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In an earlier study we proposed a novel approach for extracting information from
known mass-energy distributions of the nuclear reaction products by processing the 2D
data directly [2]. A typical M−E fragment distribution, for instance in the 233U(nth, f )
reaction, looks like at first sight like a smooth hill. Closer inspection shows that each
E = const slice of this distribution (see Fig. 1) is not absolutely smooth but rather display
local irregularities (peaks), as indicated by the arrows.

The origin of the peaks becomes clear from the following considerations. The yield
Y (M|E) of the fission fragment (FF) with mass M at a fixed value of E is equal to,

Y (M|E) = ∑
Z

Y (M,Z|E) (1)

The marginalization in expression ( 1) is done over all possible values of the FF nu-
clear charge Z. Thus, the spectrum shown in Fig. 1 is a superposition of the partial mass
spectra at fixed charges (so called isotope distributions) known from experiments [3].
Let us define the term: "fine structure" (FS). By definition, it is the local areas (peaks) of
the 2D distribution indicating increased yields of FFs above a smooth background. As
can be inferred from Fig. 1 the FS in this case is due to larger yields of the even-charged
FFs. It is the well-known "odd-even staggering", based on proton pairing [1]. The peaks
in the adjacent sections E = const are correlated, forming regular structures on the E−M
plane in the form of ridges parallel to the E-axis [3]. Henceforth this structure will be
referred to as "vertical ridges".

We pose the question, is there any fine structure in the FF mass-energy distribution,
different from the vertical ridges produced by odd-even staggering and caused, conse-
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FIGURE 1. Section of the E−M distribution for the energy of the fragment E = (100.5±0.5) MeV [3].
The partial yields for the fixed nuclear charges are shown by dot lines.

FIGURE 2. Snake-like FS exhibited by the TKE-M distributions of fragments from the reactions
233U(nth, f ) (a) and 238U + p (60 MeV) (b). See text for details.

quently, by different physical processes? In order to automatically suppress the vertical
ridges while searching for the fine structure, the sections M = const are investigated,
known to display local peaks [4, 5]. Methods based both on peak identification algo-
rithms in gamma-ray spectroscopy and stochastic image processing are used in our in-
vestigations [2]. Fig. 2 shows examples of the FSs revealed in the total kinetic energy-
mass (TKE-M) distributions of the fragments. Initial data were obtained using time-of-
flights spectrometers described in [6, 7]. Darker points in the gray scale map (see Fig. 2a)
correspond to higher intensities of the effect. Only the lighter mass peaks of the fission
fragments are shown.

The symmetry shown in Fig. 2b is due to both the method of measurement of the
fragment mass ("two velocities" method [1]), and the filter used [8].

Basically the FS represents a series of snake-like curves sometimes exhibiting bifur-
cation points [2, 8].

What are the reasons for investigating the specific FS observations? In the modern
view, the evolution of the decaying nuclear system, for instance in fission, is mainly

156



determined by the potential energy of the system as a function of the parameters of
its deformation or, in a 3D presentation by a potential energy surface (PES). Distinct
potential valleys of the PES [11, 12] give rise to the preferable trajectories (realizations)
of the system in the deformation space. As is shown by [13], at any point of the
system’s descent down the fission valley a scission can appear to occur, indicating a
fission event in the space of experimental observables. In other words, the trajectories
in the deformation space as a continuous sequence of nuclear states in the fission
valley is mapped to continuous trajectories (smooth curves) in the plane of experimental
observables [14], choosing the FF total kinetic energy and mass chosen variables in
Fig. 2, for example. Thus we believe [15] the FS under discussion to be an image of the
distinct fission process.

So far the weak point of the proposed data processing procedure is an absence of
a quantitative confidence in the persistence of the extracted FS. Here the problem
is exacerbated by the fact that we are looking for a new phenomenon, i.e. no prior
knowledge about the shape of the structures is available.

In order to address this difficulty the following approach, based on the morphological
methods of image analysis proposed in [9], is developed.

