
preamble



Parametrization of the S-matrix as

a way for locating bound and

resonance states: multichannel case

Prince O G Ogunbade S A Rakitiansky

September 09, 2010



Outline

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -2-

m Introduction

m Calculational methods

m Results

m Conclusions



Introduction

m Introduction

Introduction

m Calculational
methods

m Results

m Conclusions

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -3-

t Proper understanding of the properties of a quantum system is
essential
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without knowing its spectrum i.e. the energies of its bound, virtual,
resonances and scattering states

t Different methods exist for locating these spectra points
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t Proper understanding of the properties of a quantum system is
essential

t Prediction of the behaviour of such a system cannot be achieved
without knowing its spectrum i.e. the energies of its bound, virtual,
resonances and scattering states

t Different methods exist for locating these spectra points

t We propose a universal method that is insensitive to the interaction
potential.

The main idea behind this method is based on the coincidence principle:

Two analytic functions coinciding on a curve segment
are identical everywhere in the complex plane



S-matrix parametrization

m Introduction

m Calculational
methods

S-matrix parametrization

Fitting parameters

Pade approximation

Poles determination

m Results

m Conclusions

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -4-

d Given the complex-valued matrices Sℓ(E) ∀ E ∈ [0,∞)



S-matrix parametrization

m Introduction

m Calculational
methods

S-matrix parametrization

Fitting parameters

Pade approximation

Poles determination

m Results

m Conclusions

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -4-

d Given the complex-valued matrices Sℓ(E) ∀ E ∈ [0,∞)

d Functional approximation of the S-matrix must have the following
properties



S-matrix parametrization

m Introduction

m Calculational
methods

S-matrix parametrization

Fitting parameters

Pade approximation

Poles determination

m Results

m Conclusions

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -4-

d Given the complex-valued matrices Sℓ(E) ∀ E ∈ [0,∞)

d Functional approximation of the S-matrix must have the following
properties

t have the same sigularities at complex energies as the exact
S-matrix



S-matrix parametrization

m Introduction

m Calculational
methods

S-matrix parametrization

Fitting parameters

Pade approximation

Poles determination

m Results

m Conclusions

2nd SA-JINR SYMPOSIUM, 08-10 September, 2010 -4-

d Given the complex-valued matrices Sℓ(E) ∀ E ∈ [0,∞)

d Functional approximation of the S-matrix must have the following
properties

t have the same sigularities at complex energies as the exact
S-matrix

t simple poles at certain Ei i.e. ∼ (E − Ei)
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d Given the complex-valued matrices Sℓ(E) ∀ E ∈ [0,∞)

d Functional approximation of the S-matrix must have the following
properties

t have the same sigularities at complex energies as the exact
S-matrix

t simple poles at certain Ei i.e. ∼ (E − Ei)
−1

t incorporate the correct structure of the S-matrix

d Such behaviour is provided by the matrix Padé approximant of order
[N, N]

S̃ℓ(E) = P(E)[Q(E)]−1 =

∑N

n=0 pnE
n

∑N

n=0 qnEn
(1)
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The exact S-matrix is given by

Sℓ(E) = F
(out)
ℓ (E)[F

(in)
ℓ (E)]−1 (2)

where F
(in/out)
ℓ (E) are the Jost matrices. They are the amplitudes of the

incoming and outgoing waves in the radial wavefunction,

Φ(E, r) = H(in)(E, r)F(in)(E) +H(out)(E, r)F(out)(E)
or
Φ(E, r) = J(E, r)A(E, r)−N(E, r)B(E, r)

F (in)
mn (E, k1, k2, . . . ) =

1

2

[
kℓn+1
n

kℓm+1
m

Ãmn(E)− i kℓmm kℓn+1
n B̃mn(E)

]
(3)

and by symmetry

F (out)
mn (E, k1, k2, . . . ) = (−1)ℓm+ℓnF (in)

mn (E, k1, k2, . . . ) (4)

kn =

√
2µn

~2
(E − Eth

n ) (5)
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Ã(E) ≈
N∑

n=0

α(n)En, B̃(E) ≈
N∑

n=0

β(n)En (6)

