# A Few-Body Method for Bose-Einstein Condensates

#### S.A. Sofianos

[University of South Africa, Pretoria]

Collaborators: R. Adam

L. Lekala J. Rampho

## Study of A-boson Systems

What A?

 $\implies$  Typical number of atoms involved in the Bose-Einstein condensation (BEC):



- $\begin{array}{rcl} \implies & \text{Huge number of degrees of freedom} \\ \implies & \text{Intractable numerical complexity} \end{array}$
- Thus, naturally one uses Monte Carlo type approaches:
  - Variational Monte Carlo
  - Diffusion Monte Carlo (DMC)
  - Green Function Monte Carlo (GFMC).

Alternative methods: Based on Hyperspherical Harmonics:

- Hyperspherical Harmonics Expansion Method
- Integro–Differential Equation Approach (IDEA)

## Faddeev-HH formalism

$$V(\mathbf{x}) = \sum_{ij} V_{ij}(r_{ij})$$

$$\Psi(\mathbf{x}) = \sum_{ij} \psi_{ij}(\mathbf{x})$$

 $\Rightarrow$ 

 $\mathbf{x}$ : Coordinates vector  $\psi_{ij}$ : Faddeev components

$$(T - E)\psi_{ij}(\mathbf{x}) = -V_{ij}(r_{ij})\sum_{kl}\psi_{kl}(\mathbf{x})$$

Seek for states which are invariant by rotation in the (D-3)-dimensional space Then

$$\psi_{ij}(\mathbf{x}) = F_{ij}(\mathbf{r}_{ij}, r)$$

Therefore,

$$(T-E)F_{ij}(\mathbf{r}_{ij},r) = -V_{ij}(r_{ij})\sum_{kl}F_{kl}(\mathbf{r}_{kl},r)$$

Potential Harmonics  $\mathcal{P}_{2K+\ell}^{\ell,m}(\Omega_{ij})$ 

$$\mathcal{P}_{2K+\ell}^{\ell,m}(\Omega_{ij}) = N_{K,\ell} Y_{\ell m}(\omega_{ij}) \left(\frac{r_{ij}}{r}\right)^{\ell} P_K^{\alpha,\beta+\ell}(2\frac{r_{ij}^2}{r^2}-1)$$

$$\alpha = (D-5)/2, \ \beta = 1/2, \ D = 3(A-1)$$

 $Y_{\ell m}(\omega_{ij})$ : Spherical Harmonics  $P_K^{\alpha,\beta+\ell}(z)$ : Jacobi polynomial  $N_{K,\ell}$ : Normalization constant,

$$\int_{(r=1)} \mathcal{P}_{2K+\ell'}^{\ell,m*}(\Omega_{ij}) \mathcal{P}_{2K'+\ell'}^{\ell',m'}(\Omega_{ij}) \,\mathrm{d}\Omega = \delta_{KK'} \delta_{\ell\ell'} \delta_{mm'}.$$

The  $\mathcal{P}_{2K+\ell}^{\ell,m}(\Omega_{ij})$  are eigenfunctions of the operator  $\hat{L}^2(\Omega)$ 

$$\left[\hat{L}^2(\Omega) + L(L+D-2)\right] \mathcal{P}^{\ell,m}_{2K+\ell}(\Omega_{ij}) = 0, \quad L = 2K+\ell$$

with

$$\hat{L}^{2}(\Omega) = \frac{4}{W(z)} \frac{\partial}{\partial z} (1 - z^{2}) W(z) \frac{\partial}{\partial z} + 2 \frac{\hat{\ell}^{2}(\omega_{ij})}{1 + z} + 2 \frac{\hat{L}^{2}(\Omega_{N-1})}{1 - z}$$

W(z), known as weight function, is

$$W(z) = \frac{1}{2^{D/2}} (1-z)^{(D-5)/2} (1+z)^{1/2}$$

while z is an angular variable defined by

$$z = \cos 2\varphi = 2\frac{r_{ij}^2}{r^2} - 1, \qquad \cos \varphi = \frac{r_{ij}}{r}$$

