude (DA)
ϕπ (x) for the fraction x of the longitudinal pion momenta p, carried by a quark. An-
other simplification is, that the short-distance amplitude for the γ∗γ∗→ π0 transition is,
to leading order, just given by a single quark propagator. Finally, the photon-pion form
factor is related to the axial anomaly, when both photons are real.

Experimentally, the easiest situation is, when one photon virtuality is small and the
other large. Under these conditions, the form factor Fπγ∗γ(Q2,0) was measured at e+e−
colliders by CELLO [3], CLEO [4] Collaborations (Fig. 1). In the region of large
virtualities Q2 >> 1 GeV2, the pQCD factorization approach for exclusive processes
predicts to leading order in the strong coupling constant [1, 2]

FpQCD
πγ∗γ (Q2,0) =

2 fπ
3Q2 J, (1)

where J =
∫ 1

0 dxx−1ϕπ (x) is the inverse moment of the pion DA, and fπ = 92.4 MeV.
The factor 1/Q2 reflects the asymptotic property of the quark propagator connecting
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two quark-photon vertices (Fig. 2). The formula (1) is derived under the assumption,
that the QCD dynamics at large distances (the factor J fπ ) and the QCD dynamics at
small distances (the factor 1/Q2) is factorized. Moreover, under this assumption, the
asymptotics is reached already at the typical hadronic scale of a few GeV2. The pion
DA ϕπ (x), in addition, evolves in shape with the change of the renormalization scale
and asymptotically equals ϕAs

π (x) = 6x(1− x). From this follows the famous asymptotic
prediction (the straight dotted line in Fig. 1)

FpQCD,As
πγ∗γ (Q2,0) =

2 fπ
Q2 . (2)

Recently, the BABAR collaboration published new data (Fig. 1) for the γγ∗→ π0 tran-
sition form factor in the momentum transfer range from 4 to 40 GeV2 [5]. They found
the following puzzling result: At Q2 > 10 GeV2 the measured form factor multiplied
by the photon virtuality Q2Fπγ∗γ(Q2,0) exceeds the predicted asymptotic limit (2) and,
moreover, continues to grow with increasing Q2. This result is in strong contradiction
to the predictions of the standard QCD factorization approach mentioned above. The
BABAR data very well match the older data obtained by the CLEO collaboration in the
smaller Q2 region, but extend to a much lager Q2 values.

0 5 10 15 20 25 30 35 40
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Q
2 F

*(Q
2 )(
G
eV

)

Q2(GeV2)

FIGURE 1. Photon-pion transition form factor in asymmetric kinematics for the instanton model with
parameters Mq = 125 MeV, Λ = 0.016 GeV−2 (short pointed line), Mq = 300 MeV, Λ = 1.3 GeV−2(dash-
dotted line); and chiral model with parameters Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line) and
Mq = 300 MeV, Λ = 0.639 GeV−2 (dashed line). The straight dotted line is asymptotic limit 2 fπ . The
data points are from the CELLO [3] (empty squares), CLEO [4] (empty triangles) and BABAR (filled
circles) [5] Collaborations.

NONLOCAL CHIRAL QUARK MODEL

We will analyze the photon-pion transition form factor in the gauged nonlocal chiral
quark model based on the picture of nontrivial QCD vacuum. The attractive feature
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of this model is, that it interpolates the physics at large and small distances. At low
energy, it enjoys the spontaneous breaking of chiral symmetry, the generation of the
dynamical quark mass, and it satisfies the basic low energy theorems. In particular, the
correct normalization of the form factor by the axial anomaly Fπγγ(0,0) = 1/

(
4π2 fπ

)
,

and the Goldberger-Treiman relation, connecting the quark-pion coupling gqπ and the
dynamical quark mass Mq with the physical pion decay constant fπ : fπ = Mq/gqπ . At
energies much higher than the characteristic hadronic scale, it becomes the theory of
free massless quarks (in chiral limit).

