PRETORIA

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

S. A. Rakityansky and N. Elander

POWER-SERIES EXPANSION OF MULTI-CHANNEL JOST MATRIX

Taylor-type power-series expansion in scattering theory:

$$
k^{2 \ell+1} \cot \delta_{\ell}(k)=\sum_{n=0}^{\infty} c_{\ell n} k^{2 n}
$$

short-range potential

Effective-range expansion

Scattering length Effective radius

```
Limitations:
- valid near k=0 (low energies)
- single-channel problem
```

- Expansion near any complex E
- N-channel problem

Multi-channel Schrödinger equation

$$
\left[\frac{\hbar^{2}}{2 \mu_{n}} \Delta_{\vec{r}}+\left(E-E_{n}\right)\right] \psi_{n}(E, \vec{r})=\sum_{n^{\prime}=1}^{N} \mathcal{U}_{n n^{\prime}}(\vec{r}) \psi_{n^{\prime}}(E, \vec{r})
$$

$$
\psi_{n}(E, \vec{r})=\frac{u_{n}(E, r)}{r} Y_{\ell_{n} m_{n}}(\theta, \varphi)
$$

$$
\Psi(E, \vec{r})=\left(\begin{array}{c}
\psi_{1}(\boldsymbol{E}, \vec{r}) \\
\psi_{2}(\boldsymbol{E}, \vec{r}) \\
\vdots \\
\psi_{N}(\boldsymbol{E}, \vec{r})
\end{array}\right)
$$

$$
\left[\partial_{r}^{2}+k_{n}^{2}-\frac{\ell_{n}\left(\ell_{n}+1\right)}{r^{2}}\right] u_{n}(E, r)=\sum_{n^{\prime}=1}^{N} V_{n n^{\prime}}(r) u_{n^{\prime}}(E, r)
$$

$$
V_{n n^{\prime}}(r)=\frac{2 \mu_{n}}{\hbar^{2}} \int Y_{\ell_{n} m_{n}}^{*}(\theta, \varphi) \mathcal{U}_{n n^{\prime}}(\vec{r}) Y_{\ell_{n^{\prime}} m_{n^{\prime}}}(\theta, \varphi) d \Omega_{\vec{r}}
$$

$$
k_{n}=\sqrt{\frac{2 \mu_{n}}{\hbar^{2}}\left(E-E_{n}\right)}
$$

$V_{n n^{\prime}}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0 \quad$ exponentially

channel momentum

$$
\left[\partial_{r}^{2}+k_{n}^{2}-\frac{\ell_{n}\left(\ell_{n}+1\right)}{r^{2}}\right] u_{n}(E, r)=\sum_{n^{\prime}=1}^{N} V_{n n^{\prime}}(r) u_{n^{\prime}}(E, r)
$$

$\mathbf{2 N}$ linearly independent solutions; \boldsymbol{N} of them are regular at $\boldsymbol{r}=\mathbf{0}$
fundamental
matrix of
regular
solutions
(the basis)

$$
\Phi(E, r)=\left(\begin{array}{cccc}
\phi_{11}(E, r) & \phi_{12}(E, r) & \cdots & \phi_{1 N}(E, r) \\
\phi_{21}(E, r) & \phi_{22}(E, r) & \cdots & \phi_{2 N}(E, r) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{N 1}(E, r) & \phi_{N 2}(E, r) & \cdots & \phi_{N N}(E, r)
\end{array}\right)
$$

$$
\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right)=C_{1}\left(\begin{array}{c}
\phi_{11} \\
\phi_{21} \\
\vdots \\
\phi_{N 1}
\end{array}\right)+C_{2}\left(\begin{array}{c}
\phi_{12} \\
\phi_{22} \\
\vdots \\
\phi_{N 2}
\end{array}\right)+\cdots+C_{N}\left(\begin{array}{c}
\phi_{1 N} \\
\phi_{2 N} \\
\vdots \\
\phi_{N N}
\end{array}\right)
$$

Regular at $\boldsymbol{r}=\mathbf{0}$
$\boldsymbol{C}_{\boldsymbol{n}}$ are chosen to give certain asymptotics $\boldsymbol{r} \longrightarrow \infty$ (bound, resonant, scattering)

