A new method of description of three-particle Coulomb systems

V.B. Belyaev, A.A. Naumkin

BLTP JINR, Dubna, Russia

Introduction

Method of intermediate hamiltonians for lower bounds of eigenvalues [1]

$$
H=H^{0}+H^{\prime}
$$

$$
H^{0} \text { - solvable, }
$$

$$
H^{‘} \text { - positive definite }
$$

Intermediate hamiltonians

$$
H^{k}=H^{0}+H^{\prime} P^{k}
$$

where P^{k} - finite rank operator:
p_{i} - linearly independent states

$$
P^{k}|\varphi\rangle=\sum_{k=1}^{K} \alpha_{i}\left|p_{i}\right\rangle
$$

$$
H^{0} \leq H^{k} \leq H^{k+1} \leq H
$$

$$
\text { if }|\varphi\rangle=\left|p_{m}\right\rangle \quad \longrightarrow \quad H^{k}|\varphi\rangle=H\left|p_{m}\right\rangle
$$

3-body system hamiltonian
 $$
\hat{H}=-\sum_{i=1}^{3} \frac{1}{2 m_{i}} \nabla_{i}^{2}+\sum_{i<j} V_{i j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

Introducing Jackobi coordinates

$$
\begin{gathered}
\mathbf{x}_{i}=\left[\frac{m_{j} m_{k}}{m_{j}+m_{k}}\right]^{1 / 2}\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right)=\sqrt{\mu_{j, k}}\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right) \\
\mathbf{y}_{i}=\left[\frac{m_{i}\left(m_{j}+m_{k}\right)}{m_{1}+m_{2}+m_{3}}\right]^{1 / 2}\left(-\mathbf{r}_{i}+\frac{m_{j} \mathbf{r}_{j}+m_{k} \mathbf{r}_{k}}{m_{j}+m_{k}}\right) \\
\hat{H}=-\frac{1}{2} \nabla_{\mathbf{x}}^{2}-\frac{1}{2} \nabla_{\mathbf{y}}^{2}+V
\end{gathered}
$$

$$
V(\mathbf{x}, \mathbf{y})=\frac{b_{1}}{x_{1}}+\frac{b_{2}}{x_{2}}+\frac{b_{3}}{x_{3}}, \text { where } \quad b_{i}=\sqrt{\frac{m_{j} m_{k}}{m_{j}+m_{k}}} z_{j} z_{k}
$$

$$
\begin{gathered}
\text { Hyperspherical coordinates } \\
x=\rho \cos \alpha, \quad y=\rho \sin \alpha \\
\hat{H}=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{5}{\rho} \frac{\partial}{\partial \rho}\right)-\frac{1}{2 \rho^{2}} \hat{K}+V \\
\hat{K}=\frac{\partial^{2}}{\partial \alpha^{2}}+4 \cot 2 \alpha \frac{\partial}{\partial \alpha}+\frac{1}{\cos ^{2} \alpha} \Delta_{\Omega_{1}}+\frac{1}{\sin ^{2} \alpha} \Delta_{\Omega_{2}} \\
V(\rho, \Omega)=\frac{1}{\kappa} f(\Omega) \quad f(\Omega) \begin{array}{l}
- \text { angular part of the } \\
\text { Coulomb potential }
\end{array} \\
f(\Omega)=\frac{b_{1}}{\cos \alpha_{1}}+\frac{b_{2}}{\cos \alpha_{2}}+\frac{b_{3}}{\cos \alpha_{3}} \quad \begin{array}{c}
\alpha_{i} \text { are hyperangles in } \\
\text { different sets of Jacobi } \\
\text { coordinates }
\end{array}
\end{gathered}
$$

Lipmann-Schwinger equation

$$
\begin{gathered}
\left(E-H_{0}\right)|\Psi\rangle=V|\Psi\rangle \\
|\Psi\rangle=\left(E-H_{0}\right)^{-1} V|\Psi\rangle
\end{gathered}
$$

Here
$\left(H_{0}-E\right)^{-1}=\hat{G}_{0}(E)$ - free Green function
Coordinate representation:

$$
\Psi(\mathbf{R})=-\int d \mathbf{R}^{\prime} G_{0}\left(E ; \mathbf{R}, \mathbf{R}^{\prime}\right) V\left(\mathbf{R}^{\prime}\right) \Psi\left(\mathbf{R}^{\prime}\right)
$$

Finite rank approximation
 $$
\hat{f}^{N}=\sum_{i, j}^{N} f\left|\varphi_{i}\right\rangle d_{i j}\left\langle\varphi_{j}\right| f
$$

Here $\left|\varphi_{i}\right\rangle$ - auxilliary functions in angular space

$$
d_{i j}^{-1}=\left\langle\varphi_{i}\right| f\left|\varphi_{j}\right\rangle
$$

$$
\text { For } i=1 \ldots N \quad \hat{f}^{N}\left|\varphi_{i}\right\rangle=f\left|\varphi_{i}\right\rangle
$$

We use the finite rank operator f^{N} instead of f in the Lipmann-Schwinger equation.