π
0(p)

k

k − p

q1

q2

k − q1

α

β

γ

FIGURE 2. The triangle diagram in momentum and α-representation notation.

Let us discuss the properties of the triangle diagram (Fig. 2) at large photon virtu-
alities. To this end, we do not need to completely specify the elements of the diagram
technique, which are, in general, model dependent, but shall restrict ourselves to rather
general requirements. All expressions will be treated in Euclidean space appropriate for
the process under consideration and for the treatment of nonperturbative physics. The
nonperturbative quark propagator, dressed by the interaction with the QCD vacuum, is

S (k) =
k̂ +m

(
k2)

D(k2)
. (3)

The main requirement to the quark propagator is, that at large quark virtualities k2 → ∞
one has

S (k)→ k̂
k2 . (4)

We assume also, that the dynamical quark mass is a function of the quark virtuality k2

and normalized at zero as m(0) = Mq. At large virtualities, it drops to the current quark
mass mcurr faster than any power of k−2 (see the discussion in [6])

m
(
k2)∼Mq exp

(
−(

k2)a
)

+mcurr, a > 0. (5)

The denominator in (3) at large virtualities k2 → ∞ is D
(
k2)→ k2.

It is well known (see, e.g., [7, 8]), that the change of the quark propagator leads to a
modification of the quark-photon vertex in order to preserve the Ward-Takahashi identity

Γµ
(
k,q,k′ = k +q

)
=−ieq

[
γµ −∆Γµ

(
k,q,k′ = k +q

)]
. (6)

The term ∆Γµ (q) is not uniquely defined, even within a particular model, especially its
transverse part. The importance of the full vertex Γµ is, that the axial anomaly is repro-
duced [9], and thus the photon-transition form factor correctly normalized. Fortunately,
due to the fact, that ∆Γµ is not proportional to γµ matrix, the corresponding amplitude
has no projection onto the leading twist operator. Thus, this term is suppressed, if a large
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photon virtuality passes through the vertex, and hence does not participate in the leading
asymptotics of the form factor. Its leading asymptotics results exclusively from the local
part of the photon vertex

ΓAs
µ

(
k,q,k′ = k +q

)
=−ieqγµ . (7)

Furthermore, we need the quark-pion vertex,

Γa
π (p) =

i
fπ

γ5τaF
(
k2
+,k2

−
)
, (8)

where k+ and k− are the quark and antiquark momenta. In the following, the important
feature of the vertex function F

(
k2
+,k2−

)
will be its behavior in the limit, when one quark

virtuality is asymptotically large (e.g., k2−→ ∞) and the other (k2
+) remains finite. There

are two possibilities,
F f (

k2
+,k2

−
)→ 0, (9)

and
Fu f (

k2
+,k2

−
)→ g

(
k2
+
)
. (10)

Finally, one needs the projection of the pion state onto the leading twist operator

Γ5,As
µ

(
k,q,k′ = k +q

)
= γµγ5. (11)

This projection is determined by the matrix element
〈
0
∣∣qγµγ5τaq

∣∣πa (p)
〉

= −i2 fπ,PS,
where the constant fπ,PS is (here m′ (u) = dm(u)/du)

f 2
π,PS =

Nc

4π2

∫ ∞

0
du u

F (u,u)
D2 (u)

(
m(u)− 1

2
um′ (u)

)
, (12)

which coincides with the pion decay constant fπ,PS in the Pagels-Stokar form [11].