Expansion in PH  $\mathcal{P}_{2K+\ell}^{\ell,m}(\Omega_{ij})$ 

$$F(\mathbf{r}_{ij}, r) = \sum_{K=0}^{\infty} \mathcal{P}_{2K+\ell}^{\ell, m}(\Omega_{ij}) U_K^{\ell}(r)$$

## Two options:

- Obtain, as usual, a system of differential equations for the radial functions  $U_K^{\ell}(r)$ 
  - Use the definition in terms  $F(\mathbf{r}_{ij}, r)$

$$U_K^{\ell}(r) = \int \mathcal{P}_{2K+\ell}^{\ell,m}(\Omega_{ij}) F^{\ell}(\mathbf{r}_{ij},r) \,\mathrm{d}\Omega \,.$$

#### Then:

Expansion of the Faddeev components  $F^{\ell}(\mathbf{r}_{ij}, r)$ leads instead to an Integrodifferential Equation (IDEA). IDEA equation for A-particle systems

Let  $P(z,r) = F(r_{ij},r) r^{\mathcal{L}_m+1}$ ,

$$-\frac{\hbar^2}{m} \left[ H_r + \frac{4}{r^2} T(z) \right] P(z,r) = -\left[ V(r_{ij}) - V_0^{[L_m]}(r) \right] \left[ P(z,r) + \int_{-1}^{+1} \mathcal{F}_{[L_m]}(z,z') P(z',r) dz' \right]$$

with

$$H_r = \frac{\partial^2}{\partial r^2} - \frac{\mathcal{L}_m(\mathcal{L}_m + 1)}{r^2} + \frac{A(A-1)}{2} V_0^{[L_m]}(r)$$

T(z) is the kinetic energy term

$$\hat{T}(z) = \frac{1}{W_{[L_m]}(z)} \frac{\partial}{\partial z} (1 - z^2) W_{[L_m]}(z) \frac{\partial}{\partial z}$$

and  $W_{[L_m]}(z)$  is the weight function which, for bosonic systems, is given by

$$W_{[L_m]}(z) = (1-z)^{\alpha}(1+z)^{\beta}$$

with

$$\alpha = \frac{(D-5)}{2} + L_m - 2\ell_m$$
$$= \frac{3}{2}A - 4 + L_m - 2\ell_m$$
$$\beta = \frac{1}{2} + \ell_m$$

The kernel  $\mathcal{F}_{[L_m]}(z, z')$  is the projection function which is expressed in terms of the Jacobi polynomials  $P_K^{\alpha,\beta}(z)$ ,

$$\mathcal{F}_{[L_m]}(z, z') = W_{[L_m]}(z') \sum_K \frac{(f_K^2 - 1)}{h_K} P_K^{\alpha, \beta}(z) P_K^{\alpha, \beta}(z')$$

The normalization  $h_K$  is given by

$$h_{K} = \int_{-1}^{+1} \left( P_{K}^{\alpha,\beta}(z) \right)^{2} W_{[L_{m}]}(z) dz$$

and the function  $f_K$  by

$$f_K^2 - 1 = \frac{2(A-2)P_K^{\alpha,\beta}(-1/2) + \frac{(A-2)(A-3)}{2}P_K^{\alpha,\beta}(-1)}{P_K^{\alpha,\beta}(+1)}$$

# Characteristics of the IDEA

- Describes A-Body systems
- Includes two-body correlations exactly
- Three-body correlations can be easily included, if wanted
- Typical accuracy:  $\sim 0.2\%$
- For Low A (such as A = 4) the equation can be easily solved.

