Octupole bands in the mass 160 region

M.A. Stankiewicz

University of Cape Town and iThemba LABS
iThemba
LABS

Nuclear deformations

- Have ~ 150 body problem, with two sets of fermions. Use collective approach
- Apply liquid drop model to surface
- General expansion:

$$
R(\theta, \phi, t)=R_{0}\left(1+\sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu}(t) Y_{\lambda \mu}(\theta, \phi)\right)
$$

$$
R(\theta, \phi)=R_{0}\left(1+\sum_{\lambda=0}^{4} \sum_{\mu=0}^{\lambda} \alpha_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi)\right)
$$

Nuclear deformations

- The monopole and dipole deformations are scaling and translational - do not effect shape
- Ground state, most even-even nuclei are quadrupole-deformed:

Octupole deformations

- Standard octupole deformation is $\alpha_{30} \neq 0$
- Corresponds to 'pear' shape:
- Onto this we can superimpose a vibration:
iThemba
LABS

Tetrahedial deformations

- It is also possible to have $\alpha_{32} \neq 0$
- However, for this to exist, cannot have a quadrupole moment.

$$
\text { So } \alpha_{20}=0
$$

Where to find them?

Look for doubly-magic nuclei

- Looking for shell-gaps in the tetrahedral nucleon energies.
- There are some at 64 and 70 , then 90 and 94
- So focus in the A~160 region:

$$
{ }^{154} \mathrm{Gd},{ }^{158} \mathrm{Gd},{ }^{160} \mathrm{Yb},{ }^{164} \mathrm{Yb}
$$

- Next deformed shell gaps are 112, 136, 142, so can look in ${ }^{232} \mathrm{Th}$ region.

Calculations were promising:

Tetrahedral Nuclei - Theoretical Predictions
Total Energies
Experiment

Survey of Doubly-Magic Tetrahedral Symmetry Nuclei

iThemba
LABS

What to look for?

- With zero quadrupole moment, there will be no in-band E2 transitions

Generally thought of as octupole vibrations, but now:

Tetrahedral candidates

AFRODITE setup

- HPGe detectors:

9 Clover and up to 8 LEPS

- Collect up to
$10^{9} \gamma \gamma$ coincidence events / weekend

${ }^{152} \operatorname{Sm}(\alpha, 2 \mathrm{n}){ }^{154} \mathrm{Gd}$:

Missing transitions?

- Is there a $9 \rightarrow 7$?

tetra?

Missing transitions...

- Yes!

Let's try again:

- How about

$$
7 \rightarrow 5 \text { ? }
$$

And it seems we have it:

${ }^{154} \mathrm{Gd}$ update

- There are in-band E2 transitions
- The $9 \rightarrow 7$ and $7 \rightarrow 5$ transitions found, but getting very weak.
- $5 \rightarrow 3$ and $3 \rightarrow 1$ unobserved
- Unlikely to be tetrahedral

Next: ${ }^{160} \mathrm{Yb}$

${ }^{160} \mathrm{Yb}$, continued

- Evidence of the in-band E2 transitions
- Again, have transitions down to 5^{-}(and 4-), but transitions very weak.
- Why?
iThemba
LÄBS

Branching ratios

- Choice in staying in-band or going to yrast
- Observed branching ratio (counts)

$$
\lambda=\frac{P_{\gamma}(\mathrm{E} 2, I \rightarrow I-2)}{P_{\gamma}(\mathrm{E} 1, I \rightarrow I-1)} \sim \frac{E_{\gamma}(\mathrm{E} 2, I \rightarrow I-2)^{5}}{E_{\gamma}(\mathrm{E} 1, I \rightarrow I-1)^{3}}
$$

- Low-energies gammas are suppressed, given preferential other option.
$\left.{ }^{152} \operatorname{Sm}(\alpha, 2 n)\right)^{154} G d$

- Do not expect to be able to see it.

LABS

Where to next?

- There are other doubly-magic points:
iThemba LABS

Try look at region Z ~ 90

Lack of in-band E2's

Making U by fusion

${ }^{232} \mathrm{Th}(\alpha, \mathrm{xn})$ reactions

Have very low cross-sections

Recoill detector

- Work with a pulsed beam, and careful TOF

Beam @ 340 ns

Recoils
~150 ns
iThemba
LABS

Recoil gate invaluable

Studly ${ }^{230} \mathrm{U},{ }^{232} \mathrm{U}$ with AFRODITE

iThemba
LABS

U octupole bands

- ${ }^{232} \mathrm{U}$ there are known in band transitions
- ${ }^{230} \mathrm{U}$ has only a couple weak transitions
- Compare to Skyrme mean-field results
Tsvetkov et al. (2002)
iThemba
LABS

Summary

- The octupole bands around A~160 have been studied, but do not support the tetrahedral idea
- The octupole bands in uranium have been studied, a little inconclusive. However, an indirect measurement of the dipole moment fits well with non-tetrahedral models.

Way forward

- The iThemba LABS have array of tools for observing nuclear reactions
- Positive results for theory are best
- Octupole bands not tetrahedral
- Still need to be understood
- What is best way forward?
- Currently working on RPA

LABS

References

- Dudek et al., Phys. Rev. Lett. 88, 252502 (2002)
- Dudek et al., Phys. Rev. Lett. 97, 072501(2006)
- Schunck et al., Phys. Rev. C69, 061305 (2004)
- Bark et al., Phys. Rev. Lett., 104, 022501 (2010)
- Ntshangase et al., to be published
- Tsvetkov et al., J. Phys. G28, 2187 (2002)
- Thanks to Rob Bark for use of his presentations at Nuclear Structure 2009 and 2010.

LABS

The End

(No frogs were harmed in these experiments)

To the best of my knowledge

LABS