ASYMPTOTICS OF PION-PHOTON TRANSITION FORM
FACTOR

The invariant amplitude for the process γ∗γ∗→ π0 is given by

A
(
γ∗ (q1,ε1)γ∗ (q2,ε2)→ π0 (p)

)
=−ie2εµνρσ εµ

1 εν
2 qρ

1 qσ
2 Fπγ∗γ∗

(−q2
1,−q2

2
)
, (13)

where εµ
i are the photon polarization vectors, p2 = m2

π ,q2
1 = −Q2

1,q
2
2 = −Q2

2. In the
effective nonlocal quark-model considered above, one finds the contribution of the
triangle diagram to the invariant amplitude [10],

A
(

p2;q2
1,q

2
2
)

= Aloc (
p2;q2

1,q
2
2
)
+Anonloc (

p2;q2
1,q

2
2
)
,

where the first term contains only local part of the photon vertices and the second term
comprises the rest.
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As we discussed above, the leading asymptotics results from the local part of the
amplitude, Aloc. After taking the Dirac trace one obtains

Aloc (
p2;q2

1,q
2
2
)

=
e2Nc

6π2 fπ

∫ d4k
π2 F(k2

+,k2
−)

·m
(
k2
+
)(

ε12kq2 − ε12q1q2

)−m
(
k2−

)
ε12q1k +m

(
k2

3
)

ε12pk

D
(
k2
+
)

D
(
k2−

)
D

(
k2

3
) , (14)

where p = q1 + q2, q = q1 − q2, k± = k ± p/2, k3 = (k+−q1), and ε12kq2 =
εµνλρεµ

1 εν
2 kλ qρ

2 , etc.
In order to analyze the asymptotic properties of the form factor, let us transform the

integral in (14) formally into the α representation. Let us define for any function F of
virtuality k2, decaying at large virtuality as 1/k2 or faster, its α representation (Laplace
transform)

F
(
k2) =

∫ ∞

0
dαe−αk2

f (α) , F
(
k2)∼ f (α) , (15)

where F
(
k2) is the image of the original f (α). Then, the momentum integral in (14) is

transformed into the following expression for the form factor (in the chiral limit)

F loc
πγ∗γ∗

(
p2 = 0;Q2

1,Q
2
2
)

=
Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

1
∆ γ(αQ2

1+βQ2
2) (16)

· [d (γ)(αGm,0 (α,β )+βG0,m (α,β ))+ γdm (γ)G(α,β )] ,

where ∆ = α +β + γ and
∫

d (αβγ) ... =
∫ ∞

0 dα
∫ ∞

0 dβ
∫ ∞

0 dγ ... In (16) we introduce the
following notations

1
D(k2)

∼ d (α) ,
m

(
k2)

D(k2)
∼ dm (α) , (17)

F(k2
+,k2−)

D
(
k2
+
)

D
(
k2−

) ∼ G(α,β ) ,
m

(
k2
+
)

F(k2
+,k2−)

D
(
k2
+
)

D
(
k2−

) ∼ Gm,0 (α ,β ) . (18)

Asymmetric kinematics I

Let us now consider the asymmetric kinematics Q2
1 = Q2,Q2

2 = 0. Then one has

F loc
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

γα
∆ Q2

(19)

· [d (γ)(αGm,0 (α ,β )+βG0,m (α ,β ))+ γdm (γ)G(α,β )] .

Let us first consider the model with the quark-pion vertex possessing the property (9).
The leading large Q2 behavior corresponds to the integral over small γ and we get for
Q2 → ∞

F loc,I
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβ )

(α +β )3
αGm,0 (α,β )+βG0,m (α ,β )

D
(

αQ2

α+β

) .
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After change of variables α → xL,β → (1− x)L, we arrive at the representation

F loc,I
πγ∗γ

(
0;Q2,0

)
=

2
3

f 2
PS,π
fπ

∫ 1

0
dx

1
D(xQ2)

ϕ f
π (x) , (20)

where the pion distribution amplitude is

ϕπ (x) =
Nc

4π2 f 2
PS,π

∫ ∞

0

dL
L

exxLp2
(xGm,0 (xL,xL)+ xG0,m (xL,xL)) , (21)

Because in the considered case ϕπ (x) vanishes at the endpoints the actual asymptotics
is in agreement with (1).

