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Abstract. One of the major problems in numerical solution of coupled differential equations is the
maintenance of linear independence for different sets of solution vectors. A novel method for solu-
tion of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations
in a way that is appropriate to avoid usual numerical instabilities associated with components of the
wave function in their classically forbidden regions. Applications of the new method for nuclear
structure calculations within the hyperspherical harmonics approach, are given.
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INTRODUCTION

Systems of coupled Schrödinger equations often appear in problems of quantum me-
chanics and applications to nuclear physics, quantum chemistry etc. A variety of meth-
ods has been developed to solve systems of coupled radial Schrödinger equations. A
widespread approach consists of two steps. First, sets of linear independent solutions are
calculated and then, exploiting the linearity of the coupled equations, a suitable combi-
nation of different sets with the required boundary conditions is found. A major problem
in numerical solution of the coupled equations is the difficulty of maintaining the linear
independence of the solution vectors. There always exists a region of radii where some
components of the wave function are classically forbidden and others not. The com-
ponents with negative radial kinetic energy will in general consist of an exponentially
growing and an exponentially decreasing part. If the integration is continued through a
classically forbidden region, the exponentially growing components of the wave func-
tion in the most strongly closed channels increase faster and soon start to dominate the
entire wave function matrix. The small components become insignificant on the scale of
the relative accuracy of the calculation. Eventually different solutions become linearly
dependent and, thus, useless for finding linear combinations with required boundary
conditions. In the classically allowed region, the uneven growth of the components does
not occur, since the components are mainly oscillating. But all problems involve inte-
gration through at least one classically forbidden region, and instability from developing
nearly dependent solutions causes serious numerical inaccuracy. This difficulty arises
from the natural properties of solutions rather then from any particular method for their
construction.
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To maintain linear independence, different stabilizing transformations during propa-
gation were suggested [1, 2, 3, 4, 5]. After several propagation steps these regularization
procedures can be applied to re-establish the linear independence of the columns in the
wave function matrix. Usually these transformations are rather awkward and tedious.
Another approach to overcome the difficulty is to use a so-called invariant imbedding
method, in which the propagated quantity is not the wave function matrix ΨΨΨ = {ψin(r)}
but rather its logarithmic derivative ΨΨΨ′ΨΨΨ−1 [6, 7] or its inverse matrix RRR = ΨΨΨΨΨΨ′−1 [8].
These methods found broad applications, especially for large coupled-channels calcula-
tions. In other approaches radial wave functions are expanded in terms of orthonormal
basis functions, chosen to account for some dynamical features in the most effective
way. Then a solution of the differential equations is reduced to a set of linear equations
for expansion coefficients. Such an approach, for example, is realized in program [9].

In the past three decades, a lot of research (see, for example, [10, 11] and references
therein) has been performed in the area of numerical integration of the Schrödinger equa-
tion. The main goal is to construct numerical methods that are both accurate and compu-
tational efficient. The development of these methods is still an active subject. Here, we
suggest a novel method for solution of radial Schrödinger equations. It consists in rear-
rangement of coupled equations in a way that is appropriate to avoid the usual numerical
instabilities associated with components of the wave function in their classically forbid-
den regions. Applications of the new method to nuclear structure calculations within the
hyperspherical harmonics approach, are given.

THEORY

Consider the system of the N coupled radial Schrödinger equations
(

d2

dr2 +
2mE
h̄2 −Li(Li +1)

r2

)
ψin(r) =

N

∑
j=1

Vi j(r)ψ jn(r) (1)

where E is a total energy, Li is an angular orbital momentum in the channel i. The
first index of ψin(r) denotes the i-th component of wave functions (i = 1, . . . , N) while
the second index n marks different linear independent solutions. The N×N matrix of
coupling potentials Vi j(r) is assumed symmetric, i. e. Vi j(r) = V ji(r). Note that potentials
include the factor 2m/h̄2 and have dimension f m−2. In general, the system (1) of the
N linear differential equations of second order has 2N linearly independent solutions
called the fundamental ones; N solutions have a regular behaviour at the origin while
the N others have irregular behaviour. Any solution of the system (1) can be written as
a linear combination of these fundamental solutions. Only solutions that satisfy definite
boundary conditions imposed at the origin and infinity, have physical meaning. At the
origin the boundary condition demands that wave functions have a regular behaviour

ψin(r → 0)→ 0 (2)

while at infinity the boundary condition depends on the sign of energy E. For bound
states (E < 0) the problem is of the eigenvalue type and for any given eigenvalue (En)
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the solution of (1) decays exponentially for large values of r

ψin(r → ∞)→ exp(−kn r) (3)

where kn =
√

2m | En | /h̄2. For continuum states (E > 0) the solutions oscillate at infinity

ψin(r → ∞)→ H(−)
Li

(k r)δin−H(+)
Li

(k r)Sin (4)

where k =
√

2m | E | /h̄2. Here H(±)
Li

(x) = GLi(x) ± ıFLi(x) are the Coulomb functions
of index Li [12] describing the in- and out-going spherical waves. FLi(x) and GLi(x)
are regular and irregular Coulomb functions, respectively, ı =

√−1. The Sin is the S-
matrix element for the outgoing amplitude in channel i from an incoming plane wave in
channel n.

