Three two-component particles with zero-range interactions under one-dimensional confinement

O. I. Kartavtsev, <u>A. V. Malykh</u>,

JINR, Dubna, Russia

S. A. Sofianos UNISA, Pretoria, South Africa

Introduction

- Experimentally available are
 - Many-component systems
 - Systems consisting of particles of different symmetry (fermions and bosons)
 - Particles confined within a trap of arbitrary dimension (1D, 2D, quasi-1D, quasi-2D)
 - Examples ⁶Li ⁴⁰K , ⁶Li ¹³³Cs, ⁷Li ⁸⁷Sr
- > The role of the admixture in ultracold gases
- First step is to study a three-body system with two identical particles and a different third particle
- > Aim: two-component systems in 1D, 2D, 3D, in harmonic traps
 - Spectra, some scattering characteristics
- Contact interaction allows one to obtain the universal description of the few-body system at low energy

Problem

 \succ Two identical particles of mass **m**, and distinct one of mass **m**₁

Hamiltonian reads as

$$H = -\sum_{i} \frac{\hbar^2}{2m_i} \frac{\partial^2}{\partial x_i^2} + \lambda_1 \delta(x_1) + \lambda \delta(x_2) + \lambda \delta(x_3)$$

- where strength of the attraction between different particles (1 и 2), (1 и 3) $\lambda < 0$;
- strength of the interaction between identical particles λ_1

$$\hbar = |\lambda| = m = 1$$

• Dependence of the bound state energies and scattering lengths A (of the third particle off a bound pair of different particles) and A_1 (of the third particle off a bound pair of identical particles) on the parameters of the system

<u>Parameters</u> : m/m_1 ; λ_1/λ , parity

$$E_{\rm th} = -1/[2(1+m/m_1)]$$

$$E_{\rm th}' = -\lambda_1^2/4$$

Analytical results

Bosonic system with $\lambda_1 = \infty$ correspond to fermionic system with $\lambda_1 = 0$ ✓ <u>Two light particles and heavy one m/m₁=0</u> •Noninteracting identical bosons $λ_1=0$ •one bound state with E=-1 •scattering at threshold energy $E_{\rm th} = -1/2$ with A=1 •Infinite repulsion of identical bosons $\lambda_1 = \infty$ (fermions for $\lambda_1 = 0$) •no bound states, •scattering at threshold energy $E_{\rm th} = -1/2$ with A=0 ✓ <u>Particles with identical masses m/m₁=1</u> •Three identical particles $\lambda_1 = \lambda$ (analytical solution is known for N particles [1,2]) [1] E. H. Lieb and W. Liniger Phys. Rev. 130 1605 (1963) [2] J. B. McGuire J. Math. Phys. 5, 622 (1964) •one bound state with E=-1 •scattering at threshold energy $E'_{th} = -1/4$ with A= ∞ •Noninteracting identical bosons $\lambda_1=0$ •The transcendental equation for energy of the ground state is found in [M. Girardeau J. Math. Phys. 1, 516 (1960)] •Infinite repulsion of identical bosons $\lambda_1 = \infty$ (fermions for $\lambda_1 = 0$) •scattering at threshold energy $E_{\text{th}} = -1/4$ with A= ∞ ✓ For $m/m_1 \ge 1$ at least one bound state exists \checkmark For m/m₁ = 1 exactly one bound state exists for any λ_1/λ and symmetry of the system

Asymptotic dependencies

Even states

✓ Infinite attraction strength of identical bosons $\lambda_1 \rightarrow -\infty$

 $\varepsilon \approx 4/(1+2m/m_1)$

 $A_1 \approx (1 + 2m/m_1)/4$

✓ Two heavy bosons and one light particle $m/m_1 \rightarrow \infty$

 $m/m_1 \approx C(N+\delta)^2$

$$C = \frac{\pi^2}{2} \left[\int_0^1 \sqrt{2t + t^2} \frac{1 + (1 - \ln t)t}{2t(1+t)^2} dt \right]^{-2} \approx 2.59$$

