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Abstract. We present a method for treatment of three charged particles. The proposed method has
universal character and is applicable both for bound and continuum states. A finite rank approxi-
mation is used for Coulomb potential in three-body system Hamiltonian, that results in a system
of one-dimensional coupled integral equations. Preliminary numerical results for three-body atomic
and molecular systems like H−, He, ppµ and other are presented.
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INTRODUCTION

The quantum three-body problem emerges in various fields of physics, and different
methods of treating it are developed. However, there are no universal methods able to
solve it in case of charged particles in the continuum. These problem is important in
atomic and molecular physics and in nuclear astrophysics.

The main purpose of the work is to develop a procedure applicable to treatment of
three charged particles in continuum. One of the ways to construct it is to make an
approximation on operator level, i.e. in the Hamiltonian of three-body system under
consideration. After that any boundary conditions can be used. The idea of our work
was inspired by earlier paper of N. Aronszajn et al, who introduced the so-called method
of intermediate Hamiltonians. This method was applied to calculate lower bounds for
eigenvalues of some differential operators. N. W. Bazley and D. W. Fox applied it to
He atom and other physical systems [1, 2]. They constructed sequence of intermediate
Hamiltonians using finite rank operators. These operators are defined in the whole
space of full Hamiltonian. In opposite to that we will apply finite rank approximation
in a subspace of the three-body system Hamiltonian, namely in the angular space of
hyperspherical variables. This results in a system of coupled one-dimensional integral
equations.

In the following sections we review a method of intermediate Hamiltonians, hyper-
sperical coordinates, derive system of integral equations and report the results of calcu-
lations.
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HYPERSPHERICAL COORDINATES

There are different ways to formulate the three-body problem. We use hyperspherical
coordinates, and in this section we give a brief review of them. Complete theory, deriva-
tions etc can be found, e.g., in [5].

We start with the three-body system Hamiltonian:

H =−
3

∑
i=1

1
2mi

∇2
i + ∑

i< j
Vi j(ri− r j), (1)

where i enumerates different particles and corresponding sets od Jackobi coordinates.is
a numbri is a position vector of the i-th particle. The scaled Jackobi coordinates are
introduced as follows:

xi =
[

m jmk

m j +mk

]1/2

(r j− rk)

yi =
[

mi(m j +mk)
m1 +m2 +m3

]1/2 (
−ri +

m jr j +mkrk

m j +mk

) (2)

and the Hamiltonian (1) takes the form

H =−1
2

∇2
x−

1
2

∇2
y +V, (3)

where V = V13 +V23 +V31 — a sum of pair potentials. Taking x and y in spherical
coordinates (x,y)→ (x,θ1,ϕ1,y,θ2,ϕ2), one obtains:

Ĥ =− 1
2x2

∂
∂x

(
x2 ∂

∂x

)
− 1

2x2 ∆Ω1 −
1

2x2
∂
∂x

(
x2 ∂

∂x

)
− 1

2y2 ∆Ω2 +V, (4)

Now let us introduce hyperspherical variables:

x = ρ cosα, y = ρ sinα (5)

Here ρ is hyperradius, α — hyperangle. Hamiltonian expressed in terms of this variables
has the form:

Ĥ =−1
2

(
∂ 2

∂ρ2 +
5
ρ

∂
∂ρ

)
− 1

2ρ2

[
∂ 2

∂α2 +4cot2α
∂

∂α
+

1
cos2 α

∆Ω1 +
1

sin2 α
∆Ω2

]
+V

(6)
Angular part of a kinetic energy operator is the hypermomentum operator:

K̂ =
∂ 2

∂α2 +4cot2α
∂

∂α
+

1
cos2 α

∆Ω1 +
1

sin2 α
∆Ω2, (7)

and its eigenfunctions are hyperspherical harmonics:

Y l1m1l2m2
K (α,Ω1,Ω2) = cl1l2

K (sinα)l1(cosα)l2P
(l1+ 1

2 ,l2+ 1
2 )

n (cos2α)Yl1m1(Ω1)Yl2m2(Ω2),
(8)
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where

cl1l2
K =

[
2n!(K +2)(n+ l1 + l2 +1)!

Γ(n+ l1 +3/2)Γ(n+ l2 +3/2)

]1/2

. (9)

Let us consider system of three particles with masses m1,m2,m3 and charges q1,q2,q3.
The Coulomb potential has the form:

V (x,y) =
b1

x1
+

b2

x2
+

b3

x3
, (10)

where bi =
√

m jmk
m j+mk

q jqk. In hyperspherical coordinates:

V (ρ,Ω) =
1
ρ

(
b1

cosα1
+

b2

cosα2
+

b3

cosα3

)
(11)

Here αi — hyperangles corresponding to different sets of Jacobi coordinates.