Our aim is to find solutions of system (1) satisfying boundary conditions (2,3,4) for
radius changing from zero to some maximal value r = rmax. The general method to solve
the boundary value problem for coupled equations (1) is to construct a set of linear in-
dependent solutions and after that find a linear combination of these solutions which
satisfies the required asymptotic behaviour. Numerical integration within a long radial
interval tends to accumulate errors and induces a loss of linear independence of solu-
tions. Thus it is convenient to divide the radial space into nonoverlapping domains by
points bI , 0 = b0 < b1 < . . . < bmax = rmax and solve differential equations separately
in each of the intervals. Then the partial solutions are assembled into a global solution
that is continuous and smooth across the whole region and satisfies the given boundary
conditions. The transparent and straightforward way to perform this task is to reformu-
late the coupled differential equations (1) as a system of coupled integral equations. It
has also the advantage that integral equations contain the explicit structure of required
solutions.

Integral formulation

Boundary value problems for a system of ordinary differential equations (1) can
be reformulated as a system of Fredholm integral equations. For technical reasons
it is simpler to solve Volterra integral equations with variable upper or lower limits.
System of Volterra equations corresponds to the solution of the initial value problem. If
only open channels exist then solutions of Fredholm and Volterra systems are different
by a constant matrix. Since the total normalization is not important all solutions are
acceptable. If closed and opened channels coexist, then solutions of Volterra equations
can not substitute the solutions of Fredholm systems within the entire range of a radial
variable. Numerical solutions of Volterra equations with variable upper limit are regular
at the origin but at large radii they will have exponentially increasing components in
closed channels. Numerical solutions of Volterra equations with variable lower limit can
contain exponentially decreasing components in closed channels but can not guarantee
the regular behaviour of wave functions at the origin. A solution of this dilemma is
well known and commonly used. It consists of a combination of solutions for both type
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of Volterra equations: wave functions and their first derivatives are matched at some
intermediate radius. Thus the obtained wave functions are solutions of the original
system of Schrödinger equations (1) for all radii and satisfy the required boundary
conditions. If at least one open channel exists then a matching procedure is always
possible. Let N = Nop + Ncl , where Nop (Ncl) is the number of open (closed) channels.
Then, there are N regular solutions for outward integrations of Volterra equations with
variable upper limit, while the number of linear independent solutions for Volterra
equations with variable lower limit is larger and equal to N + Nop = Ncl + 2Nop. This
number is composed of the Ncl sets with exponentially decreasing components in closed
channels, Nop sets with components oscillating asymptotically like regular functions Fi
or Nop sets with components oscillating like irregular Gi. The extra freedom in number
of linear independent solutions always allows to match them and define simultaneously
necessary S-matrix elements. When only closed channels exist, i. e. for bound state
problems, the number of linear independent solutions for inward and outward integration
is the same and equal to N. Then matching procedure is only possible at discrete values
of the energy which are energies of bound states, respectively.

Consider the following systems of Volterra integral equations with variable upper or
lower limit r

ψin(r)− 1
k

∫ r

0
dr′

(
fi(k r)gi(k r′)−gi(k r) fi(k r′)

) N

∑
j=1

Vi j(r′)ψ jn(r′) = δin fi(k r) (5)

ψin(r)+
1
k

∫ ∞

r
dr′

(
fi(k r)gi(k r′)−gi(k r) fi(k r′)

) N

∑
j=1

Vi j(r′)ψ jn(r′) = δin gi(k r) (6)

where δin is the Kronecker symbol, and where the Green’s function
( fi(k r)gi(k r′)−gi(k r) fi(k r′))/k is composed of two linear independent solutions
fi(k r) and gi(k r) of the free Schrödinger equation

(
d2

dr2 +
2mE
h̄2 −Li(Li +1)

r2

)
fi(k r) = 0 (7)

Free solutions are normalized by demanding that the Wronskian relation W ( fi,gi) =
fi(x)g′i(x) - f ′i (x)gi(x) = -1. They have explicit representation via Bessel functions [12]
of the first Jν and second Yν kinds for E > 0

fi(x) =
√

πx
2

JLi+1/2(x) ; gi(x) =−
√

πx
2

YLi+1/2(x) (8)

and modified Bessel functions Iν and Kν for E < 0

fi(x) =
√

xILi+1/2(x) ; gi(x) =
√

xKLi+1/2(x) (9)

The functions fi(k r) and gi(k r) have regular and irregular behaviour at the origin,
respectively. Hence solutions of Volterra systems (5) and (6) also define sets of N
linear independent solutions of the Schrödinger equations (1) with regular or irregular
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behaviour at the origin, respectively. Below we consider only system (5), for system (6)
a derivation can be made in a similar way.

