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Abstract. We propose a general approach to characterise fluctuations of measured cross sections of
nuclear giant resonances. Simulated cross sections are obtained from a particular, yet representative
self-energy which contains all information about fragmentations. Using a wavelet analysis, we
demonstrate the extraction of time scales of cascading decays into configurations of different
complexity of the resonance. We argue that the spreading widths of collective excitations in nuclei
are determined by the number of fragmentations as seen in the power spectrum. An analytic
treatment of the wavelet analysis using a Fourier expansion of the cross section confirms this
principle. A simple rule for the relative life times of states associated with hierarchies of different
complexity is given.
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INTRODUCTION

Nuclear Giant Resonances (GR) have been the subject of numerous investigations over
several decades [1]. Some of the basic features such as centroids and collectivity (in
terms of the sum rules) are reasonably well understood within microscopic models [2, 3].
However, the question of how a collective mode like the GR dissipates its energy is one
of the central issues in nuclear structure physics.

According to accepted wisdom, GRs are essentially excited by an external field
through a one-body interaction. It is natural to describe these states as collective 1p-1h
states. Once excited, the GR progresses to a fully equilibrated system via direct particle
emission and by coupling to more complicated configurations (2p-2h, 3p-3h, etc). The
former mechanism gives rise to an escape width, while the latter yields spreading
widths (Γ↓). An understanding of lifetime characteristics associated with the cascade
of couplings and scales of fragmentations arising from this coupling (cf [4, 5, 6, 7])
remains a challenge. Recent high energy-resolution experiments of the Isoscalar Giant
Quadrupole Resonance (QR) [8, 9, 10] provide new insights into this problem.

It has been shown by Shevchenko et al. [8] that the fine structure of the QR observed
in (p, p′) experiments is largely probe independent. Furthermore, a study of the fine
structure using wavelet analysis [11, 12, 13] reveals energy scales [9, 10] in the widths
of the fine structure displaying a seemingly systematic pattern, as can be seen in Figs.8

71



and 9 of Ref.[10]. The power spectrum patterns vary with the structure of the nucleus
being studied. They are obtained by summing the wavelet coefficients (an integrated
overlap of the mother wavelet and the excitation energy spectrum) onto the wavelet
energy-scale axis. While the physical meaning of the results of such an analysis is still
being debated, we try here to offer a general explanation. However, we do not embark
on a specific microscopic analysis, but rather make use of general and well-established
techniques of many-body theory. Gross effects due to nuclear deformation and coupling
to the continuum [5] are not discussed; we rather focus on the decay of the QR into
configurations of various complexity.

SELF-ENERGY AND CROSS SECTION

To proceed we use the Green’s function approach. A central role is played by the self-
energy whose finer structure is imparted upon the Green’s function via the solution of
Dyson’s equation which reads [14]

Gα,β (ω) = G0
α,β (ω))+G0

α ,γ(ω)Σγ,γ ′(ω)Gγ ′,β (ω) (1)

which is solved by

Gα,β (ω) = ((G0
α,β (ω))−1−Σα,β (ω))−1, (2)

where we assume G0(ω) = δα ,β /(ω− ε) to be diagonal in the basis α,β , . . . while the
complicated pole structure of G(ω) is generated by that of the self-energy Σα,β (ω). The
pole structure of G carries over to the scattering matrix given by

Tα,β (ω) = Σα,β (ω)+Σα ,β ′(ω)G0
β ′,α ′(ω)Tα ′,β (ω) (3)

= Σα,β (ω)+Σα,β ′(ω)Gβ ′,α ′(ω)Σα ′,β (ω) (4)

from which a cross section ∼ |Tα,α(ω)|2 is obtained.
Within the excitation energy range of the QR the nucleus has a high density of compli-

cated states of several tens of thousands per MeV and even more for heavy nuclei. These
many states appear in the self-energy as poles in the complex energy plane close to the
real axis. The small widths imply they are long-lived states and traditionally classed as
compound states. The simpler intermediate structure of the excitation is expressed by
the substantial fluctuations of the corresponding residues associated with the poles of
the self-energy Σ(ω) [15]. In other words, while the individual pole positions of Σ(ω)
are virtually unstructured [16], it is the variation of the corresponding residues that bears
all the information about intermediate structure. Note that our approach differs from a
traditional microscopic calculation in that from the outset we start from a random distri-
bution of pole terms representing compound states. Traditional microscopic approaches
cannot address such finer structures [17].