Multi-channel Jost matrix

$$
\left[\partial_{r}^{2}+k_{n}^{2}-\frac{\ell_{n}\left(\ell_{n}+1\right)}{r^{2}}\right] u_{n}(E, \vec{r}) \approx 0, \quad \text { when } r \rightarrow \infty
$$

Equations decouple; their solutions are known:

$$
h_{\ell_{n}}^{(\pm)}\left(\dot{k}_{n} r\right)
$$

Riccati-Hankel functions

2N linearly independent column-solutions can be grouped in two square matrices:

$$
\begin{aligned}
W^{(\mathrm{in})} & =\left(\begin{array}{cccc}
h_{\ell_{1}}^{(-)}\left(k_{1} r\right) & 0 & \cdots & 0 \\
0 & h_{\ell_{2}}^{(-)}\left(k_{2} r\right) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & h_{\ell_{N}}^{(-)}\left(k_{N} r\right)
\end{array}\right) \\
W^{(\mathrm{out})} & =\left(\begin{array}{cccc}
h_{\ell_{1}}^{(+)}\left(k_{1} r\right) & 0 & \cdots & 0 \\
0 & h_{\ell_{2}}^{(+)}\left(k_{2} r\right) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & h_{\ell_{N}}^{(+)}\left(k_{N} r\right)
\end{array}\right)
\end{aligned}
$$

in-coming and out-going spherical waves

These
2N columns form a basis in the space of solutions

Each column of $\quad \Phi(E, r)$ at large distances becomes a linear combination of the basis columns

$$
\begin{gathered}
\Phi(E, r) \underset{r \rightarrow \infty}{\longrightarrow} W^{(\text {in })}(E, r) F^{(\text {in })}(E)+W^{\text {(out })}(E, r) F^{(\text {out })}(E) \\
\text { Jost matrices }
\end{gathered}
$$

$$
S(E)=F^{(\text {out })}(E)\left[F^{(\text {in })}(E)\right]^{-1}
$$

spectral points: $\quad \boldsymbol{E}=\mathcal{E}_{\boldsymbol{n}}$ (bound states and resonances)

$$
\operatorname{det} F^{(\mathrm{in})}\left(\mathcal{E}_{n}\right)=0
$$

Transformation of the Schrödinger equation

$$
\Phi(E, r) \underset{r \rightarrow \infty}{\longrightarrow} W^{(\mathrm{in})}(E, r) F^{(\mathrm{in})}(E)+W^{(\text {out })}(E, r) F^{(\text {out })}(E)
$$

$$
\Phi(E, r) \equiv W^{(\mathrm{in})}(E, r) \mathcal{F}^{(\mathrm{in})}(E, r)+W^{(\mathrm{out})}(E, r) \mathcal{F}^{(\mathrm{out})}(E, r)
$$

variation parameters method

$$
W^{(\mathrm{in})}(E, r) \frac{\partial}{\partial r} \mathcal{F}^{(\mathrm{in})}(E, r)+W^{(\text {out })}(E, r) \frac{\partial}{\partial r} \mathcal{F}^{(\text {out })}(E, r)=0
$$

Lagrange condition

$$
\begin{aligned}
\partial_{r} \mathcal{F}^{(\text {in })} & =-\frac{1}{2 i} \boldsymbol{K}^{-1} \boldsymbol{W}^{(\text {out })} V\left[\boldsymbol{W}^{(\text {in })} \mathcal{F}^{(\text {in })}+\boldsymbol{W}^{(\text {out })} \mathcal{F}^{(\text {out })}\right] \\
\partial_{r} \mathcal{F}^{(\text {out })} & =\frac{1}{2 i} \boldsymbol{K}^{-1} \boldsymbol{W}^{(\text {in })} V\left[\boldsymbol{W}^{(\text {in })} \mathcal{F}^{(\text {in })}+\boldsymbol{W}^{(\text {out })} \mathcal{F}^{(\text {out })}\right]
\end{aligned}
$$

$$
K=\left(\begin{array}{cccc}
k_{1} & 0 & \cdots & 0 \\
0 & k_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & k_{N}
\end{array}\right)
$$

$$
h_{\ell}^{(+)}(z)+h_{\ell}^{(-)}(z) \equiv 2 j_{\ell}(z)=\begin{aligned}
& \text { boundary } \\
& \text { conditions }
\end{aligned}
$$

$$
\mathcal{F}^{(\mathrm{in})}(E, 0)=\mathcal{F}^{(\mathrm{out})}(E, 0)=\frac{1}{2} \boldsymbol{I}
$$