Labelling the wave function ψin(r) in the interval I as ψ I
in(r) and using the equations

(5) we can write

ψ I
in(r) − 1

k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)ψ I
jn(r

′)

= fi(k r)AI
in−gi(k r)BI

in (10)

where the constants AI
in and BI

in are equal to

AI
in = δin +

1
k

∫ bI−1

0
dr′gi(k r′)∑

j
Vi j(r′)ψ jn(r′)

BI
in =

1
k

∫ bI−1

0
dr′ fi(k r′)∑

j
Vi j(r′)ψ jn(r′) (11)

The wave functions ψ I
in(r) in the interval I can be written as linear combinations of

unknown functions yI
ip(r) and zI

ip(r) [13]

ψ I
in(r) =

N

∑
p=1

(yI
ip(r)AI

pn− zI
ip(r)BI

pn) (12)

Substituting decomposition (12) into equations (10) we obtain the integral equations in
the I-th interval for functions yI

in(r) and zI
in(r)

yI
in(r)−

1
k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)yI
jn(r

′) = δin fi(k r) (13)

zI
in(r)−

1
k

∫ r

bI−1

dr′
(

fi(k r)gi(k r′)−gi(k r) fi(k r′)
) N

∑
j=1

Vi j(r′)zI
jn(r

′) = δin gi(k r) (14)

According to the driving terms on the right hand side of equations (13) - (14) the func-
tions yI

in(r) and zI
in(r) can be called the regular and irregular solutions in the interval

I. They form a complete system of 2N linear independent solutions of the Schrödinger
equations (1) within the radial interval I. Substituting the decomposition (12) in equa-
tions (11), simple recurrence relations for the coefficients AI

in and BI
in can be obtained

AI
in = AI−1

in +
N

∑
p=1

(
(gV y)I−1

ip AI−1
pn − (gV z)I−1

ip BI−1
pn

)

BI
in = BI−1

in +
N

∑
p=1

(
( fV y)I−1

ip AI−1
pn − ( fV z)I−1

ip BI−1
pn

)
(15)
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with initial values A1
in = δin, B1

in = 0 and I ≥ 2. The coefficients of AI−1
pn and BI−1

pn in (15)
are given by

(gV y)I−1
ip =

1
k

∫ bI−1

bI−2

dr′gi(k r′)
N

∑
j=1

Vi j(r′)yI−1
jp (r′)

(gV z)I−1
ip =

1
k

∫ bI−1

bI−2

dr′gi(k r′)
N

∑
j=1

Vi j(r′)zI−1
jp (r′)

( fV y)I−1
ip =

1
k

∫ bI−1

bI−2

dr′ fi(k r′)
N

∑
j=1

Vi j(r′)yI−1
jp (r′)

( fV z)I−1
ip =

1
k

∫ bI−1

bI−2

dr′ fi(k r′)
N

∑
j=1

Vi j(r′)zI−1
jp (r′) (16)

Thus the original problem (1) is reduced to obtaining a complete set of regular yI
in(r) and

irregular zI
in(r) solutions in the interval I. From these solutions, using decomposition

(12), global solutions ψ I
in(r) can be obtained. Note that the yI

in(r) and zI
in(r) in the I-

th interval are calculated independently of solutions on other intervals. Below we will
present the detailed derivation only for regular solutions yI

in(r). For irregular solutions
zI

in(r) similar relations can easily be obtained.
The Green’s function constructed from the fi(k r) and gi(k r) solutions of the free

Schrödinger equation (7) was used explicitly in (13) and (14). In reality, any potentials
can be added into equation (7) to obtain potential-modified functions fi(k r) and gi(k r)
in the I-th interval. These potentials must however be subtracted from the diagonal
potentials Vii(r) in equations (13) and (14), respectively. For example, the diagonal
potentials Vii themselves may be used for fi(k r) and gi(k r) calculations. This allows
to account for a sizeable part of the correlations induced by the interactions before an
attempt is made to solve the system of coupled equations. But now we lose knowledge
about analytical properties of fi(k r) and gi(k r) functions. As a reasonable compromise,
the value of the diagonal potential at any fixed point within the I-th interval (for example,
bI−1 - the beginning of interval I) can be used to represent the interval. Then functions
fi(ki r) and gi(ki r) will still be solutions of the free Schrödinger equation (7) but with
new (scaled) energies Ei = E - (h̄2/2m)Vii(bI−1) and, correspondingly, with new linear
momenta ki =

