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Abstract. Recently, the BABAR collaboration reported the measurments of the photon-pion tran-
sition form factor Fπγγ∗

(
Q2

)
, which are in strong contradiction to the predictions of the standard

factorization approach to perturbative QCD. In the present talk, based on a nonperturbative approach
to the QCD vacuum and on rather universal assumptions, we show that there exists two asymptotic
regimes for the pion transition form factor. One regime with asymptotics Fπγ∗γ

(
Q2

)∼ 1/Q2 corre-
sponds to the result of the standard QCD factorization approach, while other violates the standard
factorization and leads to asymptotic behavior as Fπγ∗γ

(
Q2

) ∼ ln
(
Q2

)
/Q2. Furthermore, consid-

ering specific nonlocal chiral quark models, we find the region of parameters, where the existing
CELLO, CLEO and BABAR data for the pion transition form factor are successfully described.
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INTRODUCTION

The theory of hard exclusive processes, formulated within the factorization approach to
perturbative quantum chromodynamics (pQCD), is based on the operator product ex-
pansion (OPE), the factorization theorems, and the pQCD evolution equations. In this
context, the form factor for the photon-pion transition γ∗γ∗→ π0, with both photons be-
ing spacelike (with photon virtualities Q2

1,Q
2
2 > 0), was considered in [1, 2]. Since only

one hadron is involved, the corresponding form factor Fπγ∗γ∗(Q2
1,Q

2
2) has the simplest

structure for the pQCD analysis among the hard exclusive processes. The nonperturba-
tive information about the pion is accumulated in the pion distribution amplitude (DA)
ϕπ (x) for the fraction x of the longitudinal pion momenta p, carried by a quark. An-
other simplification is, that the short-distance amplitude for the γ∗γ∗→ π0 transition is,
to leading order, just given by a single quark propagator. Finally, the photon-pion form
factor is related to the axial anomaly, when both photons are real.

Experimentally, the easiest situation is, when one photon virtuality is small and the
other large. Under these conditions, the form factor Fπγ∗γ(Q2,0) was measured at e+e−
colliders by CELLO [3], CLEO [4] Collaborations (Fig. 1). In the region of large
virtualities Q2 >> 1 GeV2, the pQCD factorization approach for exclusive processes
predicts to leading order in the strong coupling constant [1, 2]

FpQCD
πγ∗γ (Q2,0) =

2 fπ
3Q2 J, (1)

where J =
∫ 1

0 dxx−1ϕπ (x) is the inverse moment of the pion DA, and fπ = 92.4 MeV.
The factor 1/Q2 reflects the asymptotic property of the quark propagator connecting
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two quark-photon vertices (Fig. 2). The formula (1) is derived under the assumption,
that the QCD dynamics at large distances (the factor J fπ ) and the QCD dynamics at
small distances (the factor 1/Q2) is factorized. Moreover, under this assumption, the
asymptotics is reached already at the typical hadronic scale of a few GeV2. The pion
DA ϕπ (x), in addition, evolves in shape with the change of the renormalization scale
and asymptotically equals ϕAs

π (x) = 6x(1− x). From this follows the famous asymptotic
prediction (the straight dotted line in Fig. 1)

FpQCD,As
πγ∗γ (Q2,0) =

2 fπ
Q2 . (2)

Recently, the BABAR collaboration published new data (Fig. 1) for the γγ∗→ π0 tran-
sition form factor in the momentum transfer range from 4 to 40 GeV2 [5]. They found
the following puzzling result: At Q2 > 10 GeV2 the measured form factor multiplied
by the photon virtuality Q2Fπγ∗γ(Q2,0) exceeds the predicted asymptotic limit (2) and,
moreover, continues to grow with increasing Q2. This result is in strong contradiction
to the predictions of the standard QCD factorization approach mentioned above. The
BABAR data very well match the older data obtained by the CLEO collaboration in the
smaller Q2 region, but extend to a much lager Q2 values.
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FIGURE 1. Photon-pion transition form factor in asymmetric kinematics for the instanton model with
parameters Mq = 125 MeV, Λ = 0.016 GeV−2 (short pointed line), Mq = 300 MeV, Λ = 1.3 GeV−2(dash-
dotted line); and chiral model with parameters Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line) and
Mq = 300 MeV, Λ = 0.639 GeV−2 (dashed line). The straight dotted line is asymptotic limit 2 fπ . The
data points are from the CELLO [3] (empty squares), CLEO [4] (empty triangles) and BABAR (filled
circles) [5] Collaborations.

