preamble

Parametrization of the S-matrix as
a way for locating bound and resonance states: multichannel case

Prince O G Ogunbade

S A Rakitiansky

September 09, 2010

0° Introduction
\oiiint° Calculational methods
\wp° Results
$\%^{\circ}$ Conclusions

Proper understanding of the properties of a quantum system is essential

Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states

Different methods exist for locating these spectra points

Proper understanding of the properties of a quantum system is essential

Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states

Different methods exist for locating these spectra points

We propose a universal method that is insensitive to the interaction potential.

20 Proper understanding of the properties of a quantum system is essential

Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states

Different methods exist for locating these spectra points

We propose a universal method that is insensitive to the interaction potential.

The main idea behind this method is based on the coincidence principle:
Two analytic functions coinciding on a curve segment are identical everywhere in the complex plane

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$
+ Functional approximation of the S-matrix must have the following properties

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$
+ Functional approximation of the S-matrix must have the following properties
have the same sigularities at complex energies as the exact S-matrix

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$
+ Functional approximation of the S-matrix must have the following properties
have the same sigularities at complex energies as the exact S-matrix
simple poles at certain E_{i} i.e. $\sim\left(E-E_{i}\right)^{-1}$

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$
+ Functional approximation of the S-matrix must have the following properties
have the same sigularities at complex energies as the exact S-matrix
simple poles at certain E_{i} i.e. $\sim\left(E-E_{i}\right)^{-1}$
incorporate the correct structure of the S-matrix

S-matrix parametrization

+ Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \forall E \in[0, \infty)$
+ Functional approximation of the S-matrix must have the following properties
have the same sigularities at complex energies as the exact S-matrix
simple poles at certain E_{i} i.e. $\sim\left(E-E_{i}\right)^{-1}$
incorporate the correct structure of the S-matrix
+ Such behaviour is provided by the matrix Padé approximant of order [N, N]

$$
\begin{equation*}
\tilde{\mathbf{S}}_{\ell}(E)=\mathbf{P}(E)[\mathbf{Q}(E)]^{-1}=\frac{\sum_{n=0}^{N} \mathbf{p}_{n} E^{n}}{\sum_{n=0}^{N} \mathbf{q}_{n} E^{n}} \tag{1}
\end{equation*}
$$

The exact S-matrix is given by

$$
\begin{equation*}
\mathbf{S}_{\ell}(E)=\mathbf{F}_{\ell}^{(\mathrm{out})}(E)\left[\mathbf{F}_{\ell}^{(\mathrm{in})}(E)\right]^{-1} \tag{2}
\end{equation*}
$$

where $\mathbf{F}_{\ell}^{(\text {in/out })}(E)$ are the Jost matrices. They are the amplitudes of the incoming and outgoing waves in the radial wavefunction,

$$
\begin{aligned}
& \mathbf{\Phi}(E, r)=\mathbf{H}^{(\text {in })}(E, r) \mathbf{F}^{(\text {in })}(E)+\mathbf{H}^{(\text {out })}(E, r) \mathbf{F}^{(\text {out })}(E) \\
& \text { or } \\
& \mathbf{\Phi}(E, r)=\mathbf{J}(E, r) \mathbf{A}(E, r)-\mathbf{N}(E, r) \mathbf{B}(E, r)
\end{aligned}
$$

$$
\begin{equation*}
F_{m n}^{(\text {in })}\left(E, k_{1}, k_{2}, \ldots\right)=\frac{1}{2}\left[\frac{k_{n}^{\ell_{n}+1}}{k_{m}^{\ell_{m}+1}} \widetilde{A}_{m n}(E)-i k_{m}^{\ell_{m}} k_{n}^{\ell_{n}+1} \widetilde{B}_{m n}(E)\right] \tag{3}
\end{equation*}
$$

and by symmetry

$$
\begin{align*}
& F_{m n}^{(\text {out })}\left(E, k_{1}, k_{2}, \ldots\right)=(-1)^{\ell_{m}+\ell_{n}} F_{m n}^{(\text {in })}\left(E, k_{1}, k_{2}, \ldots\right) \tag{4}\\
& k_{n}=\sqrt{\frac{2 \mu_{n}}{\hbar^{2}}\left(E-E_{n}^{\mathrm{th}}\right)} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\widetilde{\mathbf{A}}(E) \approx \sum_{n=0}^{N} \boldsymbol{\alpha}^{(n)} E^{n}, \quad \widetilde{\mathbf{B}}(E) \approx \sum_{n=0}^{N} \boldsymbol{\beta}^{(n)} E^{n} \tag{6}
\end{equation*}
$$