√
2m|Ei|/h̄. Then we get new integral equations for calculations of local

regular solutions

yI
in(r) − 1

ki

∫ r

bI−1

dr′
(

fi(ki r)gi(ki r′)−gi(ki r) fi(ki r′)
) N

∑
j=1

V I
i j(r

′)yI
jn(r

′)

= δin ( fi(ki r)ai−gi(ki r)ci) (17)

where V I
i j(r) = Vi j(r) - δi jVii(bI−1) and where the constants ai and ci in the driving term

are fixed by the requirement that yI
in(r) must satisfy the initial values built into equations
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(13): yI
in(bI−1) = δin fi(k bI−1) and yI′

in(bI−1) = δin k f ′i (k bI−1)

ai =
k
ki

f ′i (k bI−1)gi(ki bI−1)− fi(k bI−1)g′i(ki bI−1)

ci =
k
ki

f ′i (k bI−1) fi(ki bI−1)− fi(k bI−1) f ′i (ki bI−1) (18)

When all ki = k, the equations (17) reduce to equations (13). In equations (17) the channel
energies Ei depend on values of diagonal potentials Vii(bI−1) and thus may have different
signs, therefore different channels may be locally open or closed.

The integral equations (17) define an explicit structure for regular solutions yI
in(r)

yI
in(r) = fi(ki r)α I

in(r)−gi(ki r)β I
in(r) (19)

where the unknown functions α I
in(r) and β I

in(r) are solutions of the following system of
coupled integral equations

α I
in(r) = δinai +

1
ki

∫ r

bI−1

dr′gi(ki r′)
N

∑
j=1

V I
i j(r

′)
(

f j(k j r′)α I
jn(r

′)−g j(k j r′)β I
jn(r

′)
)

β I
in(r) = δinci +

1
ki

∫ r

bI−1

dr′ fi(ki r′)
N

∑
j=1

V I
i j(r

′)
(

f j(k j r′)α I
jn(r

′)−g j(k j r′)β I
jn(r

′)
)

(20)

Now we return to the differential formulation of the respective equations.

Differential formulation

The system of integral equations (20) for the functions α I
in(r) and β I

in(r) is equivalent
to a system of the 2N coupled ordinary differential equations of the first order

dα I
in(r)
dr

=
1
ki

gi(ki r)
N

∑
j=1

V I
i j(r)

(
f j(k j r)α I

jn(r)−g j(k j r)β I
jn(r)

)

dβ I
in(r)
dr

=
1
ki

fi(ki r)
N

∑
j=1

V I
i j(r)

(
f j(k j r)α I

jn(r)−g j(k j r)β I
jn(r)

)
(21)

with initial values α I
in(bI−1) = δinai and β I

in(bI−1) = δinci. Multiplying the first equation
by fi(ki r) and the second by gi(ki r), we see that these equations have the special prop-
erties, fi(ki r)dα I

in(r)/dr = gi(ki r)dβ I
in(r)/dr. Equations (21) also allow to investigate

explicitly the reasons that catalyze loss of linear independence for different solution sets.
We have to estimate the qualitative behaviour of the regular fi(x) and irregular gi(x)

functions. For closed channels, the regular (irregular) functions (9) are monotonously
increasing (decreasing) with increasing arguments. Both functions never equal zero at
finite arguments. For open channels there are two regions where functions fi(x) and
gi(x) (8) have qualitatively different behaviour. At small arguments they have monotonic
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behaviour similar to that for closed channels. At large arguments they oscillate like
cosine or sine functions. Instead of fi(x) and gi(x) functions in the region of oscillations
it is convenient to introduce the modulus Mi(x) and phase θi(x) functions [12]

Mi(x) =
√

f 2
i (x)+g2

i (x) ; fi(x) = Mi(x) cosθi(x) ; gi(x) = Mi(x) sinθi(x) (22)