NONLOCAL CHIRAL QUARK MODEL

We will analyze the photon-pion transition form factor in the gauged nonlocal chiral
quark model based on the picture of nontrivial QCD vacuum. The attractive feature
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of this model is, that it interpolates the physics at large and small distances. At low
energy, it enjoys the spontaneous breaking of chiral symmetry, the generation of the
dynamical quark mass, and it satisfies the basic low energy theorems. In particular, the
correct normalization of the form factor by the axial anomaly Fπγγ(0,0) = 1/

(
4π2 fπ

)
,

and the Goldberger-Treiman relation, connecting the quark-pion coupling gqπ and the
dynamical quark mass Mq with the physical pion decay constant fπ : fπ = Mq/gqπ . At
energies much higher than the characteristic hadronic scale, it becomes the theory of
free massless quarks (in chiral limit).

π0(p)
k

k − p

q1

q2

k − q1

α

β

γ

FIGURE 2. The triangle diagram in momentum and α-representation notation.

Let us discuss the properties of the triangle diagram (Fig. 2) at large photon virtu-
alities. To this end, we do not need to completely specify the elements of the diagram
technique, which are, in general, model dependent, but shall restrict ourselves to rather
general requirements. All expressions will be treated in Euclidean space appropriate for
the process under consideration and for the treatment of nonperturbative physics. The
nonperturbative quark propagator, dressed by the interaction with the QCD vacuum, is

S (k) =
k̂ +m

(
k2)

D(k2)
. (3)

The main requirement to the quark propagator is, that at large quark virtualities k2 → ∞
one has

S (k)→ k̂
k2 . (4)

We assume also, that the dynamical quark mass is a function of the quark virtuality k2

and normalized at zero as m(0) = Mq. At large virtualities, it drops to the current quark
mass mcurr faster than any power of k−2 (see the discussion in [6])

m
(
k2)∼Mq exp

(
−(

k2)a
)

+mcurr, a > 0. (5)

The denominator in (3) at large virtualities k2 → ∞ is D
(
k2)→ k2.

It is well known (see, e.g., [7, 8]), that the change of the quark propagator leads to a
modification of the quark-photon vertex in order to preserve the Ward-Takahashi identity

Γµ
(
k,q,k′ = k +q

)
=−ieq

[
γµ −∆Γµ

(
k,q,k′ = k +q

)]
. (6)

The term ∆Γµ (q) is not uniquely defined, even within a particular model, especially its
transverse part. The importance of the full vertex Γµ is, that the axial anomaly is repro-
duced [9], and thus the photon-transition form factor correctly normalized. Fortunately,
due to the fact, that ∆Γµ is not proportional to γµ matrix, the corresponding amplitude
has no projection onto the leading twist operator. Thus, this term is suppressed, if a large
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photon virtuality passes through the vertex, and hence does not participate in the leading
asymptotics of the form factor. Its leading asymptotics results exclusively from the local
part of the photon vertex

ΓAs
µ

(
k,q,k′ = k +q

)
=−ieqγµ . (7)

Furthermore, we need the quark-pion vertex,

Γa
π (p) =

i
fπ

γ5τaF
(
k2
+,k2

−
)
, (8)

where k+ and k− are the quark and antiquark momenta. In the following, the important
feature of the vertex function F

(
k2
+,k2−

)
will be its behavior in the limit, when one quark

virtuality is asymptotically large (e.g., k2−→ ∞) and the other (k2
+) remains finite. There

are two possibilities,
F f (

k2
+,k2

−
)→ 0, (9)

and
Fu f (

k2
+,k2

−
)→ g

(
k2
+
)
. (10)

Finally, one needs the projection of the pion state onto the leading twist operator

Γ5,As
µ

(
k,q,k′ = k +q

)
= γµγ5. (11)

This projection is determined by the matrix element
〈
0
∣∣qγµγ5τaq

∣∣πa (p)
〉

= −i2 fπ,PS,
where the constant fπ,PS is (here m′ (u) = dm(u)/du)

f 2
π,PS =

Nc

4π2

∫ ∞

0
du u

F (u,u)
D2 (u)

(
m(u)− 1

2
um′ (u)

)
, (12)

which coincides with the pion decay constant fπ,PS in the Pagels-Stokar form [11].