We assume that the QR, being a collective 1p-1h state, decays via a cascade pro-
gressing through (2p-2h)-, (3p-3h)-configurations and so forth to the eventual compound
states. In turn, each of the intermediate states (including the initial QR) can either de-
cay directly to the ground state or via some more complicated intermediate state. Below
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FIGURE 1. Schematic illustration of the residues of the self-energy: for 5 (top) and 10 (bottom)
intermediate states. The heights of each of the 300 bars which are situated at the real parts of the poles of
the self-energy illustrate the relative variation of the residues. The randomisation is clearly discernible.

we will show that it is this mixture that is seen in the cross section and extracted by
wavelet analysis, and it is the variety and cascading complexity of states that invokes
the structure of the residues of the poles of the self-energy. Of importance to note is that
the number of states available within the energy domain of the QR increases with its
complexity: for example, five (2p-2h)-states, ten (3p-3h)-states, down to several thou-
sand compound states (the numbers six or eleven should be taken as examples without
claim for quantitative correctness). Moreover, the corresponding life times are expected
to increase in line with their increasing complexity, which is in accordance with their
decreasing spreading widths (below we come back to this particular aspect of scaling).

As a typical case study we investigate here a wavelet analysis of a simulated cross
section that results from a particular input for the self-energy. Since arbitrary units
are used, we concentrate on the energy interval [0,1] and use for the pole position
ε = 0.5− i0.5 of the single pole of G0 (see Eq.(2)). The number of compound states is
assumed to be 300; this is of course much less than the experimental level density in the
region of a QR for a medium or heavy nucleus, but it suffices for our demonstration. The
real parts of the pole positions are assumed to be randomly distributed with a uniform
distribution of the mean distance 1/300; the imaginary parts are randomly distributed in
the interval [0.004,0.007].

For illustration we consider as a specific example four different sets of residues of the
self-energy. The self-energy reads

Σ(ω) =
300

∑
k=1

rk

ω−ωk
(5)

where each residue rk is the sum of four subsets; each subset is distributed by a
Lorentzian with specific widths γi, i = 1, . . . ,4 around the four sets of positions pi≈ 1/ fi.
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FIGURE 2. Simulated cross section in arbitrary units and power spectrum (right). The abscissa of the
cross section is the unit energy interval.

Formally it reads

rk =
4

∑
i=1

hi,k, hi,k = s
fi

∑
j=1

γ2
i

( k
300 − j · pi)2 + γ2

i
(6)

with an overall strength s = 10−5. This order of magnitude is based on the mean value
of the widths of the compound states being about 10−4 to 10−5 times smaller than the
Γ↓ (γi).

The poles at the complex positions ωk occur in the lower ω-plane with ω being the
energy variable. If only i = 1 was to occur with f1 = 5, a typical pattern of the residues
h1,k is illustrated by the top of Fig.1; similarly for f2 = 10 with h2,k being illustrated by
the bottom of Fig.1. The inclusion of further terms would simply add additional peaks
to the pattern. In the case presented below we have chosen f3 = 16 and f4 = 28 totalling
to 5+10+16+28 additional peaks (not easily visualised, but beautifully discernible in the
final analysis). We stress again that the four values fi were chosen for demonstration
purposes and that more than four - or other values - are equally suitable.

