Octupole bands in the mass 160 region

M.A. Stankiewicz

University of Cape Town and iThemba LABS

Nuclear deformations

- Have ~150 body problem, with two sets of fermions. Use collective approach
- Apply liquid drop model to surface
- General expansion:

$$R(\theta, \phi, t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi) \right)$$

$$R(\theta,\phi) = R_0 \left(1 + \sum_{\lambda=0}^{4} \sum_{\mu=0}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right)$$

Nuclear deformations

- The monopole and dipole deformations are scaling and translational – do not effect shape
- Ground state, most even-even nuclei are quadrupole-deformed:

Octupole deformations

Standard octupole deformation is α₃₀ ≠ 0
Corresponds to 'pear' shape:

 Onto this we can superimpose a vibration:

Tetrahedral deformations

• It is also possible to have $\alpha_{32} \neq 0$

 However, for this to exist, cannot have a quadrupole moment.

So
$$\alpha_{20} = 0$$

Where to find them?

Look for doubly-magic nuclei

- Looking for shell-gaps in the tetrahedral nucleon energies.
- There are some at 64 and 70, then 90 and 94
- So focus in the A~160 region: 154 Gd, 158 Gd, 160 Yb, 164 Yb
- Next deformed shell gaps are 112, 136, 142, so can look in ²³²Th region.

Calculations were promising:

Tetrahedral Nuclei - Theoretical Predictions

Total Energies Experiment

Survey of Doubly-Magic Tetrahedral Symmetry Nuclei

E(fyu)+Shell[e]+Correlation[PNP]

DAG

What to look for?

With zero quadrupole
moment, there will be no
in-band E2 transitions

Generally thought of as octupole vibrations, but now:

AFRODITE setup

HPGe detectors:
9 Clover and
up to 8 LEPS

Collect up to
10⁹ γγ coincidence
events / weekend

$^{152}Sm(\alpha, 2n)^{154}Gd:$

SPES BONA

Missing transitions?

Missing transitions...

Let's try again:

And it seems we have it:

¹⁵⁴Gd update

- There are in-band E2 transitions
- The 9 → 7 and 7 → 5 transitions found, but getting very weak.
- $5 \rightarrow 3$ and $3 \rightarrow 1$ unobserved

Unlikely to be tetrahedral

¹⁶⁰Yb, continued

Evidence of the in-band E2 transitions

 Again, have transitions down to 5⁻ (and 4⁻), but transitions very weak.

Branching ratios

Choice in staying in-band or going to yrastObserved branching ratio (counts)

$$\lambda = \frac{P_{\gamma}(\text{E}2, I \to I - 2)}{P_{\gamma}(\text{E}1, I \to I - 1)} \sim \frac{E_{\gamma}(\text{E}2, I \to I - 2)^5}{E_{\gamma}(\text{E}1, I \to I - 1)^3}$$

 Low-energies gammas are suppressed, given preferential other option.

Do not expect to be able to see it.

Where to next?

There are other doubly-magic points:

Try look at region Z ~ 90

Lack of in-band E2's

SPES BONA

Fig. 9. Level schemes of the isotopes ²³²U, ²³⁴U and ²³⁶U

Making U by fusion

²³²Th(α,xn) reactions

Have very low cross-sections

SPE

Recoil detector

• Work with a pulsed beam, and careful TOF

Recoil gate invaluable

Study ²³⁰U, ²³²U with AFRODITE

U octupole bands

²³²U there are known in band transitions
²³⁰U has only a couple weak transitions

Compare
to Skyrme
mean-field
results
Tsvetkov et al.
(2002)

Summary

The octupole bands around A~160 have been studied, but do not support the tetrahedral idea

 The octupole bands in uranium have been studied, a little inconclusive. However, an indirect measurement of the dipole moment fits well with non-tetrahedral models.

No evidence found

Way forward

- The iThemba LABS have array of tools for observing nuclear reactions
- Positive results for theory are best
- Octupole bands not tetrahedral
 - Still need to be understood
 - What is best way forward?
 - Currently working on RPA

References

- Dudek et al., Phys. Rev. Lett. 88, 252502 (2002)
- Dudek et al., Phys. Rev. Lett. 97, 072501(2006)
- Schunck et al., Phys. Rev. C69, 061305 (2004)
- Bark et al., Phys. Rev. Lett., 104, 022501 (2010)
- Ntshangase et al., to be published
- Tsvetkov et al., J. Phys. G28, 2187 (2002)

 Thanks to Rob Bark for use of his presentations at Nuclear Structure 2009 and 2010.

The End

(No frogs were harmed in these experiments)

To the best of my knowledge