Modulus Mi(x) is never equal to zero. From the Wronskian relation it also follows that
θ ′i (x) = −1/M2

i (x).
The presence of centrifugal barriers is natural for dynamics described by Schrödinger

equations. It is possible to account for them analytically by introducing regular fi(kir)
and irregular gi(kir) solutions of the free Schrödinger equations (7). Explicit centrifu-
gal barriers drop out and their influence on the full solution is described by the fi(kir)
and gi(kir) functions in the equations (21). The regular and irregular functions of dif-
ferent orders are mixed in the equations. These functions have quantitatively different
behaviour, some may be rather small while others are very large. The difference in ab-
solute values can easily reach many orders of magnitude. Under such circumstances it
is difficult to keep an acceptable level of the accuracy in numerical solution of coupled
equations. The lack of accuracy leads to loss of the linear independence of different
solutions. A possible way out is to make a rearrangement of coupled equations such
that the different behaviour of free solutions will be minimized. There exist only three
suitable combinations: the product of free functions fi(x)gi(x) and their logarithmic
derivatives f ′i (x)/ fi(x) and g′i(x)/gi(x). After rearrangement the necessary requirements
to the numerical accuracy for solutions of the new system of coupled equations become
significantly weaker. Such rearrangement of equations is just the main idea of this arti-
cle.

To illustrate our point, Figure (1) shows the regular fi(x) and irregular gi(x) functions
for closed (a) and open (b) channels with Li = 3/2, 19/2 and 39/2 represented by the
solid, dash and dash-dot lines, respectively. (In the hypersherical harmonics method
these values of Li correspond to calculations with hypermoment K = 0, 8 and 18,
respectively.) We see that changes in scales for absolute values of free solutions can
easily span twenty orders of magnitude. (Figure (1) shows variations from 10−10 to
10+10). Variations of logarithmic derivatives for these functions, on the other hand,
shown in Figure (2), span only a few (2 - 3) orders of magnitude.

Now we assume that in the I-th interval the first N0 channels have free functions fi(x)
and gi(x) with arguments x lying in the region of monotonic behaviour. All closed and
a part of the open channels are included into this number. The rest, channels from N0
+ 1 to N are open, and arguments of free functions are in the region of oscillations. In
the first N0 channels the absolute values of free solutions may vary over a wide scale
while they are restricted to about unity in the last (N - N0) ones. We will transform the
system of equations (21) in such a way that free solutions enter into the new system of
equations as logarithmic derivatives with rather restricted variations in absolute scale.
For functions with arguments in the region of oscillations the logarithmic derivatives
become infinite at the points where the functions have zeros. This is a reason for special
selection of such channels. Thus instead of the relation (19) for a regular solution yI

in(r)
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FIGURE 1. The regular fi(x) and irregular gi(x) solutions of the free Schrödinger equations for neg-
ative (a) and positive (b) energies. The solid, dash and dash-dot lines correspond to calculations with
hypermoments K = 0, 8 and 18, respectively.

we use a more explicit decomposition for different components i

yI
in(r) = fi(ki r)α I

in(r)−gi(ki r)β I
in(r), 1≤ i≤ N0 (23)

= Mi(ki r)
(
cos(θi(ki r))α I

in(r)− sin(θi(ki r))β I
in(r)

)
, N0 +1≤ i≤ N

Let us first consider the equations for channels i ≤ N0. Differentiating functions
yI

in(r), using equations (21) and the Wronskian relation for free solutions we can get
the following set of equations for i≤ N0

dyI
in(r)
dr

= ki
f ′i (ki r)
fi(ki r)

yI
in(r)+ γ I

in(r) (24)

dγ I
in(r)
dr

= −ki
f ′i (ki r)
fi(ki r)

γ I
in(r)+

N

∑
j=1

V I
i j(r)yI

jn(r)
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FIGURE 2. Absolute values of the logarithmic derivatives of regular fi(x) (solid line) and irregular
gi(x) (dash line) solutions of the free Schrödinger equations for negative (a) and positive (b) energies for
hypermoments K = 0, 8 and 18. The dash-dotted lines show moduli (22) M0(x) and M8(x) of free solutions
in the region of oscillations.

where the function γ I
in(r) = ki β I

in(r)/ fi(ki r). For i > N0 the following set of equations
can be obtained

dyI
in(r)
dr

= ki
M′

i(ki r)
Mi(ki r)

yI
in(r)+ γ I

in(r) (25)

dγ I
in(r)
dr

= −ki
M′

i(ki r)
Mi(ki r)

γ I
in(r)+

N

∑
j=1

V I
i j(r)yI

jn(r)−
k2

i

M4
i (ki r)

yI
in(r)

where γ I
in(r) = ki

(
sin(θi(ki r))α I

in(r)+ cos(θi(ki r))β I
in(r)

)
/Mi(ki r). Initial values for

functions yI
in(r) and γ I

in(r) are equal to

yI
in(bi−1) = δin fi(k bI−1) ; 1≤ i≤ N

γ I
in(bi−1) = δin fi(k bI−1)

(
k

f ′i (k bI−1)
fi(k bI−1)

− ki
f ′i (ki bI−1)
fi(ki bI−1)

)
; 1≤ i≤ N0

γ I
in(bi−1) = δin fi(k bI−1)