We obtain representation for solution

where $\quad C_{j}\left(\rho^{\prime}\right)=\int d \Omega^{\prime \prime} \varphi_{j}\left(\Omega^{\prime \prime}\right) f\left(\Omega^{\prime \prime}\right) \Psi\left(\rho, \Omega^{\prime \prime}\right)$
Integrating over angular variables
$\int d \Omega \varphi_{k}(\Omega) f(\Omega) \ldots$
results in a system of one-dimensional integral equations

Integral equations

$$
C_{k}(\rho)=-\sum_{i, j} \int d \rho^{\prime} \tilde{M}_{k i}\left(\rho, \rho^{\prime}\right) d_{i j} C_{j}\left(\rho^{\prime}\right)
$$

$$
\tilde{M}_{k i}\left(\rho, \rho^{\prime}\right)=\rho^{\prime 4} \int d \Omega d \Omega^{\prime} \varphi_{k}(\Omega) f(\Omega) G_{0}\left(E ; \rho, \rho^{\prime} ; \Omega, \Omega^{\prime}\right) f\left(\Omega^{\prime}\right) \varphi_{i}\left(\Omega^{\prime}\right)
$$

Let us introduce 3-body radial free Green functions

$$
\begin{gathered}
G_{0}^{K}\left(E ; \rho, \rho^{\prime}\right)=\iint \mathcal{Y}_{K L M}^{l_{1} l_{2}}(\Omega) G_{0}\left(E, \mathbf{R}, \mathbf{R}^{\prime}\right) \mathcal{Y}_{K L M}^{l_{1} l_{2}}\left(\Omega_{\kappa}\right) d \Omega d \Omega^{\prime}= \\
=\int_{0}^{\infty} \frac{\kappa d \kappa}{(2 \pi)^{3}}\left(\frac{\rho^{\prime}}{\rho}\right)^{2} J_{K+2}(\kappa \rho) J_{K+2}\left(\kappa \rho^{\prime}\right) \frac{1}{\kappa^{2}+2 m E}= \\
=\frac{1}{(2 \pi)^{3}}\left(\frac{\rho^{\prime}}{\rho}\right)^{2} \begin{cases}I_{K+2}\left(\kappa_{0} \rho\right) K_{K+2}\left(\kappa_{0} \rho^{\prime}\right), & 0 \leq \rho \leq \rho^{\prime} \\
K_{K+2}\left(\kappa_{0} \rho\right) I_{K+2}\left(\kappa_{0} \rho^{\prime}\right), & 0 \leq \rho^{\prime} \leq \rho\end{cases}
\end{gathered}
$$

Let us insert
full sets of hyperspherical functions
$\tilde{M}_{k i}\left(\rho, \rho^{\prime}\right)=\rho^{\prime 4} \int d \Omega d \Omega^{\prime} \varphi_{k}(\Omega) f(\Omega) G_{0}\left(E ; \rho, \rho^{\prime} ; \Omega, \Omega^{\prime}\right) f\left(\Omega^{\prime}\right) \varphi_{i}\left(\Omega^{\prime}\right)$ and we obtain

- Summation in the kernel is limited by $\mathrm{K}_{\max }$

$$
\begin{gathered}
\tilde{M}_{k i}\left(\rho, \rho^{\prime}\right)=\rho^{\prime 4} \sum_{K L M l_{1} l_{2}} G_{0}^{K}\left(E ; \rho, \rho^{\prime}\right)\left\langle\varphi_{k}\right| f\left|\mathcal{Y}_{K L M}^{l_{1} l_{2}}\right\rangle\left\langle\mathcal{Y}_{K L M}^{l_{1} l_{2}}\right| f\left|\varphi_{i}\right\rangle \\
C_{k}(\rho)=-\sum_{i, j} \int d \rho^{\prime} \tilde{M}_{k i}\left(\rho, \rho^{\prime}\right) d_{i j} C_{j}\left(\rho^{\prime}\right)
\end{gathered}
$$

The integral equations are transformed into matrix ones using discretisation by ρ, and the values of E are calculated as its eigenvalues.

Details of calculation

- Total angular momentum $\mathrm{L}=0$
- The ground state energy is calculated
- Auxiliary functions φ_{i} are hyperspherical functions
- Calculations are performed with 100 discretizing points.

Binding energies

E, eV	Exp.	FRA	$\mathrm{E}_{\mathrm{N}}, \mathrm{eV}$ (theory)		
			$\mathrm{K}_{\text {max }}=6$	$K_{\text {max }}=10$	$\mathrm{K}_{\text {max }}=14$
H^{-}	14,34	$\mathrm{N}=1$	25	20	18,2
		$\mathrm{N}=3$	20	18,5	17,1
		$\mathrm{N}=6$	18	16,2	15,6
He	79,0	$\mathrm{N}=1$	102	98	95
		$\mathrm{N}=3$	99	91	89
		N=6	95	87	85
$\mathrm{H}_{2}{ }^{\text {+ }}$	16,25	$\mathrm{N}=1$	7,3	10	11
		$\mathrm{N}=3$	8,5	12	13,7
		N=6	10,1	13,5	15,1
pp μ	2782	$\mathrm{N}=1$	1050	1700	1850
		$\mathrm{N}=3$	1360	2044	2101
		N=6	1690	2290	2332
dd μ	2988	$\mathrm{N}=1$	1200	1820	1990
		$\mathrm{N}=3$	1540	2072	2480
		N=6	1845	2195	2654

Numerical convergency

E, eV	Exp.	E, eV (theory)			
		$\mathrm{D}=40$	60	80	100
$\mathrm{H}-$	14,34	20,1	17,5	16	15,6
He					

D is a number of discretizing points
Here $N=6, K_{\text {max }}=14$

This method was used in [2] to calculate binding energies of threebody systems in adiabatic approach

Conclusion

- The method proposed simplifies treatment of 3-body Coulomb systems
- Reasonable values of 3-body systems binding energies are obtained

References

1. N.W. Bazley, D.W. Fox, Phys.Rev. 124 (1961) 483
2. V.B. Belyaev, I.I. Shlyk, Nucl.Phys. A 790 (2007) 792c