ASYMPTOTICS OF PION-PHOTON TRANSITION FORM
FACTOR

The invariant amplitude for the process γ∗γ∗→ π0 is given by

A
(
γ∗ (q1,ε1)γ∗ (q2,ε2)→ π0 (p)

)
=−ie2εµνρσ εµ

1 εν
2 qρ

1 qσ
2 Fπγ∗γ∗

(−q2
1,−q2

2
)
, (13)

where εµ
i are the photon polarization vectors, p2 = m2

π ,q2
1 = −Q2

1,q
2
2 = −Q2

2. In the
effective nonlocal quark-model considered above, one finds the contribution of the
triangle diagram to the invariant amplitude [10],

A
(

p2;q2
1,q

2
2
)

= Aloc (
p2;q2

1,q
2
2
)
+Anonloc (

p2;q2
1,q

2
2
)
,

where the first term contains only local part of the photon vertices and the second term
comprises the rest.
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As we discussed above, the leading asymptotics results from the local part of the
amplitude, Aloc. After taking the Dirac trace one obtains

Aloc (
p2;q2

1,q
2
2
)

=
e2Nc

6π2 fπ

∫ d4k
π2 F(k2

+,k2
−)

·m
(
k2
+
)(

ε12kq2 − ε12q1q2

)−m
(
k2−

)
ε12q1k +m

(
k2

3
)

ε12pk

D
(
k2
+
)

D
(
k2−

)
D

(
k2

3
) , (14)

where p = q1 + q2, q = q1 − q2, k± = k ± p/2, k3 = (k+−q1), and ε12kq2 =
εµνλρεµ

1 εν
2 kλ qρ

2 , etc.
In order to analyze the asymptotic properties of the form factor, let us transform the

integral in (14) formally into the α representation. Let us define for any function F of
virtuality k2, decaying at large virtuality as 1/k2 or faster, its α representation (Laplace
transform)

F
(
k2) =

∫ ∞

0
dαe−αk2

f (α) , F
(
k2)∼ f (α) , (15)

where F
(
k2) is the image of the original f (α). Then, the momentum integral in (14) is

transformed into the following expression for the form factor (in the chiral limit)

F loc
πγ∗γ∗

(
p2 = 0;Q2

1,Q
2
2
)

=
Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

1
∆ γ(αQ2

1+βQ2
2) (16)

· [d (γ)(αGm,0 (α,β )+βG0,m (α,β ))+ γdm (γ)G(α,β )] ,

where ∆ = α +β + γ and
∫

d (αβγ) ... =
∫ ∞

0 dα
∫ ∞

0 dβ
∫ ∞

0 dγ ... In (16) we introduce the
following notations

1
D(k2)

∼ d (α) ,
m

(
k2)

D(k2)
∼ dm (α) , (17)

F(k2
+,k2−)

D
(
k2
+
)

D
(
k2−

) ∼ G(α,β ) ,
m

(
k2
+
)

F(k2
+,k2−)

D
(
k2
+
)

D
(
k2−

) ∼ Gm,0 (α ,β ) . (18)

Asymmetric kinematics I

Let us now consider the asymmetric kinematics Q2
1 = Q2,Q2

2 = 0. Then one has

F loc
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

γα
∆ Q2

(19)

· [d (γ)(αGm,0 (α ,β )+βG0,m (α ,β ))+ γdm (γ)G(α,β )] .

Let us first consider the model with the quark-pion vertex possessing the property (9).
The leading large Q2 behavior corresponds to the integral over small γ and we get for
Q2 → ∞

F loc,I
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβ )

(α +β )3
αGm,0 (α,β )+βG0,m (α ,β )

D
(

αQ2

α+β

) .
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After change of variables α → xL,β → (1− x)L, we arrive at the representation

F loc,I
πγ∗γ

(
0;Q2,0

)
=

2
3

f 2
PS,π
fπ

∫ 1

0
dx

1
D(xQ2)

ϕ f
π (x) , (20)

where the pion distribution amplitude is

ϕπ (x) =
Nc

4π2 f 2
PS,π

∫ ∞

0

dL
L

exxLp2
(xGm,0 (xL,xL)+ xG0,m (xL,xL)) , (21)

Because in the considered case ϕπ (x) vanishes at the endpoints the actual asymptotics
is in agreement with (1).

