preamble

Parametrization of the S-matrix as a way for locating bound and resonance states: multichannel case

Prince O G Ogunbade

S A Rakitiansky

September 09, 2010

epartment: cence and Technology EPUBLIC OF SOUTH AFRICA

- **S** Introduction
- **Galculational methods**
- **General Results**
- **Conclusions**

Introduction Section Section

¥.	

🌮 Conclusions

- Proper understanding of the properties of a quantum system is essential
- Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states
- Different methods exist for locating these spectra points

Introduction Introduction Calculational

- S Results
- 🙄 Conclusions

- Proper understanding of the properties of a quantum system is essential
- Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states
- Different methods exist for locating these spectra points

We propose a universal method that is insensitive to the interaction potential.

Introduction

Introduction S Calculational

¥	

😮 Conclusions

- Proper understanding of the properties of a quantum system is essential
- Prediction of the behaviour of such a system cannot be achieved without knowing its spectrum i.e. the energies of its bound, virtual, resonances and scattering states
- Different methods exist for locating these spectra points
- We propose a universal method that is insensitive to the interaction potential.

The main idea behind this method is based on the coincidence principle:

Two analytic functions coinciding on a curve segment are identical everywhere in the complex plane

🙄 Introduction

Calculational methods S-matrix parametrization Fitting parameters Pade approximation

😮 Results

Second Conclusions

• Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \ \forall E \in [0,\infty)$

 Calculational methods
 S-matrix parametrization
 Fitting parameters
 Pade approximation

🙄 Results

Conclusions

- ← Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \quad \forall E \in [0,\infty)$
- Functional approximation of the S-matrix must have the following properties

Introduction

Calculational methods S-matrix parametrization Fitting parameters Pade approximation Poles determination

🙄 Results

Conclusions

- ← Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \quad \forall E \in [0,\infty)$
- Functional approximation of the S-matrix must have the following properties
 - have the same sigularities at complex energies as the exact S-matrix

Introduction

Calculational methods S-matrix parametrization Fitting parameters Pade approximation Poles determination

🙄 Results

Conclusions

- ← Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \quad \forall E \in [0,\infty)$
- Functional approximation of the S-matrix must have the following properties
 - have the same sigularities at complex energies as the exact S-matrix
 - simple poles at certain E_i i.e. $\sim (E E_i)^{-1}$

- S Introduction
- Calculational methods
 S-matrix parametrization
 Fitting parameters
 Pade approximation
 Poles determination
- 🉄 Results
- Conclusions

- ← Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \quad \forall E \in [0,\infty)$
- Functional approximation of the S-matrix must have the following properties
 - have the same sigularities at complex energies as the exact S-matrix
 - simple poles at certain E_i i.e. $\sim (E E_i)^{-1}$
 - incorporate the correct structure of the S-matrix

- S Introduction
- Calculational methods
 S-matrix parametrization
 Fitting parameters
 Pade approximation
 Poles determination
- 🙄 Results
- Conclusions

- ← Given the complex-valued matrices $\mathbf{S}_{\ell}(E) \quad \forall E \in [0,\infty)$
- Functional approximation of the S-matrix must have the following properties
 - have the same sigularities at complex energies as the exact S-matrix
 - simple poles at certain E_i i.e. $\sim (E E_i)^{-1}$
 - incorporate the correct structure of the S-matrix
- Such behaviour is provided by the matrix Padé approximant of order [N, N]

$$\tilde{\mathbf{S}}_{\ell}(E) = \mathbf{P}(E) [\mathbf{Q}(E)]^{-1} = \frac{\sum_{n=0}^{N} \mathbf{p}_{n} E^{n}}{\sum_{n=0}^{N} \mathbf{q}_{n} E^{n}}$$
(1)

Fitting parameters

Fitting parameters

Science & technology Destruct of sciency Market of sciency Areca

The exact S-matrix is given by

$$\mathbf{S}_{\ell}(E) = \mathbf{F}_{\ell}^{(\mathsf{out})}(E) [\mathbf{F}_{\ell}^{(\mathsf{in})}(E)]^{-1}$$
(2)

where $\mathbf{F}_{\ell}^{(in/out)}(E)$ are the Jost matrices. They are the amplitudes of the incoming and outgoing waves in the radial wavefunction,

$$\begin{aligned} \boldsymbol{\Phi}(E,r) &= \mathbf{H}^{(\mathsf{in})}(E,r)\mathbf{F}^{(\mathsf{in})}(E) + \mathbf{H}^{(\mathsf{out})}(E,r)\mathbf{F}^{(\mathsf{out})}(E) \\ \text{or} \\ \boldsymbol{\Phi}(E,r) &= \mathbf{J}(E,r)\mathbf{A}(E,r) - \mathbf{N}(E,r)\mathbf{B}(E,r) \end{aligned}$$

