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Introduction

In the even-even isotopes of actinides and also in the heavy Ba and

Ce isotopes the low–lying negative parity states are observed together

with the usually presented collective positive parity states combined

into rotational or quasirotational ground state bands.

Formation of the positive parity rotational or quasirotational bands is

connected in general to the quadrupole collective motion.

Low–lying negative parity states connected by the strong dipole

and octupole transitions with the members of the ground-state

band, definitely indicates on the presence of the collective reflection-

asymmetric modes.
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Experimental spectrum of 220Th
(W. Reviol et al., Phys. Rev. C74, 044305 (2006))
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Dinuclear system (DNS) concept

The dynamics of a reflection asymmetric collective motion can

be treated as a motion in a mass-asymmetry coordinate. Such

collective motion simultaneously creates deformations with even and

odd-multipolarities.

Ψp,IMK =

√
2I + 1

16π2

(
Φn,K(ξ)DI

MK + p(−1)I+KΦn,K(ξ)DI
M,−K

)
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Dinuclear system (DNS) concept

As it was shown by out calculations, only α-cluster system AZ →(A−4)

(Z−2)+4He among different cluster configurations gives a significant

contribution to the formation of the low-lying nuclear states.

Energies of alpha–cluster dinuclear

system for different Ra isotopes
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Potential Energy of the Dinuclear System

U(R, ξ, β2µ) = B1 +B2 −B12 + V (R, ξ, β2µ)

where, B1, B2 and B12 are the binding energies of the fragments and

the compound nucleus, respectively.

The nucleus-nucleus potential

V (R, ξ, β2µ) = VCoul(R, ξ, β2µ) + Vnucl(R, ξ, β2µ)

is the sum of the nuclear interaction potential Vnucl(R, ξ, β2µ)

and of the Coulomb potential

VCoul(R, ξ, β2µ) =
e2Z1Z2

R
+

3

5

e2Z1Z2

R3
R2

01

∑
µ

β∗2µY2µ(θ, φ) + ...
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Double-folding potential

Vnucl(R, ξ, β2µ) =

∫
ρ1(r1)ρ2(R− r2)F (r1 − r2)dr1dr2

ρi(r) =
ρ00

1 + exp
(
s(r)
a0i

), ρ00 = 0.17 fm−3

F (r1 − r2) = C0

(
Fin

ρ0(r1)

ρ00
+ Fex

(
1− ρ0(r1)

ρ00

))
δ(r1 − r2)

ρ0(r) = ρ1(r) + ρ2(r)

Fin,ex = fin,ex + f ′in,ex
N1 − Z1

A1

N2 − Z2

A2

C0 = 300 MeV fm3, fin = 0.09, fex = −2.59, f ′in = 0.42, f ′ex = 0.54
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Calculations for Ra and Th isotopes

(Phys.Rev. C 74, 034316 (2006))
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Energy spectra for 223Ra and 225Ra isotopes

(Phys.Rev. C 74, 034316 (2006))
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Calculations for N = 148, N = 150, N = 152

(Phys.Rev. C 74, 034316 (2006))
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Calculations for N = 147, N = 149, N = 151

(Phys.Rev. C 74, 034316 (2006))
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Dinuclear system (DNS) concept
The dinuclear system (A,Z) consists of two fragments (A1,Z1) and

(A2,Z2) with A = A1 + A2 and Z = Z1 + Z2 stuck closely together

by a molecular-type nucleus-nucleus potential.

DNS has totally 15 collective degrees of freedom which govern its

dynamics.

• Relative motion of the clusters R = (R, θR, φR)

• Rotation of the clusters Ω1 = (φ1, θ1, χ1), Ω2 = (φ2, θ2, χ2)

• Intrinsic excitations of the clusters (β1, γ1), (β2, γ2)

• Nucleon transfer between the clusters ξ, ξZ

Mass asymmetry ξ = 2A2
A1+A2

. Charge asymmetry ξZ = 2Z2
Z1+Z2
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Hamiltonian of the model
(deformed heavy fragment)

If the heavy fragment of the DNS is deformed, the system tends to

stay near to the pole-to-pole configuration perfoming small angular

oscillations around this position.

Ĥ = Ĥ0 + V̂int

Ĥ0 = − h̄2

2Bξ

1

ξ

∂

∂ξ
ξ
∂

∂ξ
+

h̄2

2=h
l̂h +

h̄2

2µR2
m

l̂R + V (ξ,Rm)

V̂int =
C0ξ

2

∑
µ

Y ∗2µ(Ωh)Y2µ(ΩR)

Angular momentum operators:

l̂2i = −
[

1
sin θi

∂
∂θi

sin θi
∂
∂θi

+ 1
sin2 θi

∂2

∂φ2i

]
, (i = h,R)
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Calculated and experimental spectra of 238U

(exp. data is taken from http://www.nndc.bnl.gov/nndc/ensdf/)
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Calculated and experimental spectra of 252No
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Hamiltonian of the model
(spherical heavy fragment)

For light actinide we suggest that the heavy fragment is spherical

and perform harmonic quadrupole oscillations with frequency h̄ω0.