We have to determine $2(N+1)$ unknown matrices $\boldsymbol{\alpha}^{(i)}$ and $\boldsymbol{\beta}^{(i)}$, $i=0,1,2, \ldots, N$.
Suppose that the S-matrix is known at $2(N+1)$ points along the real energy axis: $E_{1}, E_{2}, \ldots, E_{2(N+1)}$. Then the unknown matrices $\boldsymbol{\alpha}^{(i)}, \boldsymbol{\beta}^{(i)}$ can be found from the system of equations

$$
\begin{equation*}
\mathbf{S}\left(E_{i}\right)=\mathbf{F}^{(\text {out })}\left[\mathbf{F}^{\text {(in) }}\right]^{-1}, \quad i=1,2, \ldots, 2(N+1) \tag{7}
\end{equation*}
$$

Multiplying by $\mathbf{F}^{(\text {in })}$ from the right, we can re-write this as

$$
\begin{equation*}
\mathbf{F}^{\text {(out) }}\left(k_{1}, k_{2}, E_{i}\right)=\mathbf{S}\left(E_{i}\right) \mathbf{F}^{(\text {in })}\left(k_{1}, k_{2}, E_{i}\right) \tag{8}
\end{equation*}
$$

Substituting all the above formulae, we find that this is a linear system of equations for $\alpha_{m n}^{(i)}$ and $\beta_{m n}^{(i)}$.

The two procedures are:
We determine the fitting paramaters $\boldsymbol{\alpha}^{(i)}$ and $\boldsymbol{\beta}^{(i)}$ by solving equation (8)

We search for the roots of equation (3) in the complex energy plane for the positions of the spectral points

$$
\begin{align*}
\mathbf{V}(r) & = \begin{cases}\mathbf{U} & \text { for } 0 \leq r \leq 1 \\
0 & \text { otherwise }\end{cases} \tag{9}\\
\mathbf{U} & =-\left(\begin{array}{cc}
2.0 & 0.5 \lambda \\
0.5 \lambda & 2.0
\end{array}\right)
\end{align*}
$$

where λ is the switching parameter.
The channel thresholds are $E_{1}=0$ and $E_{2}=2$
The units in this model are chosen in such a way that $\mu_{1}=\mu_{2}=\hbar c=1$.
[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Figure 1. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_{n}.
[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

$$
\begin{aligned}
\mathbf{V}(r) & = \begin{cases}\mathbf{U} & \text { for } 0 \leq r \leq 1 \\
\mathbf{0} & \text { otherwise }\end{cases} \\
\mathbf{U} & =-\left(\begin{array}{cc}
2.0 & 0.5 \lambda \\
0.5 \lambda & 2.0
\end{array}\right)
\end{aligned}
$$

where λ is the switching parameter. The channel thresholds are $E_{1}=0$ and $E_{2}=2$
The units in this model are chosen in such a way that $\mu_{1}=\mu_{2}=\hbar c=1$.

Figure 1. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_{n}.
[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Figure 1. Exact cross sections. Horizontal axis corresponds to E in the case of $1 \rightarrow 1$ transitions and to $E-E_{2}$ in all other cases.

Figure 2. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_{n}.
[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Figure 1. Exact cross sections. Horizontal axis corresponds to E in the case of $1 \rightarrow 1$ transitions and to $E-E_{2}$ in all other cases.

Figure 2. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_{n}.
[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval $1 \mathrm{MeV} \leqslant E \leqslant 10 \mathrm{MeV}$.

ID	N	$\Re(E)$	$\Im(E)$		
$\lambda=0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}

[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval $1 \mathrm{MeV} \leqslant E \leqslant 10 \mathrm{MeV}$.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$
$\lambda=0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}

[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval $1 \mathrm{MeV} \leqslant E \leqslant 10 \mathrm{MeV}$.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$
$\lambda=0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}
$\lambda=1$	2	0.9696684253	-0.1914384518		
	5	-0.2422637171	-1.1×10^{-14}		
	7	-0.2430955910	-2.2×10^{-11}		
	10	-0.2430964602	-8.4×10^{-10}		

[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval $1 \mathrm{MeV} \leqslant E \leqslant 10 \mathrm{MeV}$.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$
$\lambda=0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}
$\lambda=1$	2	0.9696684253	-0.1914384518	1.2539964140	-0.0861903892
	5	-0.2422637171	-1.1×10^{-14}	1.8315169134	-0.0290733682
	7	-0.2430955910	-2.2×10^{-11}	1.8315168861	-0.0290733625
	10	-0.2430964602	-8.4×10^{-10}	1.8315168861	-0.0290733625

[R. G. Newton. Scattering Theory of Waves and Particles, $2^{\text {nd }}$ Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., 106, 2006]

Figure 1. The Noro-Taylor potential model given in Equation (9).
[T. Noro and H. S. Taylor 1980 J. Phys. B: Atom. Molec. Phys., 13 L377]
[S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., 106, 1105]
$\mathbf{V}(r)=\left(\begin{array}{rr}-1.0 & -7.5 \\ -7.5 & 7.5\end{array}\right) r^{2} e^{-r}$
The thresholds energies are $E_{1}=0$ and $E_{2}=0.1$
The units in this model are chosen in such a way that $\mu_{1}=\mu_{2}=\hbar c=1$.