$$F_{mn}^{(in)}(E,k_1,k_2,\dots) = \frac{1}{2} \left[\frac{k_n^{\ell_n+1}}{k_m^{\ell_m+1}} \, \widetilde{A}_{mn}(E) - i \, k_m^{\ell_m} \, k_n^{\ell_n+1} \, \widetilde{B}_{mn}(E) \right]$$
(3)

and by symmetry

$$F_{mn}^{(\text{out})}(E,k_1,k_2,\dots) = (-1)^{\ell_m + \ell_n} F_{mn}^{(\text{in})}(E,k_1,k_2,\dots)$$
(4)

$$k_n = \sqrt{\frac{2\mu_n}{\hbar^2} (E - E_n^{\mathsf{th}})} \tag{5}$$

Pade approximation

Introduction

 Calculational methods
 S-matrix parametrizatic
 Fitting parameters
 Pade approximation

Poles determina

🍟 Results

Conclusions

 $\widetilde{\mathbf{A}}(E) \approx \sum_{n=0}^{N} \boldsymbol{\alpha}^{(n)} E^n, \qquad \widetilde{\mathbf{B}}(E) \approx \sum_{n=0}^{N} \boldsymbol{\beta}^{(n)} E^n$ (6)

We have to determine 2(N + 1) unknown matrices $\alpha^{(i)}$ and $\beta^{(i)}$, $i = 0, 1, 2, \ldots, N$. Suppose that the S-matrix is known at 2(N + 1) points along the real energy axis: $E_1, E_2, \ldots, E_{2(N+1)}$. Then the unknown matrices $\alpha^{(i)}, \beta^{(i)}$ can be found from the system of equations

$$\mathbf{S}(E_i) = \mathbf{F}^{(\mathsf{out})} \left[\mathbf{F}^{(\mathsf{in})} \right]^{-1}, \qquad i = 1, 2, \dots, 2(N+1)$$
(7)

Multiplying by $\mathbf{F}^{(in)}$ from the right, we can re-write this as

$$\mathbf{F}^{(\mathsf{out})}(k_1, k_2, E_i) = \mathbf{S}(E_i) \, \mathbf{F}^{(\mathsf{in})}(k_1, k_2, E_i) \tag{8}$$

Substituting all the above formulae, we find that this is a linear system of equations for $\alpha_{mn}^{(i)}$ and $\beta_{mn}^{(i)}$.

Introduction

Calculational methods

- S-matrix parametrization
- Fitting parameters
- Pade approximation
- Poles determination
- 😵 Results
- S Conclusion

The two procedures are:

- We determine the fitting paramaters $\alpha^{(i)}$ and $\beta^{(i)}$ by solving equation (8)
- We search for the roots of equation (3) in the complex energy plane for the positions of the spectral points

(9)

$$\mathbf{V}(r) = \begin{cases} \mathbf{U} & \text{for } 0 \le r \le 1\\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\mathbf{U} = -\begin{pmatrix} 2.0 & 0.5\lambda\\ 0.5\lambda & 2.0 \end{pmatrix}$$

where λ is the switching parameter. The channel thresholds are $E_1 = 0$ and $E_2 = 2$

The units in this model are chosen in such a way that $\mu_1 = \mu_2 = \hbar c = 1$.

[R. G. Newton. Scattering Theory of Waves and Particles, 2nd Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., **106**, 2006]

$$\mathbf{V}(r) = \begin{cases} \mathbf{U} & \text{for } 0 \le r \le 1\\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\mathbf{U} = -\begin{pmatrix} 2.0 & 0.5\lambda\\ 0.5\lambda & 2.0 \end{pmatrix}$$

where λ is the switching parameter. The channel thresholds are $E_1 = 0$ and $E_2 = 2$

The units in this model are chosen in such a way that $\mu_1 = \mu_2 = \hbar c = 1$.

Figure 1. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_n .

[R. G. Newton. Scattering]
Theory of Waves and Par-
ticles, $2^{ m nd}$ Ed. 1982]
[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106, 2006]

$$\mathbf{V}(r) = \begin{cases} \mathbf{U} & \text{for } 0 \le r \le 1 \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\mathbf{U} = -\begin{pmatrix} 2.0 & 0.5\lambda \\ 0.5\lambda & 2.0 \end{pmatrix}$$

where λ is the switching parameter. The channel thresholds are $E_1 = 0$ and $E_2 = 2$

The units in this model are chosen in such a way that $\mu_1 = \mu_2 = \hbar c = 1$.