Ĥ = Ĥ0 + V̂int

Ĥ0 = − h̄2

2Bξ

1

ξ

∂

∂ξ
ξ
∂

∂ξ
+ h̄ω0n̂+

h̄2

2µR2
m

L̂2 + V (ξ,Rm)

V̂int =
V0
2

∑
µ

β∗2µY2µ(ΩR) =
V0β0

2

(
d+ + d̃

)
· Y2µ(ΩR)

The collective quadrupole coordinates β2µ are expressed in terms

of the creation and annihilation operators of the quadrupole bosons

β̂2µ = β0(d
+
2µ + d̃2µ)

β0 =
√
h̄/2Bω0
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Calculated and experimental spectra of 220Th

(exp. data is taken from W. Reviol et al., Phys. Rev. C74, 044305 (2006))
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Ground state and first negative parity bands: 220Th

Calculated (line) and experimental (solid circles connected by lines) energies of
γ–transitions between subsequent level of the ground state band. Experimental
values are taken from W. Reviol et al., Phys. Rev. C74, 044305 (2006)
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Parity Splitting

S(I−) = E(I−)−
(I + 1)E+

(I−1) + IE+
(I+1)

2I + 1

The sign of the parity splitting is determined
by the difference in energies characterizing the
quadrupole vibrations of the heavy fragment
and the rotation of the light fragment around
the heavy one.

E(I−) =
1

2
ω(I − 1) +

h̄2

2µR2

E(I+) =
1

2
ωI

S(I−) =
h̄2

2µR2
− 1

2
ω

2I

(2I + 1)
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Multipole moments and transitions

Electric multipole operators Q̂λµ =
∫
ρ(r)rλY ∗λµdτ

For the dinuclear system ρ(r) = ρ1(r) + ρ2(r),

Q̂λµ =
∑

λ1,λ1+λ2=λ

√
4π(2λ+ 1)!

(2λ1 + 1)!(2λ2 + 1)!

[
q̂
(λ1λ2)
λ1

× Yλ2(Ω)
]
λµ

q̂
(λ1λ2)
λ1

=

[(
A1

A

)λ2
Q

(2)
λ1

+ (−1)λ2
(
A2

A

)λ2
Q

(1)
λ1

]
Rλ2

Dipole moment Q1µ = eA1Z2−A2Z1
A R · Y1µ(Ω)

Quadrupole moment Q2µ = e
A2

1Z2+A
2
2Z1

A2 R2 · Y2µ(Ω) +Q
(2)
2µ
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226Ra: E1– and E2–transitions

Reduced matrix elements for E1– and E2–transitions between negative parity
and ground state bands as a functions of angular momentum I.
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220Th: B(E1)/B(E2) – ratios

Calculated ratios B(E1)/B(E2)
for transitions from the states of
negative parity lie systematically
lower than the ratios for the
transitions from the state of the
ground state band, which is in
agreement with the experimental
data with the exception of data
points at 13-.
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Bending motion

Fixed mass asymmetry ξ = ξα.

Large stiffness for the angular vibrations C ≡ C0ξα � 0 =⇒ sin ε ≈ ε

Ĥ = Ĥrot + Ĥbend + V̂int,

Ĥrot =
h̄2

2µR2
m

(L̂2 − 2L̂′3)

Ĥbend =
h̄2

2=b
1

ε

∂

∂ε
ε
∂

∂ε
+

h̄2

2=bε2
L′23 +

C

2
ε2

V̂int =
h̄2

2µR2
m

[(
1

ε
(L′1L

′
3 + L′3L

′
1

)
+ 2iL′2

1√
ε

∂

∂ε

√
ε

]

(L′1, L
′
2, L
′
3) — intrinsic components of total angular momentum L̂

In this case the rotational motion of the DNS as a whole and the angular
oscillations can be approximately separated.

24



Bending motion

Moment of inertia =b =
=h×µR2

m
=h+µR2

m

Frequency of the bending oscillations ωb =
√

C
=b

Approximate energies (all matrix elements up to the order ε2 are taken into
account):

EnKp = h̄ωb(2n+K + 1) +
h̄2

=h + µR2
m

(
I(I + 1)−K2

)

Wave functions:

Ψnp,IKM = Ln,|K|(ε)
(
DL
M,K(Ω) + p(−1)I+KDL

M,−K(Ω)
)
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Spectrum of bending motion for 238U→234 Th+4 He
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