# What about large A?

Example: For A = 100000

$$(1-z)^{\alpha} \sim (1-z)^{1.5A}$$

 $\Rightarrow$   $\delta$ -function behavior around z = -1

$$(1-z)^{\alpha} \xrightarrow[\alpha \to \infty]{} 2^{150000}$$

 $P_K^{\alpha,1/2}(z) \sim P_K^{150000,1/2}(z)$ 

 $\begin{array}{rcl} & \longrightarrow & \text{Uncontrollable oscillations} \\ & \Rightarrow & \text{Calculations impossible} \end{array}$ 

Same problems for HHEM

Transformation for Large A

$$r_{\rm ij} = r\zeta/\sqrt{\alpha}$$

with  

$$z = 2\zeta^2/\alpha - 1$$

$$\alpha = (D - 5)/2 = (3(A - 1) - 5)/2 \sim$$

$$3A/2 \quad (\text{large } A, \ell = 0)$$
Why?  
• Transforms  $P_K^{\alpha, 1/2}$   
 $P_K^{\alpha, \beta}(2r_{ij}^2/r^2 - 1) \xrightarrow[\alpha \to \infty]{} (-1)^K L_K^{1/2}(\alpha r_{ij}^2/r^2)$ 

$$\equiv (-1)^{K} L_{K}^{1/2}(\zeta^{2})$$

$$L_{K}^{1/2} \text{ Laguerre Polynomials which are independent of } \alpha$$
• Transform  $(1-z)^{\alpha}$ 

$$W(z) = C_{W} \frac{2^{\alpha+1/2}}{\sqrt{\alpha}} \zeta e^{-\zeta^{2}}$$
• Transform  $h_{K}$ 

$$h_{K} = \int_{-1}^{+1} \left(P_{K}^{\alpha,\beta}(z)\right)^{2} W_{[L_{m}]}(z) dz$$

$$\xrightarrow{\alpha \to \infty} \int_{0}^{\sqrt{\alpha}} \left[L_{K}^{1/2}(\zeta^{2})\right]^{2} e^{-\zeta^{2}} \zeta^{2} d\zeta$$

$$= \frac{1}{2} \frac{\Gamma(K+3/2)}{K!}.$$

$$IDEA-E$$

$$P(\zeta, r) = \frac{e^{\zeta^2/2}}{\zeta}Q(\zeta, r).$$

$$\Rightarrow \text{ For bosons in the ground state:}$$

$$\frac{\hbar^2}{m} \Big[ H_r + \frac{\alpha}{r^2} H_{\zeta} - E \Big] Q(\zeta, r)$$

$$= - [V(r_{ij}) - V_0(r)]$$

$$[Q(\zeta, r) + \int_0^{\sqrt{\alpha}} \mathcal{F}_E(\zeta, \zeta') \ Q(\zeta', r) \ d\zeta']$$
where

$$\begin{split} H_r &= -\frac{\partial^2}{\partial r^2} + \frac{\mathcal{L}(\mathcal{L}+1)}{r^2} + \frac{A(A-1)}{2} V_0(r) \\ H_\zeta &= \frac{\alpha}{4} \left[ -\frac{\partial^2}{\partial \zeta^2} + \zeta^2 - 3 \right] \,. \end{split}$$

$$\mathcal{F}_{E}(\zeta,\zeta') = \zeta e^{-\zeta^{2}/2} \sum_{K} C_{K} L_{K}^{1/2}(\zeta^{2}) L_{K}^{1/2}(\zeta'^{2}) \zeta' e^{-\zeta'^{2}/2},$$
$$C_{K} = \frac{2K!}{\Gamma(K+3/2)} (f_{K}^{2}-1)$$

$$\begin{split} \text{IDEA-I} \\ \text{More simplifications!} \\ \text{The summation } \sum_{K} \text{ can be carried out analytically!} \\ & \frac{\hbar^2}{m} \Big[ H_r + \frac{\alpha}{r^2} H_{\zeta} - E \Big] Q(\zeta, r) \\ &= - [V(r_{ij}) - V_0(r)] \\ \Big[ Q(\zeta, r) + \int_0^{\sqrt{\alpha}} \mathcal{F}_I(\zeta, \zeta') \ Q(\zeta', r) \ d\zeta' \Big] \\ \text{with} \\ & \mathcal{F}_I(\zeta, \zeta') = \\ & \frac{2(A-2)}{\sqrt{3}} \left\{ \Big[ A - 3 - \frac{2}{3}(\zeta^2 - \frac{3}{2})(\zeta'^2 - \frac{3}{2}) \Big] \zeta\zeta' e^{-(\zeta^2 + \zeta'^2)/2} \\ & + \frac{4}{\sqrt{3}} \left[ e^{-(5(\zeta - \zeta') + 2\zeta\zeta')} - e^{-(5(\zeta + \zeta') - 2\zeta\zeta')} \right] \right\} \end{split}$$