(
k

f ′i (k bI−1)
fi(k bI−1)

− ki
M′

i(ki bI−1)
Mi(ki bI−1)

)
; N0 < i≤ N (26)
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For cases when ki = k and i ≤ N0 the initial values for functions γ I
in(bi−1) are equal to

zero. Finding functions yI
in(r) and γ I

in(r) we obtain simultaneously the derivatives yI′
in(r)

via equations (24) and (25).
The systems of equations (24) - (25) include the bare potentials V I

i j(r) without the
multiplications on functions fi(ki r) and gi(ki r) occurring in equations (21). The free
solutions appear in the new equations (24) - (25) only as logarithmic derivatives. Thus
huge differences in scales of absolute values that may exist for functions fi(x) and gi(x)
with different indices i are significantly reduced, to relatively mild variations of absolute
values for logarithmic derivatives. Hence requirements on accuracy of numerical meth-
ods applied for solving the coupled radial Schrödinger equations become essentially
weaker and the loss of linear independence for different solution sets due to insufficient
numerical accuracy, is greatly reduced.

Expressions (24) - (25) correspond to calculations of regular solutions yI
in(r). For

irregular solutions zI
in(r) we can proceed analogously and get for i ≤ N0 the following

system of equations

dzI
in(r)
dr

= ki
g′i(ki r)
gi(ki r)

zI
in(r)+η I

in(r) (27)

dη I
in(r)
dr

= −ki
g′i(ki r)
gi(ki r)

η I
in(r)+

N

∑
j=1

V I
i j(r)zI

jn(r)

and for i > N0 equations parallel to those of (25) (by just changing notations: yI
in(r)→

zI
in(r) and γ I

in(r)→ η I
in(r)). Initial values for functions zI

in(r) and η I
in(r) are equal to

zI
in(bi−1) = δingi(k bI−1) ; 1≤ i≤ N

η I
in(bi−1) = δingi(k bI−1)

(
k

g′i(k bI−1)
gi(k bI−1)

− ki
g′i(ki bI−1)
gi(ki bI−1)

)
; 1≤ i≤ N0

η I
in(bi−1) = δingi(k bI−1)

(
k

g′i(k bI−1)
gi(k bI−1)

− ki
M′

i(ki bI−1)
Mi(ki bI−1)

)
; N0 < i≤ N (28)

We see that if in the formulas above for yI
in(r), the regular functions fi(x) are replaced

by the irregular functions gi(x), we get expressions for calculations of irregular solutions
zI

in(r). The new systems (24) and (27) show explicitly why regular and irregular solutions
behave in qualitatively different way. The differences of respective equations for i ≤
N0 are in the terms that include the logarithmic derivatives of free solutions. Since
f ′i (x)/ fi(x) and g′i(x)/gi(x) have comparable absolute values and different signs they
force solutions to change in opposite directions. For components i > N0 in the regions
of oscillations both solutions yI

in(r) and zI
in(r) obey equations where only the modulus

function Mi(ki r) of free solutions appears at the place of fi(ki r) and gi(ki r).
In practice, it is convenient to scale solutions yI

ip(r) and zI
ip(r) by factors fp(k bI−1)

and gp(k bI−1), respectively, for channels p where the functions fp(k bI−1) and
gp(k bI−1) have monotonic behaviour (while we do not scale solutions for channels p
where their absolute values oscillate around unity)

yI
ip(r) = ỹI

ip(r) fp(k bI−1) ; ÃI
pn = fp(k bI−1)AI

pn (29)
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zI
ip(r) = z̃I

ip(r)gp(k bI−1) ; B̃I
pn = gp(k bI−1)BI

pn

Then, wave functions ψ I
in(r) (see (12)) on interval I can be written as linear combinations

of the ỹI
ip(r) and z̃I

ip(r) functions

ψ I
in(r) =

N

∑
p=1

(ỹI
ip(r) ÃI

pn− z̃I
ip(r) B̃I

pn) (30)

where the initial values for functions ỹI
ip(r) and z̃I

ip(r) at the radius r = bI−1 are reduced
to the Kronecker symbol. The integrals in (16) can be scaled in similar ways, for

example (gV y)I
ip = gi(k bI−1) ˜(gV y)

I
ip fp(k bI−1) etc. Thus, the recurrence relations (15)

for coefficients AI
in and BI

in are transformed, and read

ÃI
in =

fi(k bI−1)
fi(k bI−2)

{
ÃI−1

in + fi(k bI−2)gi(k bI−2)
N

∑
p=1

(
˜(gV y)

I−1
ip ÃI−1

pn − ˜(gV z)
I−1
ip B̃I−1

pn

)}

B̃I
in =

gi(k bI−1)
gi(k bI−2)

{
B̃I−1

in + fi(k bI−2)gi(k bI−2)
N

∑
p=1

(
˜( fV y)

I−1
ip ÃI−1

pn − ˜( fV z)
I−1
ip B̃I−1

pn

)}

This scaling gives significant reduction of the absolute value variations within radial
interval I for all functions and coefficients in the formulas above.