We have to determine 2(N + 1) unknown matrices α(i) and β(i),
i = 0, 1, 2, . . . , N .
Suppose that the S-matrix is known at 2(N + 1) points along the real
energy axis: E1, E2, . . . , E2(N+1). Then the unknown matrices α(i),β(i)

can be found from the system of equations

S(Ei) = F(out)
[
F(in)

]−1

, i = 1, 2, . . . , 2(N + 1) (7)

Multiplying by F(in) from the right, we can re-write this as

F(out)(k1, k2, Ei) = S(Ei)F
(in)(k1, k2, Ei) (8)

Substituting all the above formulae, we find that this is a linear system of

equations for α
(i)
mn and β

(i)
mn.
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The two procedures are:

t We determine the fitting paramaters α(i) and β(i) by solving
equation (8)

t We search for the roots of equation (3) in the complex energy plane
for the positions of the spectral points
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V(r) =

{
U for 0 ≤ r ≤ 1

0 otherwise

U = −

(
2.0 0.5λ
0.5λ 2.0

) (9)

where λ is the switching parameter.
The channel thresholds are E1 = 0 and
E2 = 2

The units in this model are chosen in
such a way that µ1 = µ2 = ~c = 1.

[R. G. Newton. Scattering
Theory of Waves and Par-
ticles, 2nd Ed. 1982]

[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106, 2006]
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ℜEr = 1.8315168886
ℑEr = −0.0290733625
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Table 1. Computed poles of the approximate function S̃(E) for the potential (9) with N

fitting points evenly distributed over the interval 1 MeV 6 E 6 10 MeV.

ID N ℜ(E) ℑ(E)

λ = 0 2 0.9346579288 −0.2046585820 1.2144390251 6.71× 10−16

5 −0.2020229243 −1.24× 10−12 1.7964492680 3.03× 10−15

7 −0.2035497226 −1.46× 10−11 1.7964492581 −2.12× 10−14

10 −0.2035506639 1.54× 10−10 1.7964492581 4.54× 10−13

[R. G. Newton. Scattering
Theory of Waves and Par-
ticles, 2nd Ed. 1982]

[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106, 2006]
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Table 1. Computed poles of the approximate function S̃(E) for the potential (9) with N

fitting points evenly distributed over the interval 1 MeV 6 E 6 10 MeV.

ID N ℜ(E) ℑ(E) ℜ(E) ℑ(E)

λ = 0 2 0.9346579288 −0.2046585820 1.2144390251 6.71× 10−16

5 −0.2020229243 −1.24× 10−12 1.7964492680 3.03× 10−15

7 −0.2035497226 −1.46× 10−11 1.7964492581 −2.12× 10−14

10 −0.2035506639 1.54× 10−10 1.7964492581 4.54× 10−13

λ = 1 2 0.9696684253 −0.1914384518
5 −0.2422637171 −1.1× 10−14

7 −0.2430955910 −2.2× 10−11

10 −0.2430964602 −8.4× 10−10

[R. G. Newton. Scattering
Theory of Waves and Par-
ticles, 2nd Ed. 1982]

[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106, 2006]
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Table 1. Computed poles of the approximate function S̃(E) for the potential (9) with N

fitting points evenly distributed over the interval 1 MeV 6 E 6 10 MeV.

ID N ℜ(E) ℑ(E) ℜ(E) ℑ(E)

λ = 0 2 0.9346579288 −0.2046585820 1.2144390251 6.71× 10−16

5 −0.2020229243 −1.24× 10−12 1.7964492680 3.03× 10−15

7 −0.2035497226 −1.46× 10−11 1.7964492581 −2.12× 10−14

10 −0.2035506639 1.54× 10−10 1.7964492581 4.54× 10−13

λ = 1 2 0.9696684253 −0.1914384518 1.2539964140 −0.0861903892
5 −0.2422637171 −1.1× 10−14 1.8315169134 −0.0290733682
7 −0.2430955910 −2.2× 10−11 1.8315168861 −0.0290733625
10 −0.2430964602 −8.4× 10−10 1.8315168861 −0.0290733625

[R. G. Newton. Scattering
Theory of Waves and Par-
ticles, 2nd Ed. 1982]

[S. A. Rakitianski and N.
Elander. Int. J. Quantum
Chem., 106, 2006]
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V(r) =

(
−1.0 −7.5
−7.5 7.5

)
r2 e−r (9)

The thresholds energies are E1 = 0 and
E2 = 0.1

The units in this model are chosen in such
a way that µ1 = µ2 = ~c = 1.
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Figure 1. The Noro–Taylor potential model given in Equa-
tion (9).

