Self consistent models of nuclear clustering

UNIVERSITEIT · STELLENBOSCH · UNIVERSITY

Collaboration

¹S. M. Wyngaardt
^{1,3,4} T. T. Ibrahim
¹J. Ndayishimye
^{2,3}S. M. Perez

¹Stellenbosch University, RSA ²University of Cape Town, RSA ³iThemba LABS, RSA ⁴University of Ilorin, Nigeria Fakulteit Natuurwetenskappe · Faculty of Science

Outline

- Motivation
- Formulation of binary clustering
- Core-Cluster Interaction
- Why Relativistic Mean Field Theory???
- Model Predictions
- Conclusions

Motivation

- We view nuclear cluster as the strong correlation between sub-system s of nucleons within a larger nuclear mass.
- Clustering in light nuclei has been studied in depth
- Focus has shifted to clustering phenomenon in heavy nuclei

• Semi-Classical Binary (SCB) model with Saxon-Woods core-cluster potential predicts most properties of nuclear clustering in light nuclei.

 HOWEVER SW model interaction fail to predict rainbow scattering (Anomalous Large Angle Scattering) observed in some nuclei!

 <u>Modify SW:</u> Addition of high order SW term (Squared Michel) or (Cubic Buck, Merchant & Perez) fixes the problem.

ce

SW + SW3 prediction (T.T. Ibrahim, PhD, 2009)

J^{π}	$E_{expt}({\rm MeV})$	$E_{cal}(MeV)$
0+	0.000	0.000
2+	0.727	0.206
4+	1.132	0.574
6+	1.355	1.050
8+	1.476	1.594
10^{+}	1.834	2.150
12^{+}	2.702	2.666
14+	2.885	3.060
16^{+}	-	3.250
18+	2.921	3.070

J^{π}	$T^{expt}_{\frac{1}{2}}(\mathrm{ns})$	$T_{\frac{1}{2}}^{cal}(ns)$
0+	300	348
2+	-	8.80×10^{-3}
4 +	-	1.11×10^{-1}
6+	0.76	1.63
8+	17.05	11.88
10+	0.55	0.25
12+	2 ⁺ - 3.74 × 10	
14+	+ - 7.10	
16+	-	-
18^{+}	4.5×10^{10}	4.0×10^{10}

SV	V + SW3	orediction) (Т.Т.	lbr	ahim,	PhD, 2	2009) erino
J^{π}	$E_{expt}(MeV)$	$E_{cal}(MeV)$		J^{π}	$T^{expt}_{\frac{1}{2}}(ns)$	$T_{\frac{1}{2}}^{c}$	
0+	0.000	0.000		0+	300	348	
2+	0.727	0.206		2+	<u> </u>	8.80×10^{-3}	Ŧ
4+	1.132	0.574		4^+	-	1.11 × 10 ⁻¹	Ī
6+	1.355	1.050	l á	9' (9+	0.76	1.53	Ī
8+	1.476	1.594	.0X	10+	0.55	0.25	
10+	1.834	2.150	9	12+		3.74×10^{-3}	
12+	2.702	6.656		14+	-	7.10	<u>_</u>
14+	2.885	3.060		16+	-	-	
16+		3.250		18+	4.5×10^{10}	4.0×10^{10}	Ι
18+		3.070					
4			1				

• Microscopic double folded M3Y NN interaction predicts the α -decay half-life of the 212Po = 208Pb + α (~300 ns)

C. Xu and Z. Ren, Nucl. Phys. A753, 174 (2005); Nucl. Phys. A760, 303 (2005).

 UNIVERSITEIT-STELLENBOSCH-UNIVERSITY
 Microscopic double folded M3Y NN interaction predicts an inverted energy spectrum for 212Po.

		\frown
J^{π}	$E_{expt}(MeV)$	$E_{cal}(MeV)$
0+	0.000	-0.004
2+	0.727	-0.067
4+	1.132	-0.229
6+	1.355	-0.508
8+	1.476	-0.930
10+	1.834	-1.538
12+	2.702	-2.358
14+	2.885	-3.437
16+	-	-4.800
18+	2.921	-6.477

T. T. Ibrahim, PhD Thesis, (2009)

Why Relativistic Mean Field?

- A relativistic mean field theoretical approach has some attractive attributes
 - Lorentz convariance
 - Natural inclusion of spin phenomenon
 - Self consistance

Analysing for ²⁰⁸Pb(\vec{p} , 2p) from 2s_{1/2} state for incident proton lab energy of 202 MeV and scattering angles (28°, -54,6°). [G. C. Hillhouse et. al., Phys. Rev. C 68, 034608 (2003)]

• Variations of RMF based models interaction exist, but they all use M3Y effective interaction with RMF theory constructed core & cluster densities.

