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Abstract. We present an illustration of using a quantum three-body code being prepared for public
release. The code is based on iterative solving of the three-dimensional Faddeev equations. The
code is easy to use and allows users to perform highly-accurate calculations of quantum three-body
systems. The previously known results for He3 ground state are well reproduced by the code.
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INTRODUCTION

The quantum few-body problem is important for investigating physical processes at
practically all possible length and energy scales. For instance, three-body models can
be employed for describing nuclear reactions [1, 2, 3, 4], electron- and positron-atom
collisions [5, 6], and chemical reactions [7]. The developments of the last decade demon-
strated the importance of three-body processes for understanding the dynamics of ultra-
cold gases [8]. An ability to solve a few-body problem directly would also be beneficial
to theorists for testing, for instance, effective-field theories [9, 10].

The three-body problem, however, has sufficient intrinsic complexity that it often in-
hibits or prevents non-experts in few-body calculations from considering realistic three-
body models and from employing physically correct representations [11]. Accordingly,
a standard, easily operable and rigorously constructed tool for three-body calculations
will be beneficial for a broad physical community. Such a tool should be tested indepen-
dently to ensure its usability and applicability. This work is a result of a collaboration
between the authors of this tool, developed at the University of Kentucky, and a research
group in JINR performing independent tests.

In the following sections we describe the equations being solved and report the results
of the tests we have performed.

FORMALISM

The three-body code being tested is based on solving Faddeev equations in configuration
space. The complete and mathematically rigorous theory of Faddeev equations can be
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found in books on the topic [12, 13, 14]. Here we only sketch out the gross features
important for understanding and using the code.

We start by describing the physical model from the three-body Hamiltonian

H = H0 +V3b(xi,yi)+∑
i

Vi(xi) , (1)

where H0 stands for the kinetic energy of the three particles, Vi(xi) is the interaction
potential acting in the pair i, and V3b(xi,yi) is a short-range three-body interaction.
(In the following description the latter will be omitted only for simplicity. Taking into
account the three-body interactions, however, does not produce any practical or principal
difficulties.) The configuration space of the three particles is described in terms of 3 sets
of Jacobi coordinates

xi =
(

2m jmk

m j +mk

)1/2

(r j− rk)

yi =
(

2mi(m j +mk)
mi +m j +mk

)1/2 (
ri− m jr j +mkrk

m j +mk

) (2)

The set of coordinates i describes a partitioning of the three particles into a pair ( jk) and
a separate particle i. Faddeev decomposition represents the wave function Ψ in terms of
a sum over all possible partitioning of the three-body system

Ψ = ∑
i

Φi(xi,yi) . (3)

Faddeev components, Φi, satisfy the following set of equations [12]

(−∆x−∆y +Vi(xi)−E)Φi(xi,yi) = Vi(xi)∑
k 6=i

Φk(xk,yk) , (4)

where xi and yi are mass-weighted Jacobi coordinates, Vi is the interaction potential
in the i-th pair and E is the total energy of the system. It is not difficult to prove that
the exact wave function of the three body system can be uniquely constructed from the
Faddeev components by means of Eq. (3).

The equations in six-dimensional space can hardly be solved directly, and some partial
analysis is necessary. We consider the states with zero total angular momentum. The
angular degrees of freedom corresponding to collective rotation of the three-body system
can be separated [15] and the kinetic energy operator reduces to

H0 =− ∂ 2

∂x2 −
∂ 2

∂y2 − (
1
x2 +

1
y2 )

∂
∂ z

(1− z2)
1
2

∂
∂ z

, (5)

where x, y and z are so called intrinsic coordinates

x = |x|, y = |y|, z =
(x,y)

xy
, x,y ∈ [0,∞), z ∈ [−1,1] . (6)
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In the case of identical bosons Faddeev components take identical functional form,
which makes it possible to reduce the system of three equations (4) to one equation

(H0 +V (x)−E)φ(x,y,z) =−V (x)Pφ(x,y,z) , (7)

where

Pφ(x,y,z)≡ xy(
φ(x+,y+,z+)

x+y+ +
φ(x−,y−,z−))

x−y−
)

and x±(x,y,z), y±(x,y,z), and z±(x,y,z) are

x±(x,y,z) = (
1
4

x2 +
3
4

y2∓
√

3
2

xyz)1/2 ,

y±(x,y,z) = (
3
4

x2 +
1
4

y2±
√

3
2

xyz)1/2 ,

z±(x,y,z) =
±
√

3
4

x2∓
√

3
4

y2− 1
2

xyz

x±(x,y,z)y±(x,y,z)
.