The interpolation of the calculated critical values m/m_1 , at which the *N*-th bound state appears, gives $C \approx 2.60$ for $\lambda_1 \rightarrow \infty$ and $\lambda_1 = 0$; $\delta = 0.73$ for $\lambda_1 \rightarrow \infty$

$$\delta = 0.22 \text{ for } \lambda_1 = 0.$$

Odd states

✓ Two heavy bosons and one light particle $m/m_1 \rightarrow \infty$

$$A = \frac{m}{m_1} \sqrt{1 + \frac{m_1}{2m}} \left(\ln \frac{m}{m_1} + 2\gamma \right)$$

Numerical calculation

• for bosonic system with $\lambda_1 \rightarrow \infty$ and $\lambda_1=0$ • for fermionic system with $\lambda_1=0$

	$\lambda_1 = 0$		$\lambda_1 o \infty$	
N	$m/m_1(A=0)$	$m/m_1(A \to \infty)$	$m/m_1(A=0)$	$m/m_1(A \to \infty)$
1	-	-	0*	1*
2	0.971	2.86954	5.2107	7.3791
3	9.365	11.9510	16.1197	19.0289
4	22.951	26.218	32.298	35.879
5	41.762	45.673	53.709	57.923
6	65.791	70.317	80.339	85.159
7	95.032	100.151	112.179	117.583
8	129.477	135.170	149.222	155.193
9	169.120	175.374	191.463	197.989
10	213.964	220.765	238.904	245.973
* Exact				

Critical mass ratios m/m_1 at which 2+1 scattering length becomes zero (A = 0) and at which the *N*-th three-body bound state appears $(A \rightarrow \infty)$ Calculation was done for even states with zero $\lambda_1 = 0$ and infinite $\lambda_1 \rightarrow \infty$ interaction strength between identical bosons.

Even parity states

Dependence of the three-body binding energies E_3 (left) and arctg 2 + 1 scattering lengths A (right) of mass-ratio for <u>even parity</u> states. Analytical solutions are marked by circles **Red line:** three-body system with two identical bosons and $\lambda_1 = 0$ **Blue line:** three-body system with two identical bosons and $\lambda_1 \rightarrow \infty$ with two identical fermions and $\lambda_1 = 0$

Odd parity states

There is no <u>odd parity</u> bound states for three-body system with two-identical noninteracting bosons ($\lambda_1 = 0$).

Shown are numerical calculation and asymptotic dependence at large m/m_1 of the 2 + 1 scattering lengths A of mass-ratio

Phase diagram (even parity)

Three-body system with two identical bosons. $\lambda < 0$ and λ_1 are the strengths of the potential between different and identical particles.

A schematic diagram shows a number of the three-body bound states (marked by **N**) and a sign of the (2+1)-scattering length (marked by \pm) as a function of the mass **m/m**₁ and interaction-strength $\lambda_1 / |\lambda|$ ratios (see figure).

Blue and red lines divide the areas with different numbers of the bound states and sign of the 2+1 scattering length, respectively.

O.I. Kartavtsev, A.V.Malykh S.A. Sofianos "Bound states and scattering of three onedimensional particles with a contact interaction", JETP 135, 2 (2009)

Peculiarities of nD-dimensional three-body systems at low energy

> 2D

- there is no Efimov, no Tomas states
- energy and the number of the bound states increase with increasing m/m₁
- Fermi statistics: the first trimer appears at $m/m_1 \simeq 3.33$ (p-wave)
- Bose statistics: bound states appear at any m/m_1
- [L. Pricoupenko, P. Pedri, Universal three-body bound states in planar atomic wave guides, arXive:0812.3718] 1
- > 3D: Efimov effect a $\rightarrow \infty$ (Tomas $R_e \rightarrow 0$) –

infinite number of the bound states

• requires an additional parameter, which determines the wave function in the vicinity of the triple-collision point