[T. Noro and H. S. Taylor
1980 J. Phys. B: Atom.
Molec. Phys., 13 L377]

[S. A. Rakitianski and N.
Elander 2006 Int. J. Quan-
tum Chem., 106, 1105]
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V(r) =

(
−1.0 −7.5
−7.5 7.5

)
r2 e−r (9)

The thresholds energies are E1 = 0 and
E2 = 0.1

The units in this model are chosen in such
a way that µ1 = µ2 = ~c = 1.
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Table 2. The resonance energies obtained for the Noro–Taylor potential (9) for ℓ = 0, 1.
They were obtained using the rigorous Jost-function method described in Rakitianski and
Elander.

ℓ = 0 ℓ = 1

no. ℜE ℑE ℜE ℑE

1 4.768197 −0.000710 6.703719 −0.125653
2 7.241200 −0.755956 8.012942 −1.920165
3 8.171217 −3.254166 8.595336 −4.718772
4 8.440526 −6.281492 8.511458 −7.887032
5 8.072643 −9.572815 7.824340 −11.256937
6 7.123813 −13.012669 6.584809 −14.741148

[T. Noro and H. S. Taylor
1980 J. Phys. B: Atom.
Molec. Phys., 13 L377]

[S. A. Rakitianski and N.
Elander 2006 Int. J. Quan-
tum Chem., 106, 1105]
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Table 3. Comparison of the first five resonance points for the
potential (9) for ℓ = 0, 1.

ℓ no. ℜE ℑE

0 1 Exact 4.768197 −0.000710

Approx. 4.768197 −0.000710

2 Exact 7.241200 −0.755956

Approx. 7.241200 −0.755956

3 Exact 8.171217 −3.254166

Approx. 8.171199 −3.254177

4 Exact 8.440526 −6.281492

Approx. 8.431643 −6.261440

5 Exact 8.072643 −9.572815

Approx. 8.846481 −9.353923

S. A. Rakitianski and N. Elander 2006 Int. J.
Quantum Chem., 106, 1105
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Table 3. Comparison of the first five resonance points for the
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Figure 1. The exact positions of the S-wave resonance poles
(red dots) on the complex energy plane for the potential (9),
and the corresponding poles of the Padé approximation (open
circles). The corresponding fitting points on the ℜE-axis are
indicated by vertical bars.

S. A. Rakitianski and N. Elander 2006 Int. J.
Quantum Chem., 106, 1105
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potential (9) for ℓ = 0, 1.

ℓ no. ℜE ℑE
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Approx. 8.012942 −1.920165

3 Exact 8.595336 −4.718772

Approx. 8.596118 −4.720121

4 Exact 8.511458 −7.887032

Approx. 8.383264 −7.5417706

5 Exact 7.824340 −11.256937

Approx. 6.925101 −15.401273
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Figure 1. The exact positions of the P -wave resonance poles
(red dots) on the complex energy plane for the potential (9),
and the corresponding poles of the Padé approximation (open
circles). The corresponding fitting points on the ℜE-axis are
indicated by vertical bars.

S. A. Rakitianski and N. Elander 2006 Int. J.
Quantum Chem., 106, 1105
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t The known value of the S-matrix has been analytically continued to
the domains of complex energy

t The poles of the S-matrix corresponding to the spectral points have
been successfully located

t The numerical examples show that the proposed method is stable and
accurate

t The universality of the method has been confirmed

ONLOOK

t Extend the method to include potentials with coulomb tail

t Combined with any phase-shift analysis procedure, the method

would be able to do spectral analysis of the experimental

cross-section data
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