These arbitrary numbers used in the example chosen describe particular fragmenta-
tions of the QR into altogether 5, 10, 16 and 28 states of increasing complexity. The
widths γi giving rise to the Lorentzian shape of the residues are in reality determined by
the product of the density of the compound states and the coupling of the i-th group to
the compound states. The widths are the spreading widths of the respective states con-
sidered [15]. As the complexity increases with label i we shall assume γ1 > γ2 > γ3 > γ4.
In the simulation we endow each γi with a random fluctuation with mean value γi/4.
As stated above we refrain from specifying a microscopic structure causing the residue
pattern assumed for the self-energy; below it becomes clear that guidance comes from
experiment.

We also assume that each set fi is uniformly distributed over the whole energy interval.
This is similar in spirit to the assumption used in the local scaling dimension approach
[6]. The positions pi in Eq.(6) are set to be ∼ 1/ fi which spreads the actual j · pi
positions equidistantly over the whole interval with j running from 1 to fi; however,
we endow them with a small random fluctuation with mean value pi/8. Note that the
random fluctuation of widths and positions generate a mild degree of asymmetry in the
energy interval [0,1], resulting in slightly different patterns in the intervals [0,0.5] and
[0.5,1]. The near equality of the positions, that is - apart from slight random fluctuations
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FIGURE 3. Power spectrum from the cross section in Fig 2. The energy values δ refer to the wavelet
parameters.
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FIGURE 4. Power spectrum for a particular asymmetric situation discussed in text. The dotted curve
originates from a scan of the interval [0,0.5], the dashed curve from [0.5,1] and the solid curve from the
total interval. Note that the peak on the far left is virtually absent in the dashed curve while fully present
in the dotted curve. Units as in Fig.2 and 3.

- the regular pattern of the various fragments as illustrated in Fig.1, is basically dictated
by experimental findings: if there is no near regular pattern there will be no discernible
structure in the power spectrum of the wavelet analysis. However, we shall return below
to the case where regular patterns may occur only in a smaller portion of the interval.

The first obvious choice for the widths assumes simply γi = 1/(2 fi) yielding the
simulated cross section shown in Fig.2 (below a precise analytic expression confirming
the 1/(2 fi)-law is given). A variation of such a choice is rather significant, we shall
return to this aspect in detail.

THE WAVELET ANALYSIS

The analysis using a Morlet-type mother wavelet

Ψ(ω,δ ) =
1√
δ

cos
k(ω−ω0)

δ
exp−(ω−ω0)2

2δ 2 (7)

is used to calculate the coefficients

C(δ ,ω0) =
∫ dσ(ω)

dΩ
Ψ(ω,δ )dω (8)
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FIGURE 5. Power spectrum: dependence of height at the maximum on spreading width. The curve
with the lower value of the most left maximum is identical to the one in Fig.3., while the higher peak is
due to a decrease of its spreading width or an increase of its life time. Units as in Fig.2 and 3.

from which the power spectrum

Psp(δ ) =
∫
|C(δ ,ω0)|2 dω0

is obtained as a function of the scaling parameter δ . It is shown in Fig.3; if not indicated
otherwise we use the value k = 6 for the wave number of the mother wavelet. There is
in fact a k-dependence of the positions of the maxima of the power spectrum which is
given in analytic terms below. A contour plot of C(δ ,ω0) is illustrated in Fig.6.

In Fig.3 we clearly discern the four maxima that are produced by the four different
values fi of the number of fragmentations. In fact, the fragmentation into f1 = 5 produces
(for k = 6) the maximum at δ max

1 = 1/ f1 = 0.2; similarly, the other three maxima occur
at δ max

i = 1/ fi, i = 2,3,4. This is one of our major findings:
the maxima of the power spectrum occur at

δ max
i ≈ k/(2π) · I/ fi

with I being the interval of the whole range of the QR considered and fi the number of
fragmentations. The factor k/(2π) originates from the analytic expression given in (7)
below. Here we note that this result does not depend on whether we use a real wavelet
as in Eq.(7) or its complex version where the cosine-function is replaced by its complex
counterpart cos(.)+ isin(.).