As we have already noted in Introduction the asymptotic behavior (1) is not seen in
the BABAR data. Nevertheless, even for the case considered, in principle, it is possible
to simulate in some wide preasymptotic kinematical region a logarithmically enhanced
behavior of the form factor. This happens if one assumes that the pion DA entering (20)
is almost flat ϕπ (x) ≈ 1, i.e. it is close to a constant everywhere except small vicinity
near endpoints. Then, nonfactorizable asymptotic coefficient J f appears [12]

JL = Q2
∫ 1

0
dx

1
D(xQ2)

. (22)

Let us consider some popular models of the nonperturbative quark propagator

1
D(k2)

=
1− exp

(−k2/Λ2)

k2 (23)

D
(
k2) = k2 +m2 (k) . (24)

The first expression has the property of analytical confinement [13, 14]and the second
one is typical for chiral models. In quark models, where the first propagator is used, the
parameter Λ has the meaning of a dynamical quark mass [15], Λ ≡ Mq, with typical
values of Mq = 200− 300 MeV. Inserting (23) into (22) it is possible to show that the
leading asymptotic behavior as Q2 → ∞

JL
AC = ln

(
Q2/M2

q
)
+ const, (25)

This result (25) is very close to the result obtained in [16] (Gaussian and logarith-
mic models), where the idea of flat pion distribution amplitude for explanation of the
BABAR data was suggested (see also [17, 18]).

Asymmetric kinematics II

Now, let us consider the model with the quark-pion vertex possessing the property
(10). It is convenient to rearrange the terms in the pion form factor in the following way

F loc,II
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

γα
∆ Q2 {β rm (β ) (26)
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+αGm,0 (α,β )d (γ)+β [G0,m (α,β )− rm (β )]
+γG(α,β )dm (γ)+β rm (β ) [d (γ)−1]
+β [d (γ)−1] [βG0,m (α,β )− rm (β )]

}
,

where we introduce notations for the originals

g
(
k2)

D(k2)
∼ r (α) ,

m
(
k2)g

(
k2)

D(k2)
∼ rm (α) .

After standard manipulations with the integrals one obtains the following large-Q2

asymptotic behavior as Q2 → ∞ transformed to the momentum representation [12]

FAs,II
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

6π2 fπ

[∫ ∞

0
du

m(u)g(u)
D(u)

ln
(

Q2

u

)
+A

]
, (27)

A =
∫ ∞

0
du

1
D(u)

∫ 1

0
dy

m(yu)
D(yu)

{
uFu f (u,yu)− [

u+2m2 (u)
]

g(yu)
}

. (28)

The asymptotic expression (27) generalizes the asymptotic formula (1) for the case when
the standard factorization is violated.

THE INSTANTON AND CHIRAL MODELS

In the previous section we considered the asymptotic behavior of the pion transition form
factor. In order to calculate this form factor in the whole kinematic region and compare
with available experimental data, we should further specify our model assumptions. Let
us introduce the momentum-dependent dynamical quark mass entering the propagator
(3) as

m
(
k2) = Mq f 2 (

k2) (29)

and take the profile function f
(
k2) in a Gaussian form f

(
k2) = exp

(−Λk2) . Thus,
the model contains two parameters, the dynamical quark mass Mq and the non-locality
parameter Λ.

Next, we need to specify the nonlocal part of the vector vertex that does not partic-
ipate in the leading asymptotics, but is very important in implementing the low energy
theorems. The nonlocal part of the vector vertex in (6) is taken of the form [7]

∆Γµ
(
k,q,k′ = k +q

)
=

(
k + k′

)
µ

m
(
k′2

)−m
(
k2)

k′2− k2 . (30)

Further, we will consider two kinds of quark-pion vertex (8), the first given by

FI
(
k2
+,k2

−
)

= Mq f
(
k2
+
)

f
(
k2
−
)
, (31)

and the second by

Fχ
(
k2
+,k2

−
)