Figure 1. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_n .

[R. G. Newton. Scattering]
Theory of Waves and Par-
ticles, 2^{nd} Ed. 1982]
[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106 , 2006]

Figure 1. Exact cross sections. Horizontal axis corresponds to E in the case of $1 \rightarrow 1$ transitions and to $E - E_2$ in all other cases.

Figure 2. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_n .

[R. G. Newton. Scattering Theory of Waves and Particles, 2nd Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., **106**, 2006]

Figure 1. Exact cross sections. Horizontal axis corresponds to E in the case of $1 \rightarrow 1$ transitions and to $E - E_2$ in all other cases.

Figure 2. Square-well diagonal channel potentials of (9). The potentials are shifted by the threshold energies E_n .

[R. G. Newton. Scattering Theory of Waves and Particles, 2nd Ed. 1982]
[S. A. Rakitianski and N. Elander. Int. J. Quantum Chem., **106**, 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval 1 MeV $\leq E \leq 10$ MeV.

ID	N	$\Re(E)$	$\Im(E)$			[R. G. Newton. Scattering Theory of Waves and Par-
$\lambda = 0$	2	0.9346579288	-0.2046585820	1.2144390251	$6.71 imes 10^{-16}$	ticles, 2^{nd} Ed. 1982]
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}	[S. A. Rakitianski and N.
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}	Elander. Int. J. Quantum
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}	Chem., 106 , 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval 1 MeV $\leq E \leq 10$ MeV.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$	[R. G. Newton. Scattering Theory of Wayes and Par-
$\lambda = 0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}	ticles, 2^{nd} Ed. 1982]
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}	[S. A. Rakitianski and N.
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}	Elander. Int. J. Quantum
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}	Chem., 106 , 2006]

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval 1 MeV $\leq E \leq 10$ MeV.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$	[R. G. Newton, Scattering Theory of Wayes and Par-
$\lambda = 0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}	ticles, 2^{nd} Ed. 1982]
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}	[S. A. Rakitianski and N.
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}	Elander. Int. J. Quantum
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}	Chem., 106 , 2006]
$\lambda = 1$	2	0.9696684253	-0.1914384518			
	5	-0.2422637171	-1.1×10^{-14}			
	7	-0.2430955910	-2.2×10^{-11}			
	10	-0.2430964602	-8.4×10^{-10}			

science & technology Department: Science and Technology

Table 1. Computed poles of the approximate function $\tilde{\mathbf{S}}(E)$ for the potential (9) with N fitting points evenly distributed over the interval 1 MeV $\leq E \leq 10$ MeV.

ID	N	$\Re(E)$	$\Im(E)$	$\Re(E)$	$\Im(E)$	[R. G. Newton. Scattering Theory of Wayes and Par-
$\lambda = 0$	2	0.9346579288	-0.2046585820	1.2144390251	6.71×10^{-16}	ticles, 2^{nd} Ed. 1982]
	5	-0.2020229243	-1.24×10^{-12}	1.7964492680	3.03×10^{-15}	[S. A. Rakitianski and N.
	7	-0.2035497226	-1.46×10^{-11}	1.7964492581	-2.12×10^{-14}	Elander. Int. J. Quantum
	10	-0.2035506639	1.54×10^{-10}	1.7964492581	4.54×10^{-13}	Chem., 106 , 2006]
$\lambda = 1$	2	0.9696684253	-0.1914384518	1.2539964140	-0.0861903892	
	5	-0.2422637171	-1.1×10^{-14}	1.8315169134	-0.0290733682	
	7	-0.2430955910	-2.2×10^{-11}	1.8315168861	-0.0290733625	
	10	-0.2430964602	-8.4×10^{-10}	1.8315168861	-0.0290733625	

100

1908 - 2008

YUNIBESITHI YA

science & technology Department: Science and Technology

Result: Noro-Taylor model potential

$$\mathbf{V}(r) = \begin{pmatrix} -1.0 & -7.5\\ -7.5 & 7.5 \end{pmatrix} r^2 e^{-r}$$
(9)

The thresholds energies are $E_1 = 0$ and $E_2 = 0.1$

The units in this model are chosen in such a way that $\mu_1 = \mu_2 = \hbar c = 1$.

Figure 1. The Noro–Taylor potential model given in Equation (9).