Riemann surface

$$
\text { channel momenta } \longrightarrow \quad k_{n}= \pm \sqrt{\frac{2 \mu_{n}}{\hbar^{2}}\left(E-E_{n}\right)}, \quad n=1,2, \ldots, N
$$

$$
\text { matrices } \boldsymbol{F}^{\text {(in/out) }}(\boldsymbol{E}) \text { have } 2^{N} \text { different values }
$$

Riemann surface of the energy for a single-channel problem

$$
k_{n}= \pm \sqrt{\frac{2 \mu_{n}}{\hbar^{2}}\left(E-E_{n}\right)}, \quad n=1,2
$$

Schematically shown interconnections of the layers of the Riemann surface for a two-channel problem at three different energy intervals. The layers correspond to different combinations of the signs (indicated in brackets) of $\operatorname{Im} k_{1}$ and $\operatorname{Im} k_{2}$

$$
E<E_{1}
$$

$E_{1}<E<E_{2}$

$E>E_{2}$

In the present work, we construct the Jost matrices in such a way that in their matrix elements the dependences on odd powers of all channel momenta are factorized analytically

$$
\begin{gathered}
h_{\ell}^{(\pm)}(z)=j_{\ell}(z) \pm i y_{\ell}(z) \\
J=\frac{1}{2}\left[W^{(\mathrm{in})}+W^{(\mathrm{out})}\right]=\left(\begin{array}{cccc}
j_{\ell_{1}}\left(k_{1} r\right) & 0 & \cdots & 0 \\
0 & j_{\ell_{2}}\left(k_{2} r\right) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & j_{\ell_{N}}\left(k_{N} r\right)
\end{array}\right) \\
Y=\frac{i}{2}\left[W^{(\mathrm{in})}-W^{(\mathrm{out})}\right]=\left(\begin{array}{cccc}
y_{\ell_{1}}\left(k_{1} r\right) & 0 & \cdots & 0 \\
0 & y_{\ell_{2}}\left(k_{2} r\right) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & y_{\ell_{N}}\left(k_{N} r\right)
\end{array}\right) \\
\mathcal{A}(E, r)=\mathcal{F}^{(\mathrm{in})}(E, r)+\mathcal{F}^{(\mathrm{out})}(E, r), \\
\mathcal{B}(E, r)=i\left[\mathcal{F}^{(\mathrm{in})}(E, r)-\mathcal{F}^{\text {(out })}(E, r)\right]
\end{gathered}
$$

$$
\Phi(E, r) \equiv W^{(\text {in })}(E, r) \mathcal{F}^{\text {(in })}(E, r)+W^{\text {(out })}(E, r) \mathcal{F}^{\text {(out) })}(E, r)
$$

$\partial_{r} \mathcal{A}=-K^{-1} Y V(J \mathcal{A}-Y \mathcal{B})$
$\partial_{r} \mathcal{B}=-K^{-1} J V(J \mathcal{A}-Y \mathcal{B})$
Boundary conditions

$$
\mathcal{A}(E, 0)=I
$$

$$
\mathcal{B}(E, 0)=0
$$

$\mathcal{A}(E, r) \underset{r \rightarrow \infty}{\longrightarrow} A(E), \quad \mathcal{B}(E, r) \underset{r \rightarrow \infty}{\longrightarrow} B(E)$

$$
F^{(\mathrm{in})}(E)=\frac{1}{2}[A(E)-i B(E)], \quad F^{(\text {out })}(E)=\frac{1}{2}[A(E)+i B(E)]
$$