As we have already noted in Introduction the asymptotic behavior (1) is not seen in
the BABAR data. Nevertheless, even for the case considered, in principle, it is possible
to simulate in some wide preasymptotic kinematical region a logarithmically enhanced
behavior of the form factor. This happens if one assumes that the pion DA entering (20)
is almost flat ϕπ (x) ≈ 1, i.e. it is close to a constant everywhere except small vicinity
near endpoints. Then, nonfactorizable asymptotic coefficient J f appears [12]

JL = Q2
∫ 1

0
dx

1
D(xQ2)

. (22)

Let us consider some popular models of the nonperturbative quark propagator

1
D(k2)

=
1− exp

(−k2/Λ2)

k2 (23)

D
(
k2) = k2 +m2 (k) . (24)

The first expression has the property of analytical confinement [13, 14]and the second
one is typical for chiral models. In quark models, where the first propagator is used, the
parameter Λ has the meaning of a dynamical quark mass [15], Λ ≡ Mq, with typical
values of Mq = 200− 300 MeV. Inserting (23) into (22) it is possible to show that the
leading asymptotic behavior as Q2 → ∞

JL
AC = ln

(
Q2/M2

q
)
+ const, (25)

This result (25) is very close to the result obtained in [16] (Gaussian and logarith-
mic models), where the idea of flat pion distribution amplitude for explanation of the
BABAR data was suggested (see also [17, 18]).

Asymmetric kinematics II

Now, let us consider the model with the quark-pion vertex possessing the property
(10). It is convenient to rearrange the terms in the pion form factor in the following way

F loc,II
πγ∗γ

(
0;Q2,0

)
=

Nc

6π2 fπ

∫ d (αβγ)
∆3 e−

γα
∆ Q2 {β rm (β ) (26)
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+αGm,0 (α,β )d (γ)+β [G0,m (α,β )− rm (β )]
+γG(α,β )dm (γ)+β rm (β ) [d (γ)−1]
+β [d (γ)−1] [βG0,m (α,β )− rm (β )]

}
,

where we introduce notations for the originals

g
(
k2)

D(k2)
∼ r (α) ,

m
(
k2)g

(
k2)

D(k2)
∼ rm (α) .

After standard manipulations with the integrals one obtains the following large-Q2

asymptotic behavior as Q2 → ∞ transformed to the momentum representation [12]

FAs,II
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

6π2 fπ

[∫ ∞

0
du

m(u)g(u)
D(u)

ln
(

Q2

u

)
+A

]
, (27)

A =
∫ ∞

0
du

1
D(u)

∫ 1

0
dy

m(yu)
D(yu)

{
uFu f (u,yu)− [

u+2m2 (u)
]

g(yu)
}

. (28)

The asymptotic expression (27) generalizes the asymptotic formula (1) for the case when
the standard factorization is violated.

THE INSTANTON AND CHIRAL MODELS

In the previous section we considered the asymptotic behavior of the pion transition form
factor. In order to calculate this form factor in the whole kinematic region and compare
with available experimental data, we should further specify our model assumptions. Let
us introduce the momentum-dependent dynamical quark mass entering the propagator
(3) as

m
(
k2) = Mq f 2 (

k2) (29)

and take the profile function f
(
k2) in a Gaussian form f

(
k2) = exp

(−Λk2) . Thus,
the model contains two parameters, the dynamical quark mass Mq and the non-locality
parameter Λ.

Next, we need to specify the nonlocal part of the vector vertex that does not partic-
ipate in the leading asymptotics, but is very important in implementing the low energy
theorems. The nonlocal part of the vector vertex in (6) is taken of the form [7]

∆Γµ
(
k,q,k′ = k +q

)
=

(
k + k′

)
µ

m
(
k′2

)−m
(
k2)

k′2− k2 . (30)

Further, we will consider two kinds of quark-pion vertex (8), the first given by

FI
(
k2
+,k2

−
)

= Mq f
(
k2
+
)

f
(
k2
−
)
, (31)

and the second by

Fχ
(
k2
+,k2

−
)

=
1
2

Mq
[

f 2 (
k2
+
)
+ f 2 (

k2
−
)]

. (32)
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The first one is motivated by the instanton picture of QCD vacuum [19] and the second
by the nonlocal chiral quark model advertised in [20]. We shall in the further discussion
refer to vertex function (31), which has the k2 →∞ behavior (9), as the instanton model,
and to the other choice (32), corresponding to k2 →∞ behavior(10), as the chiral model.
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FIGURE 3. Pion distribution amplitude for the instanton model with parameters a) Mq = 125 MeV,
Λ = 0.016 GeV−2 and b) Mq = 300 MeV, Λ = 1.3 GeV−2; and chiral model with parameters c) Mq = 125
MeV, Λ = 0.0098 GeV−2 and d) Mq = 300 MeV, Λ = 0.639 GeV−2.