[T. Noro and H. S. Taylor 1980 J. Phys. B: Atom. Molec. Phys., **13** L377]
[S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., **106**, 1105]

Result: Noro-Taylor model potential

$$\mathbf{V}(r) = \begin{pmatrix} -1.0 & -7.5\\ -7.5 & 7.5 \end{pmatrix} r^2 e^{-r}$$
(9)

The thresholds energies are $E_1 = 0$ and $E_2 = 0.1$ The units in this model are chosen in such a way that $\mu_1 = \mu_2 = \hbar c = 1$.

Table 2. The resonance energies obtained for the Noro–Taylor potential (9) for $\ell = 0, 1$. They were obtained using the rigorous Jost-function method described in Rakitianski and Elander.

	l	= 0	$\ell = 1$		
no.	$\Re E$	$\Im E$	$\Re E$	$\Im E$	
1	4.768197	-0.000710	6.703719	-0.125653	
2	7.241200	-0.755956	8.012942	-1.920165	
3	8.171217	-3.254166	8.595336	-4.718772	
4	8.440526	-6.281492	8.511458	-7.887032	
5	8.072643	-9.572815	7.824340	-11.256937	
6	7.123813	-13.012669	6.584809	-14.741148	

[T. Noro and H. S. Taylor]
1980 J. Phys. B: Atom.
Molec. Phys., 13 L377]
[S. A. Rakitianski and N.
Elander 2006 Int. J. Quan-
tum Chem., 106 , 1105]

Table 3. Comparison of the first five resonance points for the potential (9) for $\ell = 0, 1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact	4.768197	-0.000710
		Approx.	4.768197	-0.000710
	2	Exact	7.241200	-0.755956
		Approx.	7.241200	-0.755956
	3	Exact	8.171217	-3.254166
		Approx.	8.171199	-3.254177
	4	Exact	8.440526	-6.281492
		Approx.	8.431643	-6.261440
	5	Exact	8.072643	-9.572815
		Approx.	8.846481	-9.353923

S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., **106**, 1105

Table 3. Comparison of the first five resonance points for the potential (9) for $\ell = 0, 1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact	4.768197	-0.000710
		Approx.	4.768197	-0.000710
	2	Exact	7.241200	-0.755956
		Approx.	7.241200	-0.755956
	3	Exact	8.171217	-3.254166
		Approx.	8.171199	-3.254177
	4	Exact	8.440526	-6.281492
		Approx.	8.431643	-6.261440
	5	Exact	8.072643	-9.572815
		Approx.	8.846481	-9.353923

Figure 1. The exact positions of the *S*-wave resonance poles (red dots) on the complex energy plane for the potential (9), and the corresponding poles of the Padé approximation (open circles). The corresponding fitting points on the $\Re E$ -axis are indicated by vertical bars.

S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., **106**, 1105

Table 3. Comparison of the first five resonance points for the potential (9) for $\ell = 0, 1$.

ℓ	no.		$\Re E$	$\Im E$
0	1	Exact Approx	4.768197 4.768197	-0.000710 -0.000710
	2	Exact	7.241200 7.241200	-0.755956 -0.755956
	3	Exact Approx	8.171217	-3.254166 -3.254177
	4	Exact Approx	8.440526 8.431643	-6.281492 -6.261440
	5	Exact Approx.	$8.072643 \\ 8.846481$	-9.572815 -9.353923
1	1	Exact Approx	6.703719 6.703719	-0.125653 -0.125653
	2	Exact	8.012942 8.012942	-1.920165 -1.920165
	3	Exact	8.595336 8.596118	-4.718772 -4.720121
	4	Exact	8.511458 8.383264	-7.887032 -7.5417706
	5	Exact Approx.	$7.824340 \\ 6.925101$	-11.256937 -15.401273

Figure 1. The exact positions of the *P*-wave resonance poles (red dots) on the complex energy plane for the potential (9), and the corresponding poles of the Padé approximation (open circles). The corresponding fitting points on the $\Re E$ -axis are indicated by vertical bars.

S. A. Rakitianski and N. Elander 2006 Int. J. Quantum Chem., **106**, 1105

Conclusions

S Introduction

Calculationa methods

🎖 Results

Conclusions

Conclusions

Acknowledgements

- The known value of the S-matrix has been analytically continued to the domains of complex energy
- The poles of the S-matrix corresponding to the spectral points have been successfully located
- The numerical examples show that the proposed method is stable and accurate
- The universality of the method has been confirmed

ONLOOK

- **Extend the method to include potentials with coulomb tail**
- Combined with any phase-shift analysis procedure, the method would be able to do spectral analysis of the experimental cross-section data

• Prof. S A Rakityanski

- SOUTH AFRICA National Research Foundation
- SANHARP
- Organizing committee of 2nd SA-JINR SYMPOSIUM

🕙 Thank you for your attention