The asymmetry found in some experimental data can obviously be accounted for by
our analysis. We refer to cases where the analysis yields a pattern in the first half of
the whole resonance being different from that in the second half, or in principle for
any subdivision of the whole resonance. For illustration, we take f4 = 14 while leaving
all other parameters unchanged. In this way the total of 28 maxima of the residues r f4
are confined to only 14 within the left half of the interval. The effects are clearly seen
in Fig.4. Note that the positions of the maxima still remain unchanged. This type of
asymmetry is clearly discernible in Fig.9 of Ref.[10]: from the two-dimensional wavelet
transform the wavelet power would give a similarly different pattern when taken at
different portions of the whole interval.
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The folding (integration) of the cross section with the Morlet wavelet has to be
done numerically. In order to obtain an analytic expression relating the number of
fragmentations fi to the positions of the maxima of the power spectrum, we consider
an expansion of a cross section into a Fourier series

dσ(ω)
dΩ

= ∑
m

cm sin(mπω/I)+∑
m

c′m cos(mπω/I). (9)

An intermediate structure manifests itself, if a few terms in Eq.(9) are appreciably
stronger than the others. For Fig.2 the terms with c10 ≈ c20 ≈ c32 ≈ c56 (and similarly
for the primed coefficients) are dominant; of course, terms for different m-values also
occur but are smaller by roughly an order of magnitude or more (here our analysis does
not focus on m ≤ 4: while giving larger contributions such values would correspond to
δ ≥ 0.5 and represent gross and bulk structure). Performing analytically the wavelet-
transform of each term in Eq.(9) (see Appendix), one obtains an analytic evaluation of
the positions and heights of the maxima of the power spectrum. For each sin(mπx)−
or cos(mπx)−term the positions of the local maxima in the power spectrum turn out to
be

Maxm =
k +

√
2+ k2

2mπ
I. (10)

For k = 6 (and the unity interval I) this yields 0.2, 0.1, 0.0625 and 0.036 for m =
10,20,32 and 56, respectively, as verified in Fig.3. Note that a different choice of k
moves the positions of the local maxima, yet the ∼ 1/m law prevails. The expression
(10) provides an obvious tool to be used to ascertain the number of fragmentations when
the maxima are determined from an analysis of experimental data. Clearly, the number
fm of fragmentations introduced above is related to the value m in Eq.(9) by m = 2 fm.

Furthermore, an increased value of k can resolve a peak in the power spectrum that
is caused by two near values of fi. In fact, the distance between adjacent maxima (say
m = 17 and m = 18) roughly doubles when k is doubled.

While - for fixed k - the 1/ fi dependence of the maxima of the power spectrum is
an important finding, even more significant is the result that the values at the maxima
(the heights) also obey the same 1/ fi-law if the corresponding Fourier coefficients are
about equal. Indeed, a straight line can be drawn through the maxima in Fig.3 since
the four values cm, m = 10,20,32,56 are about equal. We recall that, for example,
sin(10πx) generates fk = 5 peaks of a width γk = 1/(2 fk) in the energy (unit) interval
for the cross section. This can be exploited in a realistic analysis: a deviation from this
straight-line-rule signals effectively a deviation from the spreading width being assumed
to be 1/(2 fi). This is illustrated in Fig.4 where the spreading width 1/(2 f4) has been
decreased to 1/(2.8 f4). As a result, the value of the first peak becomes enhanced. Since
the spreading width is related to the life time of the states, we conclude: the life times
are proportional to fi if the heights of the maxima lie on a straight line; an increased
(decreased) height signals an even longer (shorter) life time.

In this context we note that the number of peaks and troughs in Fig.5 on the horizontal
lines matches exactly the values of the fi: five on the top, further down ten, then sixteen
and twenty eight on the bottom. The actual values of these peaks and troughs determine
the heights of the bumps in the power spectrum, that is the information about the life
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FIGURE 6. Wavelet contour plot of cross section shown in Fig.3. The symbols δ and ω0 refer to the
Morlet wavelet parameters used in Eq.(7). The (positive) maxima are in light shading and the (negative)
minima in dark. For the top pattern the contours range from 0.4 to −0.4.

times of the respective fragmented states. A similar wavelet transform obtained from
experimental data is presented in Figs.8 and 9 in Ref.[10]; note that our schematic ’in
vitro’ illustration is of course much more symmetric.