=
1
2

Mq
[

f 2 (
k2
+
)
+ f 2 (

k2
−
)]

. (32)
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The first one is motivated by the instanton picture of QCD vacuum [19] and the second
by the nonlocal chiral quark model advertised in [20]. We shall in the further discussion
refer to vertex function (31), which has the k2 →∞ behavior (9), as the instanton model,
and to the other choice (32), corresponding to k2 →∞ behavior(10), as the chiral model.
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FIGURE 3. Pion distribution amplitude for the instanton model with parameters a) Mq = 125 MeV,
Λ = 0.016 GeV−2 and b) Mq = 300 MeV, Λ = 1.3 GeV−2; and chiral model with parameters c) Mq = 125
MeV, Λ = 0.0098 GeV−2 and d) Mq = 300 MeV, Λ = 0.639 GeV−2.

In Fig. 3 the different shapes of the pion DA are shown as they are calculated within
the instanton and chiral models for the values of the dynamical quark mass Mq = 300
MeV and Mq = 125 MeV. The parameter Λ is defined to fit the pion decay constant
in chiral limit fπ = 85 MeV. For smaller Mq the pion DA is close to a flat shape. For
larger Mq it is more sensitive to the nonlocal part of the photon vertex and, in case of the
instanton model, it is strongly suppressed in the vicinity of endpoints.

THE BABAR DATA WITHIN THE INSTANTON AND CHIRAL
MODELS

Let us consider the model predictions for the pion transition form factor in the asym-
metric kinematics (q2

1 = Q2,q2
2 = 0) in the region, where experimental data exist. In Fig.

1, we show the predictions for different values of Mq. For a quark mass Mq = 300 MeV
the model dependence is very strong and the theoretical curves are very far from the
experimental points. The chiral model overshoots the data, while the instanton model,
in correspondence with the standard factorization scenario, shows the asymptotic 1/Q2

behavior very early, already at Q2 ∼ 1 GeV2. It is clearly seen, that in order to describe
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the BABAR data, one has to take the dynamical quark mass Mq ≈ 125 MeV. Then both
models have an qualitatively good description, with some preference to the chiral model.

The parameter space that describes the data up to 40 GeV2 is rather narrow. For the
chiral model it is Mq ≈ 125± 10 MeV, and for the instanton model it is Mq ≈ 130± 5
MeV. Thus in this region the instanton model simulate the logarithmically enhanced
behavior due to rather flat pion DA. However, the further behavior of the form factor
is rather different for different models. The instanton model finally reach its actual
asymptotic 1/Q2 with the asymptotic coefficient given by

JI =
Nc

4π2 f 2
PS,π

Mq

∫ ∞

0
du

u f (u)
D(u)

∫ 1

0
dy

f (yu)m(yu)
D(yu)

. (33)

For the chiral model the logarithmic growth continues for all Q2 with the asymptotics as
Q2 → ∞ following from (27)

FAs,χ
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

12π2 fπ

[∫ ∞

0
du

m2 (u)
D(u)

ln
(

Q2

u

)
+Aχ

]
, (34)

Aχ =
∫ ∞

0
du

m(u)
D(u)

∫ 1

0
dy

m(yu)
D(yu)

[u−2m(u)m(yu)] .

CONCLUSIONS

As it was stressed in Introduction the main problem to explain the BABAR data is
the unstopped growth of the data points for Q2Fπγγ∗

(
Q2) that is inconsistent with

the predicted Q2Fπγγ∗
(
Q2) → constant, following from simple asymptotic properties

of the massless quark propagator. The key point, to solve this problem, is to consider
the properties of the pion vertex function F(k2

1,k
2
2) which is the analog of the light-

cone pion wave function. There are two possibilities for the momentum dependence of
the pion vertex function. In the limit, when one quark virtuality, k2