In the presence of a trapping potential  $V_{\text{trap}}(r)$ :  $H_r = -\frac{\partial^2}{\partial r^2} + \frac{\mathcal{L}(\mathcal{L}+1)}{r^2} + V_{\text{trap}}(r)$ Adiabatic Approximation Let  $Q(\zeta, r) = Q_{\lambda}(\zeta, r)u_{\lambda}(r)$ Then  $\frac{\hbar^2}{m} \begin{bmatrix} \frac{4}{r^2} H_{\zeta} & + & U_{\lambda}(r) \end{bmatrix} Q_{\lambda}(\zeta, r) = - \begin{bmatrix} V(\frac{r}{\sqrt{\alpha}}\zeta) - V_0(r) \end{bmatrix}$  $\times \left[ Q_{\lambda}(\zeta, r) + \int_{0}^{\sqrt{\alpha}} \mathcal{F}_{I}(\zeta, \zeta') Q_{\lambda}(\zeta', r) \,\mathrm{d}\zeta' \right]$ and  $k_{\lambda}^2$ : Eigen-energy  $u_{\lambda}^{\prime\prime}(r) + \left[k_{\lambda}^{2} + V_{\text{eff}}(r)\right] u_{\lambda}(r) = 0$  $V_{\text{eff}}$ : Effective potential  $V_{\rm eff}(r) = \frac{\mathcal{L}(\mathcal{L}+1)}{r^2} + \frac{A(A-1)}{2}V_0(r) - U_\lambda(r) + V_{\rm trap}(r)$ 16

## Results

Expansion of  $f_K^2 - 1$  as  $\alpha \to \infty$ .

 $T_1 = (A-2)2P_K^{\alpha,1/2}(-1/2)/P_K^{\alpha,1/2}(1)$ 

 $T_2 = (A-2)(A-3)/2 P_K^{\alpha,1/2}(-1)/P_K^{\alpha,1/2}(1)$ 

 $f_K^2 - 1 = T_1 + T_2$ 

|    |            | A = 20     |                 |
|----|------------|------------|-----------------|
| K  | $T_1$      | $T_2$      | $f_{K}^{2} - 1$ |
| 0  | 36.        | 153        | 189             |
| 1  | 7.5        | -8.5       | -1              |
| 2  | 1.1004464  | 0.7589286  | 1.8593750       |
| 3  | 0.0729391  | -0.0915948 | -0.0186557      |
| 4  | -0.0086754 | 0.0137392  | 0.0050638       |
| 5  | -0.0016333 | -0.0024376 | -0.0040709      |
| 6  | 0.0002636  | 0.0004951  | 0.0007588       |
| 7  | 0.0000479  | -0.0001125 | -0.0000646      |
| 10 | 0.0000012  | 0.0000022  | 0.0000035       |

|    |              | A = 1000     |                 |
|----|--------------|--------------|-----------------|
| K  | $T_1$        | $T_2$        | $f_{K}^{2} - 1$ |
| 0  | 1996.0000000 | 497503.      | 499499.         |
| 1  | 497.5000000  | -498.5000000 | -1.0000000      |
| 2  | 123.5018775  | 0.8319426    | 124.3338201     |
| 3  | 30.5345323   | -0.0019425   | 30.5325898      |
| 4  | 7.5185722    | 0.0000058    | 7.5185780       |
| 5  | 1.8437195    | -0.0000000   | 1.8437195       |
| 6  | 0.4502550    | 0.0000000    | 0.4502550       |
| 7  | 0.1095002    | -0.0000000   | 0.1095002       |
| 10 | 0.0015358    | 0.0000000    | 0.0015358       |