Matching and normalization

For bound state case (E < 0) we have two sets of the N linear independent solutions of
systems (5) and (6), regular ψreg

in (r) and irregular ψ irr
in (r), respectively. Wave functions

ψreg
in (r) are regular at the origin while ψ irr

in (r) vanish at infinity. We demand that at some
(matching) point rm a linear combinations of wave functions and derivatives for both
sets become equal to a each other

N

∑
n=1

ψreg
in (rm)λn =

N

∑
n=1

ψ irr
in (rm)µn

N

∑
n=1

ψreg ′
in (rm)λn =

N

∑
n=1

ψ irr ′
in (rm)µn (31)

Here {λn} and {µn} are unknown mixing coefficients that must be found from solving
the homogeneous system of 2N linear equations (31). A solution exists only if the
determinant of the system constructed from wave functions and derivatives equals to
zero. This may only happen at a discrete value of the energy E, which is the energy
of a bound state. Hence we have a procedure searching for the energy of bound states.
First, the energy intervals, where the determinant changes sign, are defined. Then the
search for zero of the determinant within the energy interval gives the bound state
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energy. Knowing sets of solutions for this energy we can arbitrarily fix one of the mixing
coefficients (say by putting it equal to unity) and the rest of them can be found by solving
the inhomogeneous system of (2N− 1)-equations obtained from (31). Finally a bound
state wave function, obtained as linear combination of ψreg

in (r) and ψ irr
in (r), is normalized

to have unit norm.
For continuum states (E > 0) the asymptotic form (r → ∞) for linear combinations of

radial wave functions from system (5) may be written as

N

∑
p=1

ψip(r)λpn = Fi(k r)δin +Gi(k r)Kin

N

∑
p=1

ψ ′
ip(r)λpn = k

(
F ′i (k r)δin +G′

i(k r)Kin
)

(32)

Solutions of this system allow us to define the KKK-matrix elements Kin and matrix of
mixing coefficients {λpn} for normalization of linear independent sets of radial functions
ψip(r). The KKK-matrix is related to the scattering SSS-matrix appearing in formula (4) by
the equation

SSS = (1+ ıKKK)(1− ıKKK)−1 (33)

This procedure gives the SSS (or KKK) matrix and N independent sets of radial wave functions
with necessary asymptotic behaviour.

DISCUSSION

The centrifugal potentials are an important part of the dynamics described by the system
of coupled radial Schrödinger equations and usually singled out explicitly. Numerical
solutions of Schrödinger equations in regions where motions are under barriers lead to
mixing of large and small components that coexist at these conditions. When accuracy
of numerical integration is not enough for tracing of different solutions, such mixing
may lead to loss of linear independence. This is one of the major problems in numerical
solutions of coupled system of equations. The method suggested here, tries to remedy
this, and consists of two steps. First, the radial domain is split into finite intervals. A
complete set of fundamental solutions has to be obtained at every interval independently
on solutions in other intervals. The second step consists in a rearrangement of equations
to a set which is less prone to developing numerical instabilities. To this end, the second
order equations are reduced to a system of the first order equations. In mathematical text-
books on ordinary differential equations, the general method to transform second order
equations y′′ = F(x,y) into a double systems of first order equations is usually formu-
lated via introduction of new variables γ = y′ for the first derivative of solutions y. In our
scheme this general idea is developed further taking into account the specific structure of
Schrödinger equations. If the function f is a solution of the free Schröedinger equation
with centrifugal barrier then the special transformation γ = y′ - k ( f ′/ f )y accounts for
the influence of centrifugal barriers explicitly and in a most effective way. As the result,
centrifugal barriers drop out from the final system of first order differential equations,
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FIGURE 3. Different components of the 6He ground state wave function ψJπ
KLSlxly(ρ). The solid, dash,

dot and dash-dot lines show components with quantum numbers (K,L = S, lx = ly) equal to: a) (0, 0, 0),
(2, 0, 0), (2, 1, 1) and (4, 0, 2), respectively; and b) (20, 1, 9), (20, 1, 7), (20, 1, 5) and (20, 1, 3),
respectively.

and their influence on dynamics appears only via the free solutions appearing as loga-
rithmic derivatives. Since variations of the magnitude of logarithmic derivatives for free
solutions are essentially milder, compared to the variations of their absolute values, the
conditions for developing numerical instabilities are strongly suppressed.