(8)

Assuming that in each two-body subsystem only one bound state exists, we can write
the asymptotic boundary conditions for the Faddeev component φ as follows

φ(x,y,z)∼ ϕ2(x)e−kyy +A(x/y,z)
e−k3(x2+y2)1/2

(x2 + y2)1/4 , (9)

where ϕ2(x) stands for the wave function of the two-body subsystem bound state,
ky =

√
E2−E3, k3 =

√−E3, E2 is the two-body bound state energy, and E3 the energy
of the three-body system. For three-body bound states the first term corresponds to
virtual decay into a particle and a two-body bound system, while the second term
corresponds to a virtual decay with an amplitude A(x/y,z) into three single particles.
The term corresponding to the latter configuration can generally be neglected for the
states below the three-body threshold. Therefore, at sufficiently large distances Rx and
Ry, the asymptotic boundary conditions for the Faddeev component are

∂
∂x

lnφ(x,y,z)
∣∣∣∣
x=Rx

=−kx ≡ i
√

E2 ,
∂
∂y

lnφ(x,y,z)
∣∣∣∣
y=Ry

=−ky . (10)

For bound state calculations Dirichlet or Neumann boundary conditions can also be
employed.

The important property of the Faddeev components which makes them suitable for
numerical solution is their simple asymptotic form. For instance, each of the Faddeev
components holds only bound states of the corresponding two-body subsystem. In
this respect the xi coordinate is the internal coordinate of the corresponding two-body
cluster and the yi coordinate plays the role of a reaction coordinate for all the states
below the 3-body (break-up) threshold. This simple physical meaning of the coordinates
suggest a natural requirement for discretizing the corresponding degrees of freedom: the
discrete analogs of the xi coordinate should reproduce the spectrum of the i-th cluster
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correctly, and discrete analogs of the yi coordinate must describe the scattering states
reasonably well. These necessary requirements are easy to check prior to performing
actual calculations, and they also provide a solid ground for a reasonable degree of
automation for choosing the parameters of the numerical scheme. Another advantage of
the Faddeev equations is the asymptotic decoupling of the components. The right-hand
side of the equation (4) is, roughly speaking, exponentially small if the third particle is
at larger distance than the typical size of the two-body bound state. This means that at
longer distances |yi|> ymax the Faddeev components rapidly decouple, and calculations
can be performed in the regions as small as the size of the largest two-body subsystem
bound state.

The advantages of the Faddeev approach can be exploited even further when dealing
with short-range interactions; i.e. assuming that the potentials Vi are zero (or negligi-
ble) outside the region |xi| < xmax. To clarify this, consider the component Φi in the
asymptotic region |yi| → ∞, xi ∈ supVi, where it satisfies a Schrödinger equation with
the corresponding channel Hamiltonian

(H0 +Vi(xi)−E)Φi(xi,yi)≈ 0 ,

where H0 is the free three-body Hamiltonian. This property of Φi suggests that, rather
than calculate Φi directly, we instead calculate τi (Eq. 11), which is better localized in
configuration space

τi ≡ (H0 +Vi(xi)−E)Φi(xi,yi) . (11)

These τi are non-zero only for small xi ≡ |xi|< xmax and small yi ≡ |yi|< ymax. Accord-
ingly, they are localized to a region that can be much smaller than the typical size of a
two-body bound state. This feature leads to substantial computational savings [16]. The
τi satisfy the following integral equations

τi =−Vi ∑
j 6=i

R2 j(E)τ j , (12)

where R2 j(E) are the resolvents of the corresponding channel Hamiltonians. Since
supτi ⊂ supVi, the τi are more suitable for numerical approximation than the original
Faddeev components. Furthermore, if the equation is being solved using an iterative
technique, then no explicit representation for the integral operators R2 j(E) is required. In
this case we only need to calculate the action of the integral operator on the τi, which can
be done with high computational efficiency by numerically solving the corresponding
differential equation with appropriate boundary conditions. We call this computational
scheme a Localized Component Method (LCM).

COMPUTER CODE

In order to construct a discrete analogue of the system of equations (12) we employ
quintic Hermite splines together with the orthogonal collocations method [17]. A de-
tailed description of the procedure is given in [18]. This high-order method guarantees
fast convergence with respect to the number of grid points, sparse matrix structure for the
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FIGURE 1. A screenshot of the configurator.

discrete analog of the equation (4), and fast calculation of matrix elements that makes it
possible to avoid storing big matrices in computer memory.

The code is written in Java and consists of two parts. The first part is a configurator
that simplifies composing the necessary configuration files. The configurator allows the
user to set masses of the interacting atoms, to specify identical particles in the system, to
choose a potential model, to set the cutoff distances Rx and Ry and to set the number of
grid points to be employed in the calculation. It also generates a mesh with L2-optimal
point distribution which ensures the best possible approximation of the three-body wave
function in the asymptotic region. In Fig. 1 we show an example of the configurator
screenshot.