Factorization

$$
\begin{aligned}
& j_{\ell}(k r)=\left(\frac{k r}{2}\right)^{\ell+1} \sum_{n=0}^{\infty} \frac{(-1)^{n} \sqrt{\pi}}{\Gamma(\ell+3 / 2+n) n!}\left(\frac{k r}{2}\right)^{2 n}=k^{\ell+1} \tilde{j}_{\ell}(E, r) \\
& y_{\ell}(k r)=\left(\frac{2}{k r}\right)^{\ell} \sum_{n=0}^{\infty} \frac{(-1)^{n+\ell+1}}{\Gamma(-\ell+1 / 2+n) n!}\left(\frac{k r}{2}\right)^{2 n}=k^{-\ell} \tilde{y}_{\ell}(E, r)
\end{aligned}
$$

$$
J=\left(\begin{array}{cccc}
k_{1}^{\ell_{1}+1} & 0 & \cdots & 0 \\
0 & k_{2}^{\ell_{2}+1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & k_{N}^{\ell_{N}+1}
\end{array}\right) \tilde{J}, \quad Y=\left(\begin{array}{cccc}
k_{1}^{-\ell_{1}} & 0 & \cdots & 0 \\
0 & k_{2}^{-\ell_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & k_{N}^{-\ell_{N}}
\end{array}\right) \tilde{Y}
$$

$$
\begin{aligned}
\mathcal{A}_{i j} & =\frac{k_{j}^{\ell_{j}+1}}{k_{i}^{\ell_{i}+1}} \tilde{\mathcal{A}}_{i j} \\
\mathcal{B}_{i j} & =k_{i}^{\ell_{i}} k_{j}^{\ell_{j}+1} \tilde{\mathcal{B}}_{i j}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{r} \tilde{\mathcal{A}} & =-\tilde{Y} V(\tilde{\mathcal{J}} \tilde{\mathcal{A}}-\tilde{Y} \tilde{\mathcal{B}}) \\
\partial_{r} \tilde{\mathcal{B}} & =-\tilde{J} V(\tilde{\mathcal{J}} \tilde{\mathcal{A}}-\tilde{Y} \tilde{\mathcal{B}})
\end{aligned}
$$

Symmetry of the Jost matrices

$$
\begin{aligned}
F_{m n}^{(\mathrm{in})} & =\frac{k_{n}^{\ell_{n}+1}}{2 k_{m}^{\ell_{m}+1}} \tilde{A}_{m n}-\frac{i k_{m}^{\ell_{m}} k_{n}^{\ell_{n}+1}}{2} \tilde{B}_{m n} \\
F_{m n}^{(\mathrm{out})} & =\frac{k_{n}^{\ell_{n}+1}}{2 k_{m}^{\ell_{m}+1}} \tilde{A}_{m n}+\frac{i k_{m}^{\ell_{m}} k_{n}^{\ell_{n}+1}}{2} \tilde{B}_{m n}
\end{aligned}
$$

$$
\boldsymbol{F}_{m n}^{(\mathrm{in})}\left(-k_{1},-k_{2}, \ldots,-k_{N}\right)=(-1)^{\ell_{m}+\ell_{n}} F_{m n}^{(\mathrm{out})}\left(k_{1}, k_{2}, \ldots, k_{N}\right)
$$

$$
S_{m n}=(-1)^{\ell_{m}+\ell_{n}} F_{m n}^{(\mathrm{in})}\left(-k_{1},-k_{2}, \ldots,-k_{N}\right)\left[F_{m n}^{(\mathrm{in})}\left(k_{1}, k_{2}, \ldots, k_{N}\right)\right]^{-1}
$$

Power-series expansion

$$
\begin{aligned}
\partial_{r} \tilde{\mathcal{A}} & =-\tilde{Y} V(\tilde{J} \tilde{\mathcal{A}}-\tilde{Y} \tilde{\mathcal{B}}) \\
\partial_{r} \tilde{\mathcal{B}} & =-\tilde{J} V(\tilde{J} \tilde{\mathcal{A}}-\tilde{Y} \tilde{\mathcal{B}})
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{J}(E, r)=\sum_{n=0}^{\infty}\left(E-E_{0}\right)^{n} \gamma_{n}\left(E_{0}, r\right) \\
& \tilde{Y}(E, r)=\sum_{n=0}^{\infty}\left(E-E_{0}\right)^{n} \eta_{n}\left(E_{0}, r\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\mathcal{A}}(E, r)=\sum_{n=0}^{\infty}\left(E-E_{0}\right)^{n} \alpha_{n}\left(E_{0}, r\right) \\
& \tilde{\mathcal{B}}(E, r)=\sum_{n=0}^{\infty}\left(E-E_{0}\right)^{n} \beta_{n}\left(E_{0}, r\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{r} \alpha_{n} & =-\sum_{i+j+k=n} \eta_{i} V\left(\gamma_{j} \alpha_{k}-\eta_{j} \beta_{k}\right) \\
\partial_{r} \beta_{n} & =-\sum_{i+j+k=n} \gamma_{i} V\left(\gamma_{j} \alpha_{k}-\eta_{j} \beta_{k}\right)
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
\alpha_{n}\left(E_{0}, 0\right) & =\delta_{n 0} I \\
\beta_{n}\left(E_{0}, 0\right) & =0
\end{aligned}
$$