Table 2. The resonance energies obtained for the Noro-Taylor potential (9) for $\ell=0,1$. They were obtained using the rigorous Jost-function method described in Rakitianski and Elander.

	$\ell=0$			$\ell=1$	
no.	$\Re E$	$\Im E$	$\Re E$	$\Im E$	
1	4.768197	-0.000710		6.703719	-0.125653
2	7.241200	-0.755956		8.012942	-1.920165
3	8.171217	-3.254166		8.595336	-4.718772
4	8.440526	-6.281492		8.511458	-7.887032
5	8.072643	-9.572815		7.824340	-11.256937
6	7.123813	-13.012669		6.584809	-14.741148

[T. Noro and H. S. Taylor 1980 J. Phys. B: Atom. Molec. Phys., 13 L377]
[S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., 106, 1105]

Table 3. Comparison of the first five resonance points for the potential (9) for $\ell=0,1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact	4.768197	-0.000710
		Approx.	4.768197	-0.000710
	2	Exact	7.241200	-0.755956
	3	Approx.	7.241200	-0.755956
		Exact	8.171217	-3.254166
	4	Approx.	8.171199	-3.254177
		Exact	8.440526	-6.281492
	5	Exact	8.431643	-6.261440
		Approx.	8.846481	-9.353923

[^0]Table 3. Comparison of the first five resonance points for the potential (9) for $\ell=0,1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact	4.768197	-0.000710
		Approx.	4.768197	-0.000710
	2	Exact	7.241200	-0.755956
		Approx.	7.241200	-0.755956
	3	Exact	8.171217	-3.254166
		Approx.	8.171199	-3.254177
	4	Exact	8.440526	-6.281492
	Approx.	8.431643	-6.261440	
	Exact	8.072643	-9.572815	
		Approx.	8.846481	-9.353923

Figure 1. The exact positions of the S-wave resonance poles (red dots) on the complex energy plane for the potential (9), and the corresponding poles of the Padé approximation (open circles). The corresponding fitting points on the $\Re E$-axis are indicated by vertical bars.

[^1]
Result: Noro-Taylor model potential

Table 3. Comparison of the first five resonance points for the potential (9) for $\ell=0,1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact	4.768197	-0.000710
		Approx.	4.768197	-0.000710
	2	Exact	7.241200	-0.755956
	3	Approx.	7.241200	-0.755956
		Exact	8.171217	-3.254166
	4	Exprox.	8.171199	-3.254177
		Approx.	8.440526	-6.281492
	5	Exact	8.072643	-6.261440
1	1	Approx.	8.846481	-9.572815
		Exact	6.703719	-0.125653
	2	Approx.	6.703719	-0.125653
	Exact	8.012942	-1.920165	
	Approx.	8.012942	-1.920165	
	Exact	8.595336	-4.718772	
	4	Approx.	8.596118	-4.720121
	Exact	8.511458	-7.887032	
	Approx.	8.383264	-7.5417706	
		Exact	7.824340	-11.256937

Figure 1. The exact positions of the P-wave resonance poles (red dots) on the complex energy plane for the potential (9), and the corresponding poles of the Padé approximation (open circles). The corresponding fitting points on the $\Re E$-axis are indicated by vertical bars.

[^2]The known value of the S-matrix has been analytically continued to the domains of complex energy

The poles of the S-matrix corresponding to the spectral points have been successfully located

The numerical examples show that the proposed method is stable and accurate

The universality of the method has been confirmed

ONLOOK

Extend the method to include potentials with coulomb tail
Combined with any phase-shift analysis procedure, the method would be able to do spectral analysis of the experimental cross-section data

∞ Prof. S A Rakityanski

$\infty S O \mathcal{T H} \mathcal{A} \mathcal{F}$ RICA $\mathcal{N a t i o n a l}$ Research Foundation
$\infty S \mathcal{A} \mathcal{H} \mathcal{A} R P$
© Organizing committee of $2 n d$
SA-IINR SVMPOSITIM

[^0]: S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., 106, 1105

[^1]: S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., 106, 1105

[^2]: S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., 106, 1105