1, goes to infinity,
and the other, k2

2, remains finite, the vertex function may not necessarily tend to zero.
When it goes to zero, the pion DA ϕπ(x), which is a functional of the pion vertex
function, is zero at the endpoints, ϕπ(0) = ϕπ(1) = 0, with either strong or weak
suppression in the neighborhood of the endpoints x = 0 and x = 1. For the situation of
strong suppression, the asymptotic 1/Q2 behavior of the pion form factor in asymmetric
kinematics (Q2

1 = Q2,Q2
2 = 0) is developed very early, in contradiction with the BABAR

data. For weak suppression (resembling a flat distribution amplitude of the pion), the
asymptotic 1/Q2 behavior is developed quite late, and can give a reasonable description
of the data in the BABAR region with a lnQ2/Q2 behavior in this region. For the other
case of non-vanishing pion vertex function in the above limit, the pion DA ϕπ(x) is not
zero at the endpoints, and therefore the asymptotic lnQ2/Q2 behavior persists over the
whole range, in particular in the BABAR region.

Concluding we may say, that the BABAR data being unique in their accuracy and
covering a very wide kinematical range, are consistent with considerations based on
nonperturbative QCD dynamics and may indicate specific properties of the pion wave
function.
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Exotic hadrons
N.I.Kochelev

JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia

Abstract. We review the modern status of exotic hadrons. It is point out that complex structure
of nonperturbative QCD vacuum gives a strong influence to the properties of exotic hadrons. The
importance of the investigations of exotic hadron properties in quark-gluon plasma is emphasized.

Keywords: Exotic hadrons, instantons, QCD
PACS: 12.38.Lg,12.39.Mk

The constituent quark models are widely used for the description of hadron properties.
In the framework of such approach the most observed meson states are quark-antiquark
bound states and baryons are three-quark system. However, there are no an evident
reasons to forbid the existence of so-called exotic states. For example, in various versions
of the constituent quark model the multiquark states with number of quark and antiquark
more then three should exist as well. Moreover, the quark-gluon hybrid states and
glueballs which include valence gluons are under discussion now. There are two types of
exotic states. Hidden exotic states can have the same quantum numbers as the ordinary
hadrons. Open exotic states have quantum numbers which impossible to obtain within
quark-antiquark and three-quark model for hadrons. Some of them may be with open
and hidden exotics. The history of the hadron exotics was started many years ago in
a famous Jaffe’s papers [1]. Unfortunately, due to large masses of exotic states one
might expect that they should decay very fast to usual hadrons. However, some possible
exceptions from that rule was found. One of them is famous H-dihyperon with quark
content udsuds. Indeed, it was shown within imporved bag model, that strong flavor-
and spin-dependent instanton induced interaction between quarks might lead to deeply
bound H-dibaryon state [2]. We should stress that instanton induced interaction is related
to the complex topological structure of QCD vacuum [3, 4]. The importance of such
interaction in spectroscopy of usual and exotic hadrons was shown in many papers (see,
for example, reviews [5, 6]).

Recently, the development of the exotic spectroscopy was related mainly to attempts
to discribe properties of θ+ pentaquark which was expected to have small width (about
15 MeV) and small mass (about 1540 MeV) which has been predicted within soliton
model for the baryons [7]. Within the constituent quark model such state is the bound
state of two ud diquarks and one strange antiquark [8] or the bound state of ud diquark
and uds̄ in the instanton-antiinstanton field [9, 10]. Unfortunately, experimental situation
around this state is highly controversial. Some of the experimental groups, e.g. [11, 12],
report on the observation of this state, but other high statistics experiments (see, for
example [13]) do not see such resonance. Furthermore, it was shown recently, that more
pronounced LEPs data [14] might be explained by final particle rescattering effect [15].