Let f̃ be an experimentally measured signal (i.e., the mass-energy distribution) that
can be represented as follows

f̃ = S +h+ν , (2)

where S is the image of a smooth "substrate", h a signal that might contain several
instances of FSs, and ν additive noise (i.e. generated by some probability density
function). At the first stage, the smooth underlying substrate S is extracted from the
signal f̃ , yielding f = h + ν . Different methods can be used to extract S, using spline
interpolation for example [2, 16]. During the second stage, the FS is extracted from the
signal f , using methods based on morphological image analysis.

Let us briefly recall some of the definitions of morphological image analysis. An
image f (·) is a square-integrable, integer valued function on a subset X of the Euclidean
plane R2. X is called the field of vision, with f (x) the brightness of the point x ∈ X . In
the case under consideration X = {x1, . . . ,xn}, and the images f̃ (·) f (·), S(·), h(·), and
ν(·) of (2) are defined at exactly the same points and are considered to be the elements
of the Euclidean plane Rn. The measurement error ν ∈Rn is considered to be a random
image having zero mean, Eν = 0, and covariance matrix σ2I, where I ∈ (Rn →Rn) is
the identity matrix, with σ2 unknown.

The image of the FS is written as ω(·) and is defined on a variable shape, variable
size subset Ω of the field of vision X . Let us define the shape of the image ω(·), as the
set of images

Vω = {ω(·),ω(x) = c1χA1(x)+ c2χA2(x), c1 ≥ c2, c1,c2 ∈R1, x ∈Ω}, (3)

with
χAi(x) = 1, x ∈ Ai; and χAi(x) = 0, x 6∈ Ai; (i = 1,2)

Vω is a convex closed cone in R2 and in Rn. In this definition A1 and A2 are different
regions of Ω of constant brightness. According to this definition, the shape of the image
of an object therefore consists of all images of the object that differ in brightness in
regions of Ω of constant brightness.
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FIGURE 3. Example of regions A1,A2 ⊂Ω of constant brightness of an image of the FS

In Fig. 3 regions A1,A2 ⊂ Ω of constant brightness of a FS image are shown. In this
figure, the field of vision is split into regions A1,A2, with A1 the "fine structure" itself,
and A2 the surrounding region. The shape (in the usual sense) and the size of the regions
A1 and A2 are defined by the researcher. Note that the expected shape is postulated by
the user, this procedure returns the confidence in the actual presence of the shape in the
image. In our case the the postulated shape is derived from Fig. 2. The brightness of
regions A1 and A2 are supposed to remain constant. The fact that the brightness at points
that belong to the "fine structure" is greater than at surrounding points is reflected by the
condition c1 ≥ c2 in (3).

The projection P, defined below, of some image g(·) defined on Ω, onto the shape
Vω is the image (PVω g)(·). It exists and is unique, because Vω is convex closed cone
(see [9]),

(PVwg)(x) = ĉ1χA1(x)+ ĉ2χA2(x), x ∈Ω, (4)

where ĉ1, ĉ2 are the solutions of the following minimization problem,
∫

Ω

(g(x)− ĉ1χA1(x)− ĉ2χA2(x))
2 dx = min

c1,c2∈R1c1≥c2

∫

Ω

(g(x)− c1χA1(x)− c2χA2(x))
2 dx

(5)
We now consider the problem of FS extraction within the framework of the above

formulated signal registration model as a statistical hypothesis testing problem, H – for
image f there exists a fragment fω , represented as

H : ∃ fω = g+ν , ∃t ∈ T, g ∈ t(Vω), ν ∈ (0,σ2I), σ2 > 0, ‖ν‖2 << ‖g‖2, (6)

where the shape of g, up to translation and scaling coincide with (3), and t ∈ T is a
translation and scaling transformation with T the set of all such transformations. The
alternative hypothesis K simply states: such a fragment does not exist.