$$
\alpha_{n}\left(E_{0}, r\right) \underset{r \rightarrow \infty}{\longrightarrow} a_{n}\left(E_{0}\right), \quad \text { and } \quad \beta_{n}\left(E_{0}, r\right) \underset{r \rightarrow \infty}{\longrightarrow} b_{n}\left(E_{0}\right)
$$

$$
\begin{aligned}
& \partial_{r} \alpha_{n}=-\sum_{i+j+k=n} \eta_{i} V\left(\gamma_{j} \alpha_{k}-\eta_{j} \beta_{k}\right) \\
& \partial_{r} \beta_{n}=-\sum_{i+j+k=n} \gamma_{i} V\left(\gamma_{j} \alpha_{k}-\eta_{j} \beta_{k}\right)
\end{aligned}
$$

Boudary conditions
$\alpha_{n}\left(E_{0}, 0\right)=\delta_{n 0} I$
$\beta_{n}\left(E_{0}, 0\right)=0$

$$
\alpha_{n}\left(E_{0}, r\right) \underset{r \rightarrow \infty}{\longrightarrow} a_{n}\left(E_{0}\right), \quad \text { and } \quad \beta_{n}\left(E_{0}, r\right) \underset{r \rightarrow \infty}{\longrightarrow} b_{n}\left(E_{0}\right)
$$

$$
\begin{aligned}
F_{m n}^{(\mathrm{in})} & =\sum_{j=0}^{M}\left(E-E_{0}\right)^{j}\left[\frac{k_{n}^{\ell_{n}+1}}{2 k_{m}^{\ell_{m}+1}}\left(a_{j}\right)_{m n}-\frac{i k_{m}^{\ell_{m}} k_{n}^{\ell_{n}+1}}{2}\left(b_{j}\right)_{m n}\right] \\
F_{m n}^{(\text {out })} & =\sum_{j=0}^{M}\left(E-E_{0}\right)^{j}\left[\frac{k_{n}^{\ell_{n}+1}}{2 k_{m}^{\ell_{m}+1}}\left(a_{j}\right)_{m n}+\frac{i k_{m}^{\ell_{m}} k_{n}^{\ell_{n}+1}}{2}\left(b_{j}\right)_{m n}\right]
\end{aligned}
$$

$$
V(r)=\left(\begin{array}{cc}
-1.0 & -7.5 \\
-7.5 & 7.5
\end{array}\right) r^{2} e^{-r}
$$

$$
\mu_{1}=\mu_{2}=\hbar c=1
$$

$$
E_{1}=0 \text { and } E_{2}=0.1
$$

$$
\ell_{1}=\ell_{2}=0
$$

$\boldsymbol{E}_{\boldsymbol{r}}$	$\boldsymbol{\Gamma}$
-2.314391	0
-1.310208	0
-0.537428	0
-0.065258	0
4.768197	0.001420
7.241200	1.511912
8.171217	6.508332

$$
\sigma(1 \rightarrow 1)
$$

$$
E_{0}=5+i 0
$$

$$
M=5
$$

5

$\boldsymbol{E}_{\boldsymbol{r}}$	$\boldsymbol{\Gamma}$
-2.314391	0
-1.310208	0
-0.537428	0
-0.065258	0
4.768197	0.001420
7.241200	1.511912
8.171217	6.508332

$$
E_{0}=5+i 0
$$

First resonance
Expansion ($\mathrm{M}=5$): $\mathrm{E}=4.768178$-i0.000686 Exact value: $\quad E=4.768197-i 0.000710$

SUMMARY

- odd powers of the channel momenta in the Jost matrices are factorized
- for the remaining energy dependent factors, a system of differential equations is obtained
- these energy dependent functions are expanded in power series
- the expansion coefficients are determined by a system of differential equations