The second part is the three-body computational kernel based on the LCM approach.
The kernel is currently capable of three-body calculations below the three-body thresh-
old with a limitation of no more than one two-body bound state contributing to each
asymptotic channel. This includes bound states, elastic scattering and chemical reac-
tions below the first vibrational excitation threshold. Typical computational time can
take from minutes to hours, depending on the physical system and the size of the grid.

RESULTS

We apply the code to the calculation of binding energies of the Helium trimer 4He3
three-atomic system, to verify that we can reproduce the known calculated properties
of helium trimer ground and excited states. This system is very particular about the
approach being used, as the trimer binding energy is extremely small and a large volume
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of the configuration space should be treated, but the interaction features very strong
repulsion at short distances, which requires very precise numerical methods to be used.
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FIGURE 2. Convergence of the Helium trimer ground state energy on the grids of Nx = Ny points;
Nz = 5.

Experimentally, helium dimers have been observed for the first time in 1993 by the
Minnesota group [19], and in 1994 by Schöllkopf and Toennies [20]. Later on, Grisenti
et al. [21] measured a bond length of 52±4 Å for 4He2, which indicates that this dimer
is the largest known diatomic molecular ground state. Based on this measurement they
estimated a scattering length of 104+8

−18 Å and a dimer energy of 1.1+0.3
−0.2 mK [21]. In the

latter investigation [22] the trimer pair distance is found to be 1.1+0.4
−0.5 nm in agreement

with theoretical predictions for the ground state.

TABLE 1. Dimer energy εd , 4He−4He scattering length `
(1+1)
sc , bond

length < R > and root mean square radius
√

< R2 > for the potentials used,
as compared to the experimental values of Ref. [21].

Potential model εd (mK) `
(1+1)
sc (Å) < R > (Å)

√
< R2 > (Å)

LM2M2 [23] −1.30348 100.23 52.001 70.926

Exp. [21] −1.1+0.3
−0.2 104+8

−18 52+4
−4 -

Many theoretical calculations of these systems were performed for various inter-
atomic potentials [23, 24]. Variational [26, 25], hyperspherical [8, 27, 28] and Faddeev
techniques [16, 18, 29, 30, 31, 32] have been employed in this context. It was found that
the Helium trimer has two bound states of total angular momentum zero: a ground state
of about 126 mK and an excited state of Efimov-type of about 2.28 mK. Experimentally
this Efimov-type[33] excited state has not yet been observed (see, e.g., [34] and refs.
therein). It should be mentioned, however, that the year 2006 is noticeable due the first
convincing experimental evidence for the Efimov effect in an ultracold gas of Caesium
atoms [35, 36].

In present calculations we employed the code based on the Faddeev differential
equations (5) with boundary conditions (10). As He-He interaction we used the semi-
empirical LM2M2 potential [23]. We use m4He

= 4.0026032197 a.u.m for the mass of
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the 4He atom and h̄2

m4He
kB

= 12.11928 K Å2, unlike many three-body calculations, see,

e.g., [34], where a rounded value of the coefficient has been used.
Investigation of the bound state energy convergence with respect to the number of

grid points demonstrates that even a moderate number of points in variables x and y is
sufficient to get up to six accurate figures for the energy of the ground state (Fig. 2).

The 4He dimer binding energies, 4He–4He scattering lengths and mean values of the
radius < R > and

√
< R2 > obtained with the LM2M2 potential [23] are shown in Table

1 in comparison with experimental data [21]. All the values agree with an experimental
estimation of Ref.[21] within quoted errors. The scattering length `

(1+1)
sc of the system

is bigger than the range of the potential by an order of magnitude. All these features
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characterize the Helium dimer as the weakest, as well as the biggest, diatomic molecule
found so far. Due to the fact that the energy of the dimer is so small, one should expect
that the E4He3

trimer indeed possesses the theoretically predicted state of the Efimov type
(see, [33, 34]).

In Table 2 the results of trimer binding energies calculations obtained with LM2M2
potential are summarized. The binding energies of the 4He trimer ground (E4He3

) and
exited (E∗4He3

) states are presented. These results demonstrate good agreement between
different methods and show that the code competes well even against variational meth-
ods. It should be mentioned that the energy estimates obtained with the code are non-
variational, and further variational improvements of the results are possible.

We are planning to continue testing the code within current applicability limits,
including scattering calculations, systems of distinguishable particles and modeling
clusters of other rare gas atoms.
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