In Fig. 3 the different shapes of the pion DA are shown as they are calculated within
the instanton and chiral models for the values of the dynamical quark mass Mq = 300
MeV and Mq = 125 MeV. The parameter Λ is defined to fit the pion decay constant
in chiral limit fπ = 85 MeV. For smaller Mq the pion DA is close to a flat shape. For
larger Mq it is more sensitive to the nonlocal part of the photon vertex and, in case of the
instanton model, it is strongly suppressed in the vicinity of endpoints.

THE BABAR DATA WITHIN THE INSTANTON AND CHIRAL
MODELS

Let us consider the model predictions for the pion transition form factor in the asym-
metric kinematics (q2

1 = Q2,q2
2 = 0) in the region, where experimental data exist. In Fig.

1, we show the predictions for different values of Mq. For a quark mass Mq = 300 MeV
the model dependence is very strong and the theoretical curves are very far from the
experimental points. The chiral model overshoots the data, while the instanton model,
in correspondence with the standard factorization scenario, shows the asymptotic 1/Q2

behavior very early, already at Q2 ∼ 1 GeV2. It is clearly seen, that in order to describe
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the BABAR data, one has to take the dynamical quark mass Mq ≈ 125 MeV. Then both
models have an qualitatively good description, with some preference to the chiral model.

The parameter space that describes the data up to 40 GeV2 is rather narrow. For the
chiral model it is Mq ≈ 125± 10 MeV, and for the instanton model it is Mq ≈ 130± 5
MeV. Thus in this region the instanton model simulate the logarithmically enhanced
behavior due to rather flat pion DA. However, the further behavior of the form factor
is rather different for different models. The instanton model finally reach its actual
asymptotic 1/Q2 with the asymptotic coefficient given by

JI =
Nc

4π2 f 2
PS,π

Mq

∫ ∞

0
du

u f (u)
D(u)

∫ 1

0
dy

f (yu)m(yu)
D(yu)

. (33)

For the chiral model the logarithmic growth continues for all Q2 with the asymptotics as
Q2 → ∞ following from (27)

FAs,χ
πγ∗γ

(
0;Q2,0

)
=

1
Q2

Nc

12π2 fπ

[∫ ∞

0
du

m2 (u)
D(u)

ln
(

Q2

u

)
+Aχ

]
, (34)

Aχ =
∫ ∞

0
du

m(u)
D(u)

∫ 1

0
dy

m(yu)
D(yu)

[u−2m(u)m(yu)] .

CONCLUSIONS

As it was stressed in Introduction the main problem to explain the BABAR data is
the unstopped growth of the data points for Q2Fπγγ∗

(
Q2) that is inconsistent with

the predicted Q2Fπγγ∗
(
Q2) → constant, following from simple asymptotic properties

of the massless quark propagator. The key point, to solve this problem, is to consider
the properties of the pion vertex function F(k2

1,k
2
2) which is the analog of the light-

cone pion wave function. There are two possibilities for the momentum dependence of
the pion vertex function. In the limit, when one quark virtuality, k2

1, goes to infinity,
and the other, k2

2, remains finite, the vertex function may not necessarily tend to zero.
When it goes to zero, the pion DA ϕπ(x), which is a functional of the pion vertex
function, is zero at the endpoints, ϕπ(0) = ϕπ(1) = 0, with either strong or weak
suppression in the neighborhood of the endpoints x = 0 and x = 1. For the situation of
strong suppression, the asymptotic 1/Q2 behavior of the pion form factor in asymmetric
kinematics (Q2

1 = Q2,Q2
2 = 0) is developed very early, in contradiction with the BABAR

data. For weak suppression (resembling a flat distribution amplitude of the pion), the
asymptotic 1/Q2 behavior is developed quite late, and can give a reasonable description
of the data in the BABAR region with a lnQ2/Q2 behavior in this region. For the other
case of non-vanishing pion vertex function in the above limit, the pion DA ϕπ(x) is not
zero at the endpoints, and therefore the asymptotic lnQ2/Q2 behavior persists over the
whole range, in particular in the BABAR region.

Concluding we may say, that the BABAR data being unique in their accuracy and
covering a very wide kinematical range, are consistent with considerations based on
nonperturbative QCD dynamics and may indicate specific properties of the pion wave
function.
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