TABLE 1. Root mean square (r.m.s.) values of hyperradii (〈ψJπ
KLSlxly |ρ2|ψJπ

KLSlxly〉1/2) and

weights of different components of the 6He ground state wave function. The r.m.s. hyperra-
dius for the whole ground state wave function is equal to 5.55 fm.

K, L = S, lx = ly 0 0 0 2 0 0 2 1 1 4 0 2 20 1 9 20 1 7 20 1 5 20 1 3

r.m.s. (fm) 6.80 5.40 5.22 5.75 12.36 12.36 12.36 12.36

weight, % 4.1 77.0 14.5 0.6 5.10−4 2.10−4 6.10−5 1.10−5

Below we will demonstrate an application of the new method to solution of a concrete
physical problem. A good example is the calculation of the ground state wave functions
for light nuclei within cluster few-body models [14]. The method of hyperspherical har-
monics is very convenient for description of three-body structure of two-neutron halos
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that appears in some nuclei, like the Borromean nuclei 6He, 11Li, etc, at the very edge of
nuclear stability (see recent works [15, 16] and references therein for more detailed dis-
cussion of successes and challenges of this approach). The relative motion of three clus-
ters is described in the space of hyperspherical coordinates (ρ , Ω5) and the nuclear wave
function ΨJπ is decomposed on a basis of hyperspherical harmonics ϒKν(Ω5) [14], ΨJπ

= ∑Kν ψJπ
Kν(ρ)ϒKν(Ω5). Here ρ , Ω5 and K are the hyperradius, hyperangles and the hy-

permoment, respectively. The index ν denotes all quantum numbers which are necessary,
in addition to K, for a complete identification of the basis. If the Schrödinger equation
for wave function ΨJπ is multiplied by hyperspherical harmonics ϒKν(Ω5) from the left
and integrated over hyperangles Ω5, a system of coupled hyperradial differential equa-
tions similar to (1) is obtained. In this system the effective orbital angular momenta Li =
Ki + 3/2, where Ki is hypermoment in the i-th channel, and matrix elements Vi j(ρ) of the
all intercluster interactions in the basis of hyperspherical harmonics, depend only on the
hyperradius ρ . More details about development of the model and applied interactions
can be found in [17]. As an example, we will consider the calculation of the 0+ ground
state wave function of the 6He nucleus. All possible hyperharmonics up to a value of K
= 20 are included in the wave function decomposition, giving a system of Schrödinger
equations with ∼ 70 coupled channels. A few wave function components with lowest
and highest values of hypermoment K are shown in Figures (3(a)) and (3(b)), respec-
tively. Table (1) also gives weights of the respective components and also shows their
r.m.s. values of the hyperradius ρ . It is interesting to note the different localization (in
hyperradius ρ) of components with different values of the hypermoment K, hence of the
generalized orbital angular momentum. Components with larger values of K are more
strongly suppressed at small values of the hyperradius, while their maxima are shifted
to larger ρ . The r.m.s. values of the hyperradius for each hyperharmonic component are
for the largest K values more then two times the value for small K. Note that weights of
components that peak far out in the exterior region are rather small. This behaviour is
in accordance with intuitive expectations about the role that (centrifugally suppressed)
components with high K values should play in the wave function decomposition.

Some questions, important for practical applications, are not discussed in this article.
For example, what numerical methods are suited for solving the new system of equa-
tions, what partitions of whole radial domain into smaller parts are the most effective
(the formulation above was for arbitrary radial intervals) and so on. It is clear that these
questions can be answered in different ways and practical prescriptions should take into
account the specific features of the problem and should be optimized for any concrete
model. To cover these issues, the physical models must be explicitly formulated and thus
the scope of this article would have to be essentially expanded. Since our main aim was
to present the general idea of the method, these important practical questions will have
to be illuminated elsewhere.

CONCLUSION

The dynamics of a system of coupled radial Schrödinger equations may be very versa-
tile and complicated due to coupling potentials, but also carry general features due to
universality of the kinetic energy operator. These universal properties are contained in
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different centrifugal barriers and lead to appearance of difficulties in numerical solu-
tions of coupled equations in regions where the motion for some channels is classically
forbidden. Such classically forbidden regions exist even in cases when coupling poten-
tials are absent, and solutions within such regions are described by Bessel functions with
known analytical properties. The absolute scales for free solutions may be very different.
Coupling potentials mix and modify free solutions with different absolute values when
they are propagated via forbidden regions. If numerical accuracy is not high enough,
the propagation leads to development of numerical instabilities in solution vectors. The
novel method suggested in this paper rearranges the coupled equations such that free
solutions only enter in combinations with minimal variations of absolute values. As a
result, the new system is less prone to develop numerical instabilities.
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