We should also emphasize that within the quark model it is rather difficult to explain
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the modern experimental restrictions for the width of such resonance, Γ < 1MeV [11].
Furthermore, the precise calculations of the θ+ mass within the QCD sum rules [16] give
larger value of its mass comparing to the soliton model prediction and show a very weak
signal for the bound state. Within the soliton model θ+ is the member of flavor antidecu-
plet. Therefore, if such model is correct, the other members of antidecuplet should exist
as well. At the present time the candidate for nonstrange pentaquark N∗(1685) is under
discussion [17] and first experimental indication for the existence of such resonance was
published very recently [18].

At present, increasing attention is coming to the problem of four-quark states, called
tetraquarks. The interest to these states is related to the necessity to explain the scalar
meson spectrum, which does not follow the predictions of naive quark-antiquark model.
Central problem here is the sigma( f0(600))- meson which probably has very compli-
cated internal structure. For the long time even existence of such state was in doubts
because the pion-pion scattering phase does not change on 90◦ at resonance. The prob-
lem has been solved in recent papers by Achasov with collaborators [19]. They show that
within the sigma model the sigma-pole contribution is hidden in the large background
amplitude of the pion-pion scattering. At the present time the sigma-meson is considered
as a well established resonance with the mass around 440 MeV and the width about 540
MeV [20]. From the theoretical point of view the sigma-meson may include large ad-
mixture of four-quark state [21] or/and glueball [22], [23]. Furthermore, the properties
of the sigma-meson in quark-gluon plasma (QGP) and in vacuum might be different.
This observation open a new way to investigate the properties of QGP through changing
of properties of the sigma-meson produced in heavy ion collisions [24], [25].

Very interesting bound states predicted within different QCD based approaches are
hybrids, quark-gluon bound states. The famous candidate for such hybrid is π(1600)
state with exotic quantum numbers, JPC = 1−+. The evidence for π(1600) was obtained
for the first time by VES Collaboration at Protvino [26] and recently the search of this
state was continued by E852 Collaboration at Brookhaven, by CLAS at CEBAF and by
COMPASS at CERN. The result of the analysis of data coming from these experiments
is rather controversial [27], [28], [29]. Therefore, the intensive search of hybrids is
continued at several current experiments.

Glueball states are one of the firm predictions of QCD and their properties are studied
in different approaches based on QCD, for example, within the lattice QCD and QCD
sum rules (see review [30]). The main activity in this field is related to the investigation
of low mass glueball states with zero spin and quantum numbers JPC = 0±+ and to tensor
glueball, JPC = 2++. Recent calculations show significant mixing of zero spin glueballs
with ordinary quarkonium states and therefore the ambiguity problem of theoretical
interpretation of the experimental data for such states growths. From our point of view,
cleaner glueball channel is the tensor channel, where the mixing with quark-antiquark
states is expected to be very small.

It has been suggested that the glueballs can exist above deconfinement temperature
and may play an important role in the dynamic of strongly interacting Quark-Gluon
Plasma (QGP) [33, 31]. In particular, in [31] it is suggested that a very light pseudoscalar
glueball can exist in QGP and might be responsible for the residual strong interaction
between gluons. The lattice results showing a change of sign of the gluon condensate
[32] and a small value of the topological susceptibility [35] above Tc can be explained
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in the glueball picture as well. Furthermore, one expects that the suppression of the
mixing between glueballs and quarkonium states in the QGP leads to a smaller width
for former as compared to the vacuum [33]. This property opens the possibility for clear
separation of the glueball and the quark states in heavy ion collisions. Such separation is
rather difficult in other hadron reactions due to existence of strong glueball-quarkonium
mixing in the vacuum.

In the conclusion we would like to mention the large numbers of exotic candidates,
so-called XY Z mesons, with charm quark content, which were found recently in BES-
II, BELLE and BaBar experiments. Most of such states have unexpected values of the
masses and widths [36]. Investigation of the hadron exotics is included also in the future
experiments: PANDA (FAIR), GlueX (CEBAF) and BES-III.
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