FINITE RANK OPERATORS

Finite rank operators are widely used in different problems of mathematical physics.
They allow one to reduce complexity of a problem and proceed to its solution. E.g.,
in [4] finite-rank operator was used to describe nuclear part of full Hamiltonian in a
problem of low energy π− 3He scattering.

N. W. Bazley and D. W. Fox used finite rank operators to calculate lower bounds
of eigenvalues of Schrödinger eqution [1, 2]. Let us shortly review the method of
intermediate Hamiltonians they used.

We suppose that full Hamiltonian H can be presented as a sum of H0, that has
known eigenvalues and eigenfunctions, and a positively definite H ′. The exactly solvable
Hamiltonian H0 is assumed to have ordered discrete energy levels E0

1 ≤ E0
1 ≤ ... below

its continuum spectrum. The corresponding eigenfunctions are ψ0
1 , and we have

H0ψ0
i = E0

i ψ0
i . (12)

Since H = H0 +H ′, where H ′ is positively definite, H0 ≤H and E0
1 ≤ E1. Thus, the full

Hamiltonian H and H0 are linked by a sequence of intermediate Hamiltonians:

H0 ≤ Hk ≤ Hk+1 ≤ H. (13)

To construct the Hamiltonians Hk, we introduce a system of k linearly independent
functions p1, p2, ..., pk. The set of functions p1, p2, ... is defined in the whole space of
definition of the Hamiltonian H. Projection of some wavefunction ϕ on these functions
is given by

Pkϕ =
k

∑
i=1

αk pk (14)
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The projection Pk increases with k:

0≤ 〈ϕ|Pkϕ〉 ≤ 〈ϕ|Pk+1ϕ〉 ≤ 〈ϕ|ϕ〉 (15)

0≤ 〈ϕ|H ′Pkϕ〉 ≤ 〈ϕ|H ′Pk+1ϕ〉 ≤ 〈ϕ|H ′ϕ〉 (16)

From Eq. (16) we can see that H ′Pk ≤ H ′Pk+1 ≤ H ′, and we now define intermediate
Hamiltonian as

Hk = H0 +H ′Pk (17)

It is important to to emphasize that the finite rank operator Hk acts on the functions
p1, p2, ... in the same way as full Hamiltonian H:

Hk|i〉= H|i〉, i = 1, . . . ,k (18)

This is the main property of a some finite rank operators which we use in our work.
Following this idea, we construct such an operator in the angular space of definition of

operator (7). The Coulomb potential in hyperspherical variables has the form V (ρ ,Ω) =
1
ρ f (Ω), where f (Ω) is the angular part of potential. We use a finite rank approximation
in it. Namely, the function f (Ω) is replaced by a finite rank operator:

f (Ω)→ f̂ N =
N

∑
i, j

f |ϕi〉di j〈ϕ j| f (19)

Here ϕ j are some auxiliary functions defined in angular space, di j = 〈ϕi| f |ϕ j〉−1 —
inverse matrix element.

FORMALISM

Here we derive a system of coupled one-dimensional integral equations using the finite
rank approximation. Wavefunction of an arbitrary system in bound state satisfies the
Schrödinger equation:

(H0 +V )|Ψ〉= E|Ψ〉 (20)

Here H0 is kinetic energy, V — interaction potential. This equation can be written in
integral form using free Green function:

|Ψ〉= (E−H0)−1V |Ψ〉=−GEV |Ψ〉 (21)

Let us rewrite it in coordinate representation:

Ψ(R) =−
∫

dR′GE(R,R′)V (R′)Ψ(R′), (22)

where R = (x,y) = (ρ ,Ω), and use the Coulombic potential: V (R) = 1
ρ f (Ω). We obtain

integral equation for the wavefunction Ψ in hyperspherical coordinates:

Ψ(ρ,Ω) =−
∫

ρ ′5dρ ′dΩ′GE(ρ,ρ ′;Ω,Ω′)
1
ρ ′

f (Ω′)Ψ(ρ ′,Ω′) (23)
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Using finite rank operator (19) instead angular part of potential f (Ω), we obtain repre-
sentation for the wavefunction Ψ:

Ψ(ρ,Ω) =−
N

∑
i, j

∫
ρ ′4dρ ′dΩ′GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′)di j C j(ρ ′), (24)

where C j(ρ ′) =
∫

dΩ′′ϕ j(Ω′′)Ψ(ρ,Ω′′).
In order to obtain a system of integral equations for coefficients Ci(ρ), we use integral

operator:
∫

dΩϕk(Ω) f (Ω) . . .