# The <sup>16</sup>O system

# Wigner Force only

• Volkov potential Soft core

$$V(r_{ij}) = v_1 \exp[-(r_{ij}/b_1)^2] + v_2 \exp[-(r_{ij}/b_2)^2]$$
  
( $v_1 = -83.34002 \text{ MeV}, v_2 = 144.84341 \text{ MeV}$   
 $b_1 = 1.6 \text{ fm}, b_2 = 0.82 \text{ fm}$ )

• Afnan and Tang S3 potential

$$V(r_{ij}) = \sum_{i=1}^{5} v_i \exp[-b_i r_{ij}^2]$$

 $(v_i \text{ being } 1000.0, -163.345, -9.8025, -82.0, \text{ and} -11.5 \text{ MeV},$ 

 $b_i$  are 3., 1.05, 0.6, 0.8, and 0.4 fm<sup>-2</sup>)

• Yukawa type MT-V potential

$$V(r_{ij}) = \frac{v_1}{r_{ij}} \exp[-b_1 r_{ij}] + \frac{v_2}{r_{ij}} \exp[-b_2 r_{ij}]$$

 $(v_1 = -578.09 \,\mathrm{MeV}\,\mathrm{fm} , v_2 = 1458.05 \,\mathrm{MeV}\,\mathrm{fm} )$  $b_1 = 1.55 \,\mathrm{fm}^{-1}, b_2 = 3.11 \,\mathrm{fm}^{-1} )$  Table 1: Binding energies (in MeV) obtained for A = 16 with nuclear forces)

| Potential | IDEA-I | IDEA(exact) | HHEM |
|-----------|--------|-------------|------|
| Volkov    | 1643   | 1640        | —    |
| S3        | 1247   | 1246        | 1235 |
| MT-V      | 1377   | 1376        | 1363 |

Bosons confined in magnetic trap

Trap: Spherically symmetric harmonic oscillator potential

$$V_{\rm trap}(r) = \sum_{i=1}^{A} \frac{1}{2} m \omega^2 x_i^2 = \frac{1}{4} m \omega r^2$$

Potential: Gaussian

$$V(r_{ij}) = V_0 \exp[-r_{ij}^2/r_0^2]$$

 $V_0 = 3.1985 \times 10^6$  o.u and  $r_0 = 0.005$  o.u **Note:** 

#### Oscillator units (o.u)

Energy:  $\hbar\omega$ Length:  $\sqrt{\hbar/m\omega}$  $\omega$  is the harmonic oscillator circular frequency  $\hbar^2/m = 1$ .

Table 2: Results (in o.u) obtained with IDEA-E and IDEA-I using the Gaussian potential

| А  | IDEA-E | IDEA-I | PHEM   |
|----|--------|--------|--------|
| 3  | 6.009  | 6.009  | 4.500  |
| 5  | 7.758  | 7.758  | 7.505  |
| 10 | 15.003 | 15.003 | 15.034 |
| 15 | 22.501 | 22.501 | 22.567 |
| 20 | 30.000 | 30.001 | 30.107 |
| 25 | 37.501 | 37.501 | 37.654 |
| 30 | 45.009 | 45.001 | 45.207 |
| 35 | 52.509 | 52.501 | 52.768 |

- For A = 3: 25%,
- For A = 5: 3.26%.
- For A = 10: 0.2%
- Beyond A > 10 differences within numerics

### Second example

$$V(r_{ij}) = V_0 \operatorname{sech}^2(r_{ij}/r_0)$$

 $V_0 = 1.81847 \times 10^9$  o.u,  $r_0 = 0.001$  o.u.

| А   | IDEA-I  | PHEM    | DMC     |
|-----|---------|---------|---------|
| 10  | 15.143  | 15.1490 | 15.1539 |
| 20  | 30.625  | 30.6209 | 30.639  |
| 50  | 78.701  | 78.8704 |         |
| 100 | 165.038 | 164.907 |         |

For very large A plethora of eigenpotentials close to each other



Figure 1: Two eigenpotentials  $U_{\rm eff}(r)$  corresponding to  $\lambda = 1$  and  $\lambda = 20$  for A = 500.

# Conclusions

- Equation can be used in studies of bound *A*-boson systems
- Approximations should become better with increasing  $A \ i.e$  for  $\alpha \to \infty$
- Numerics must be improved