• We propose using Lorentz covariant form of the NN-interaction and fold it with the core and cluster densities obtained from RMF theory.

The Binary Cluster model

• Assume separated core + (preformed) cluster system.

The Binary Cluster model

• Assume separated core + (preformed) cluster system.

Core-Cluster Potential

 The total core-cluster potential is the sum of the attractive core-cluster term [U(r)], Coulomb interaction and angular momentum dependent term.

• The underlying attractive core-cluster term governs the dynamics of nuclear clustering.

 Saxon-Woods Plus cubic Saxon-Woods potentials contains an additional cubic term which is mixed with the usual Saxon-Woods potential functional form.

$$U(r) = U_0 \left[\frac{x}{1 + exp\left(\frac{r-R}{a}\right)} + \frac{1-x}{1 + exp\left(\frac{r-R}{3a}\right)^3} \right]$$

- UNIVERSITEIT · STELLENBOSCH · UNIVERSITY
- From the McNeil, Ray & Wallace single folded we construct double folded "relativistic" core-cluster interaction

• Using the effective Lagrangian from the Walecka model one obtains the Dirac relationship as the dynamical equation.

$$\begin{split} \hat{H}\psi(\mathbf{r}) &= \left(i\alpha \cdot \nabla - g_v \gamma^0 V^0(r) + \beta [M - g_s \phi(r)] \right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) \\ \end{split}$$
Field operator
$$\begin{split} \hat{\psi}(\mathbf{r}) &= \sum_{\Lambda} \left[A_{\Lambda} U_{\Lambda}(\mathbf{r}) + B_{\Lambda}^{\dagger} V_{\Lambda}(\mathbf{r}) \right] \\ \end{split}$$
Positive energy solution
$$\begin{split} U_{\Lambda} &\equiv U_{njlmt}(\mathbf{r}) = \begin{pmatrix} i \left[G_{njlt}(r)/r \right] \Phi_{jlm} \\ \left[F_{njlt}(r)/r \right] \Phi_{jl+1m} \end{pmatrix} \varsigma_t, \end{split}$$

Fakulteit Natuurwetenskappe · Faculty of Science

٦.

• Baryon densities are constructed from the positive energy solution to the Dirac equation:

$$\left. \begin{array}{c} \rho_B({\bf r}) \\ \rho_s({\bf r}) \end{array} \right\} = \sum_{\Lambda} \bar{U}_{\Lambda}({\bf r}) \left(\begin{array}{c} \gamma^0 \\ I \end{array} \right) U_{\Lambda}({\bf r})$$

Model Predictions

• We focused on clustering in 212Po.

• Compare the predictive power of SW3 & RMF core-cluster model potentials.

• Model $T_{1/2}$ of ground state and energy spectra of the positive parity states.

• For RMFT based model

m _ω	m _p	m _s	g^2_{ω}	g^2_{ρ}	g² s
738 MeV	770 MeV	520 MeV	190.4	65.23	109.6

T_{1/2} Prediction

T _{1/2} (Exp)	T _{1/2} (BMP)	T _{1/2} (RMFT)	
300 ns	348 ns	299.6 ns	

Positive parity states

J^{π}	E (Exp) MeV	E (BMP) MeV	E (M3Y) MeV	E (RMFT) MeV
0^+	0.000	(0.495)	-0.004	0.203
2^{+}	0.727	0.659	-0.067	0.421
4^+	1.132	0.948	-0.229	0.699
6+	1.355	1.318	-0.508	0.857
8^+	1.476	1.730	-0.930	1.085
10^+	1.834	2.145	-1.538	1.319
12^{+}	2.702	2.519	-2.358	1.553
14^{+}	2.885	2.805	-3.437	1.787
16+		2.941	-4.800	2.021
18^{+}	2.921	2.841	-6.477	2.255

Conclusions

- RMFT approach seems comparable to Experiment and BMP in the predictions of $T_{1/2}$ and $E_{\rm L}$ for 212Po

• Need to extend the test of other nuclei and observable quantities, ALAS, ...

The way forward

- Model extensions to include:
 - Exited core + cluster system (Rel. Hartree Bogoliubov + BCS)
 - Replacing MRW representation of NN interaction with Rel. Love Franey representation with complete sets of NN parameters
 - Look at Heavier exotic cluster systems

English: Thank you Afrikaans: Dankie IsiNdebele: Ngiyathokoza Sesotho: Ke a leboha Northern Sotho: Ke a leboga Setswana: Ke a leboga SiSwati: Siyabonga Xitsonga: Inkomu Tshivenda: Ndo livhuwa / Ro livhuwa IsiXhosa: Enkosi IsiZulu: Ngiyabonga