To solve this hypothesis testing problem the following functional is used [9],

j(z) =
||(I−PVω )z||2
||(PVω −PVU )z||2 . (7)
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where z is the image under consideration, PVU z is a projection of the image z(·) onto the
shape U of the uniform field of vision,

U = {u(·),u(x) = const ·χΩ(x), x ∈Ω} . (8)

The functional (7) has following properties:

1. Assume that the fragment fω exists and satisfies the condition (6), but cannot be
represented as

fω = g+ν ,∃t ∈ T, g ∈ t(U),ν ∈ (0,σ2I), σ2 > 0. (9)

The numerator in (7) equals ||(I − PVω )ν ||2, the denominator equals ||(PVω −
PVU )ν + (PVω −PVU )g||2 and has values of O(‖g‖2). Thus the value of the func-
tional (7) is small, because ‖ν‖2 << ‖g‖2.

2. Assume that the fragment fω exists and satisfies the condition (9). In this case the
numerator in (7) equals ||(I−PVω )ν ||2 and has values of O(‖ν‖2). The denominator
equals ||(PVω − PVU )ν ||2 and also has values of O(‖ν‖2). The functional j(z) is
therefore O(1).

3. Assume that the fragment fω satisfying the condition (6) or (9) does not exist.
The numerator in (7) equals ||(I−PVω )ν + (I−PVω )g||2 and is of O(‖g‖2). The
denominator, which equals ||(PVω −PVU )ν + (PVω −PVU )g||2, is also of O(‖g‖2),
and again the functional j(z) is O(1).

Hence, only in the first case is the value of the functional (7) small, because ‖ν‖2 <<
‖g‖2.

The decision rule is as follows: hypothesis H is accepted if by means of translation
and scaling, a fragment fω , such that j( fω) ≤ A can be found, where A is a constant
empirically determined, as explained below. Otherwise H is declined.

The value of the functional (7) is considered as a measure of the closeness between
image z and the image with shape (3). Note that the functional (7) is invariant with
respect to variations of the image’s brightness and contrast values, i.e. to transformations
z→ αz+β , where α is a number, and β is an image defined on Ω.

The value of the constant A is defined as follows. First of all using experimental data
the value of A determined that appears acceptable for an image of the proposed FS.
A value of A = 40 appears to be appropriate. The reliability of this value is verified
by means of experiments on synthetic data. We use 10000 synthetic images of smooth
substrates S with additive Poisson-distributed noise. The noise parameters were the same
as in real experiment. The methods that have been proposed in [2, 16] are used to remove
the noise from the smooth substrate. Subsequently an empirical distribution of the values
of the functional (7) at the specified noise levels is determined. Based on this distribution
the probability is estimated as P( j ≤ A) = 0.001, see Fig. 4. This is the probability
of erroneously accepting the hypothesis against the closest alternative, "uniform field
of vision". According to the properties of the functional (7), this probability estimates
an upper bound for the probability of erroneously accepting the hypothesis against the
alternative, "fragment does not exist". This criterion is analogous to the principle of the
locally uniformly of the most powerful criterion [17].
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FIGURE 4. (a) The fine structure revealed at the same TKE-M distribution, as is shown at Fig. 2 (b). (b)
The spectrum of functional (7) values, obtained based on model data. The dotted line shows the threshold
value A, for which P( j ≤ A) = 0.001.

According to this statistical analysis, the probability that the "fine structure" obtained
from real experimental data is due to noise, is small. Fig. 4a) shows the result of the "fine
structure" extracted from real experimental data using the method described above, as
compared with the result obtained earlier in Fig. 2b).

The proposed method enables one to search for structures that have different shapes,
and should also be useful in other contexts.

In summary, we emphasize the two main aspects of this approach to the analysis
of two-dimensional distributions of experimental observables originated from nuclear
reactions.

1. Multi-valley structures of the potential energy surface of nuclear system, at least in
fusion, fission and quasifission reactions, describe different discrete reactions along
these valleys. Each reaction manifests itself as a trajectory in the space of experi-
mental observables such as mass-asymmetry and total kinetic energy, coupled with
prescession elongation of the system. Visualization of these trajectories (revealing
the fine structure) can give access to unique physical information, unknown in the
past.

2. In order to obtain quantitative estimates of our confidence in the extracted struc-
tures, we developed a mathematical approach based on morphological methods of
image analysis. Within its framework, one estimates the probability of random (due
to the noise) realizations of the structure (or its scaled versions). This provides nec-
essary confidence in the observations for subsequent physical analysis.
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