3D: Main properties of the spectrum

L=0 infinite number of the bound states

≻ L>0

 \bullet

- a<0 no bound states
- Infinite number of the bound state appears at $m/m_1 > (m/m_1)_{CL}$
- Finite number of the bound states exists for $m/m_1 \le (m/m_1)_{CL}$
 - L=1,3,5,7,9,... if particles 2 and 3 fermions
 - L=2,4,6,8,10...if particles 2 and 3 bosons How many bound states can appear at
 - $m/m_1 \le (m/m_1)_{CL}$?

$$N_{\text{max}} \approx 1.1 \sqrt{L(L+1)} + 1/2$$

L	λ_1	λ_2	λ_3	$(m/m_1)_{cL}$
1	7.930	12.789	-	13.6069657
2	22.34	31.285	37.657	38.6301583
3	42.98	55.766	67.012	75.9944943
4	69.88	86.420	101.92	125.764635
5	103.1	123.31	142.82	187.958355
6	142.5	166.45	189.86	262.582045
7	188.2	215.86	243.11	349.638445
8	240.3	271.56	302.59	449.128836
9	298.6	333.43	368.03	561.053956
10	363.2	401.79	440.35	685.414145
11	434.0	476.34	518.63	822.209692

3D: Mass-ratio dependence of energies L=1

3D: Below critical values $m/m_1 < \lambda_i$ bound states become a resonance

Example: p-wave resonance

$$|E_i+1| \propto m/m_1 - \lambda_i$$

 $\Gamma_i \propto (\lambda_i - m/m_1)^2$

As discussed in [Phys. Rev. Lett. **103**, 153202 (2009)] these resonances can become a bound state. As example, for ⁴⁰K- ⁶Li system it is possible to put system into quasi-two-dimensional confinement. (Calculation with solution a integro-differential equation in the momentum space)

Comparison of results for 1D, 2D, 3D

- For fermionic system the first three-body bound state appears at m/m₁=1 in 1D, 3.33 in 2D and 8.17260 in 3D
- For bosonic system with noninteracting bosons excited state appears at m/m₁=2.869539 in 1D, 1.77 in 2D, Efimov effect in 3D
- > Condition $\varepsilon_3 < \varepsilon_2$ means stability of ultracold gases of twoatom molecule against appearance of the three-atom molecule
- ► For fermionic system $\varepsilon_3 = \varepsilon_2$ for m/m₁=49.8335 in 1D, 18.3 in 2D and 12.69471 in 3D

References

> 3D

- O. I. Kartavtsev, and A. V. Malykh, "Low-energy three-body dynamics in binary quantum gases", J. Phys. B 40:1429 (2007)
- O. I. Kartavtsev and A. V. Malykh, "Universal description of the rotationalvibrational spectrum of three particles with zero-range interactions", **Pis'ma ZheTF 86**, 9-10, 713-717 (2007)
- O.I. Kartavtsev, A.V.Malykh "Universal three-body dynamics in binary mixtures of ultra-cold atoms", Few-Body Syst. 44, 229-234 (2008)
- O. I. Kartavtsev, A. V. Malykh, "Universal low-energy properties of three twodimensional particles", Phys. Rev. A 74:042506 (2006)
- L. Pricoupenko, P. Pedri, Universal three-body bound states in planar atomic wave guides, arXive:0812.3718

> 1D

2D

O.I. Kartavtsev, A.V.Malykh S.A. Sofianos "Bound states and scattering of three onedimensional particles with a contact interaction", JETP 135, 2 (2009)

> 1D, 2D, 3D, 3D in harmonic traps

• O.I. Kartavtsev, A.V.Malykh, Universal properties of ultra-cold two-component three-bodysystems,, Vestnik SPbGU 4, 3, 121 (2010)

Thank you for attention