CONCLUSION

While in experiments the chaotic nature of the nucleus usually shows at higher excitation
energies [16], the pertinent structure revealed in the analysis may come as a surprise.
We are of course familiar with order in the nuclear many body system as shown in
shell effects and simple collective states. The fragmentations of the QR may be due
to a different quality: it could be a manifestation of self-organising structures [18,
19, 20]. Indeed, the life time of increasingly complex configurations of the QR is
increasing toward the compound states and the ground state. There is no generally
accepted definition of conditions under which the self-organising structures are expected
to arise. We may speculate that in the case considered here, once the nuclear QR state
is created, it is driven to an unstable hierarchy of configurations (metastable states) by
quantum selection rules which connect these different complex configurations due to
internal mixing. This problem needs of course a dedicated study on its own and is beyond
the scope of the present paper.

We summarise the major points of our findings: (i) the position of the peaks in the
power spectrum indicate the number of fragmentations of a particular intermediate
state; the more complex states lie to the left of the simpler states (see Eq.(10)); (ii)
the resolution of poorly resolved peaks can be improved by a higher value of k; (iii) the
values (heights) at the peaks are related to the spreading widths, implying knowledge
about the life times: if they lie on a straight line, the life times are proportional to the
number of fragmentations, if they lie above (below) the straight line the corresponding
life times are longer (shorter). Finally, we mention that a pronounced gross structure
of the experimental cross section as found in lighter nuclei, would have no effect upon
our findings. In fact, such gross structure had to occur at the far right end (values of δ
appreciably larger than those used in the literature) of the power spectrum.

78



APPENDIX

The wavelet transform of each term in Eq.(9) is for the sinmπω-term (with mπ = a)

1√
δ

∫ 1

0
dxsinaxcos

k(x− ε)
δ

exp−(x− ε)2

2δ 2 =−
√

π
2

√
δ

2
exp(−(aδ + k)2

2
) ·

ℑ(exp(−iaε)Erf
1+ iaδ 2− ε + iδk√

2δ
)+ℑ(exp(−iaε +2aδk)Erf

1+ iaδ 2− ε− iδk√
2δ

)

+ℑ(exp(iaε)Erf
−iaδ 2− ε− iδk√

2δ
)+ℑ(exp(iaε +2aδk)Erf

−iaδ 2− ε + iδk√
2δ

)

and similar for the cosmπω-term where the ℑ is replaced by ℜ. Here Erf denotes the
error function. The positions of the maxima in Fig 3 are the zeros of the derivative with
respect to δ of the square of the expression above (we assume that the maxima are
isolated). This amounts to finding the zeros of the derivative. The derivative reads

−1+ exp(2iaε)
16δ 3/2

{
i
√

2πδ exp(−k2 +a2δ 2 +2iaε
2

)
(

exp(akδ )(−1+2aδ (−k +aδ ))ℑErf(
ε + iδ (k−aδ )√

2δ
)

+ exp(−akδ )(−1+2aδ (k +aδ ))ℑErf(
ε− iδ (k +aδ )√

2δ
)
)

− 4exp(−ε(ε +2iδ (k +2aδ ))
2δ 2 )(1+ exp(

2iεk
δ

)(−i(1+ exp(2iaε))ε

+ a(−1+ exp(2iaε))δ 2
}

.

This expression has three terms: two within the big round brackets and a third before
the closing curly bracket. For the parameter range of interest, owing to the exponential
factors only the first term within the round brackets contributes substantially while the
other two terms are smaller by many orders of magnitude. This first term, in turn, is
governed by the factor (−1+2aδ (−k+aδ )). It vanishes, and thus the whole expression,
for δ = (k +

√
2+ k2)/(2a) = (k +

√
2+ k2)/(2mπ) being the expression given in

Eq.(10).
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