Ck(ρ) =−
N

∑
i, j

∫
dρ ′ρ ′4

∫
dΩdΩ′ϕk(Ω) f (Ω)GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′)di j C j(ρ ′)

(25)
or

Ck(ρ) =−∑
i, j

∫
dρ ′Mki(ρ,ρ ′)di j C j(ρ ′), (26)

Mki(ρ,ρ ′) = ρ ′4
∫

dΩdΩ′ϕk(Ω) f (Ω)GE(ρ,ρ ′;Ω,Ω′) f (Ω′)ϕi(Ω′) (27)

The Green function GE(R,R′) has quite a simple form in Jacobi coordinates; an
analytical expression for it is derived in [6]. However, it has the simplest form in the
momentum representation. To exploit this we insert full sets of hyperspherical functions
∑ |Y l1l2

KLM〉〈Y l1l2
KLM| into the matrix element 27 and use a hyperspherical representation for

a wavefunction of free particles:

GE(x,y) =
∫∫ dpdq

(2π)6 exp(ipx+ iqy)
2m/h̄2

p2 +q2 +κ2 ,

We obtain
1

(2π)3 eiqx+ipy =
1

(κρ)2 ∑
KLMl1l2

iKJK+2(κρ)Y l1l2
KLM(Ωρ)Y l1l2

KLM(Ωκ),

where κ2 = p2 + q2. This allows us to derive the three-body free Green function in
hyperspherical representation:

GK
E (ρ,ρ ′) =

∫∫
Y l1l2

KLM(Ω)GE(R,R′)Y l1l2
KLM(Ωκ)dΩdΩ′ =

=
∫ ∞

0

κ dκ
(2π)3

(
ρ ′

ρ

)2

JK+2(κρ)JK+2(κρ ′)
1

κ2 +2mE
=

=
1

(2π)3

(
ρ ′

ρ

)2
{

IK+2(κ0ρ)KK+2(κ0ρ ′), 0≤ ρ ≤ ρ ′

KK+2(κ0ρ)IK+2(κ0ρ ′), 0≤ ρ ′ ≤ ρ

Here Jn(x), In(x) and Kn(x) are Bessel function and modified Bessel functions of first and
second kind, respectively. Now we can calculate the kernels of integral equations ((25)):

Mki(ρ ,ρ ′) = ∑
KLMl1l2

GK
E (ρ ,ρ ′)〈ϕk| f |Y l1l2

KLM〉〈Y l1l2
KLM| f |ϕi〉 (28)
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We derived a system of coupled one-dimensional integral equations (26). Now one need
to calculate the kernel and solve this system numerically. At this stage of treating the
Coulomb three-body problem the finite rank approximation makes it sufficiently easier.

CALCULATION AND RESULTS

We constructed the finite rank operator (19) using hyperspherical functions. They have
been chosen for convenience, but one can use some other complete set of orthonormal-
ized functions defined in angular space.

It is important to mention that the representation (25) for solution of Schrödinger
equation is not a well known hyperspherical expansion. One can see it from the definition
of Ci(ρ).

We performed calculations using finite rank operators constructed on 1, 3 and 6
auxiliary functions. In calculation the kernel (28) we should summate an infinite number
of terms, but we stopped at values of the hypermomentum K equal to 6, 10 and 14. In
order to solve integral equations, the variables ρ and ρ ′ were discretized with 100 mesh
points.

We calculated binding energies of the ground state of such systems: He, H−, H+
2 , ppµ

and ddµ . Results of these calculations are presented in Table 1 and 1. Table 1 shows
a convergence of calculated binding energies with Kmax for finite rank operator(19)
constructed on 6 auxiliary functions, Table 2 shows a convergence of calculated binding
energies with the rank of operator N, when the summation stops at Kmax = 14.

TABLE 1. Calculated and exact binding energies, eV

Eex,eV Kmax = 6 Kmax = 10 Kmax = 14

H− 14.34 18 16.2 15.6

He 79.0 95 87 85

H+
2 16.25 10,1 13.5 15.1

ppµ 2782 1690 2290 2332

ddµ 2988 1845 2195 2654

TABLE 2. Calculated and exact binding en-
ergies, eV

Eex,eV N = 1 N = 3 N = 6

H− 14.34 18.2 17.1 15.6

He 79.0 95 89 85

H+
2 16.25 11 13.7 15.1

ppµ 2782 1850 2101 2332

ddµ 2988 1990 2480 2654

The exact energies are taken from [7].
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CONCLUSION

Binding energies of different three-body Coulombic systems were calculated within a
finite rank approximation method. The finite rank approximation is made in an angular
part of potential in three-body Hamiltonian. This method was tested on some of these
systems earlier in [3]. The results obtained shows it can be useful for solving the
Coulombic three-body problem.

Calculations were performed at various conditions, i.e. different dimension of the
finite rank operator, limit of inner summation, number of mesh points. Results demon-
strate reasonable agreement with known values of binding energies. Accuracy of calcu-
lation can be improved by takin into account more terms.

We suppose the proposed method will be also applicable to three charged particles in
continuum.
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