Three two-component particles with zero-range interactions under one-dimensional confinement

O. I. Kartavisev, A. V. Malykh, JINR, Dubna, Russia

S. A. Sofianos

UNISA, Pretoria, South Africa

Introduction

> Experimentally available are

- Many-component systems
- Systems consisting of particles of different symmetry (fermions and bosons)
- Particles confined within a trap of arbitrary dimension (1D, 2D, quasi1D, quasi-2D)
- Examples ${ }^{6} \mathrm{Li}-{ }^{40} \mathrm{~K},{ }^{6} \mathrm{Li}-{ }^{133} \mathrm{Cs},{ }^{7} \mathrm{Li}-{ }^{87} \mathrm{Sr}$
$>$ The role of the admixture in ultracold gases
$>$ First step is to study a three-body system with two identical particles and a different third particle
$>$ Aim: two-component systems in 1D, 2D, 3D, in harmonic traps
- Spectra, some scattering characteristics
$>$ Contact interaction allows one to obtain the universal description of the few-body system at low energy

Problem

$>$ Two identical particles of mass m, and distinct one of mass m_{1}
$>$ Hamiltonian reads as

$$
H=-\sum_{i} \frac{\hbar^{2}}{2 m_{i}} \frac{\partial^{2}}{\partial x_{i}^{2}}+\lambda_{1} \delta\left(x_{1}\right)+\lambda \delta\left(x_{2}\right)+\lambda \delta\left(x_{3}\right)
$$

- where strength of the attraction between different particles (1 и 2), (1 и 3) $\lambda<0$;
- strength of the interaction between identical particles λ_{1}
$>$ Units

$$
\hbar=|\lambda|=m=1
$$

$>$ Aim

- Dependence of the bound state energies and scattering lengths A (of the third particle off a bound pair of different particles) and A_{1} (of the third particle off a bound pair of identical particles) on the parameters of the system

Parameters: $\mathrm{m} / \mathrm{m}_{1} ; \lambda_{1} / \lambda$, parity

```
Eth}=-1/[2(1+m/m, m)
E th
```


Analytical results

Bosonic system with $\lambda_{1}=\infty$ correspond to fermionic system with $\lambda_{1}=0$
$\sqrt{ }$ Two light particles and heavy one $\mathrm{m} / \mathrm{m}_{1}=0$

- Noninteracting identical bosons $\lambda_{1}=0$
-one bound state with $\mathrm{E}=-1$
-scattering at threshold energy $E_{\mathrm{th}}=-1 / 2$ with $\mathrm{A}=1$
-Infinite repulsion of identical bosons $\lambda_{1}=\infty$ (fermions for $\lambda_{1}=0$)
-no bound states,
-scattering at threshold energy $E_{\text {th }}=-1 / 2$ with A=0
\checkmark Particles with identical masses $\mathrm{m} / \mathrm{m}_{1}=1$
- Three identical partilces $\lambda_{1}=\lambda$ (analytical solution is known for N particles [1,2])
[1] E. H. Lieb and W. Liniger Phys. Rev. 1301605 (1963)
[2] J. B. McGuire J. Math. Phys. 5, 622 (1964)
-one bound state with $\mathrm{E}=-1$
-scattering at threshold energy $E_{\text {th }}^{\prime}=-1 / 4$ with $A=\infty$
- Noninteracting identical bosons $\lambda_{1}=0$
-The transcendental equation for energy of the ground state is found in [M. Girardeau
-Infinite repulsion of identical bosons $\lambda_{1}=\infty$ (fermions for $\lambda_{1}=0$)
-scattering at threshold energy $E_{\text {th }}=-1 / 4$ with A=
\checkmark For $\mathrm{m} / \mathrm{m}_{1} \geq 1$ at least one bound state exists
\checkmark For $m / m_{1}=1$ exactly one bound state exists for any λ_{1} / λ and symmetry of the system

Asymptotic dependencies

Even states

$\sqrt{ }$ Infinite attraction strength of identical bosons $\lambda_{1} \rightarrow-\infty$

$$
\begin{aligned}
& \varepsilon \approx 4 /\left(1+2 m / m_{1}\right) \\
& A_{1} \approx\left(1+2 m / m_{1}\right) / 4
\end{aligned}
$$

\checkmark Two heavy bosons and one light particle $\mathrm{m} / \mathrm{m}_{1} \rightarrow \infty$

$$
\begin{gathered}
m / m_{1} \approx C(N+\delta)^{2} \\
C=\frac{\pi^{2}}{2}\left[\int_{0}^{1} \sqrt{2 t+t^{2}} \frac{1+(1-\ln t) t}{2 t(1+t)^{2}} d t\right]^{-2} \approx 2.59
\end{gathered}
$$

The interpolation of the calculated critical values m / m_{1}, at which the N-th bound state appears, gives

$$
\begin{aligned}
& C \approx 2.60 \text { for } \lambda_{1} \rightarrow \infty \text { and } \lambda_{1}=0 ; \\
& \delta=0.73 \text { for } \lambda_{1} \rightarrow \infty \\
& \delta=0.22 \text { for } \lambda_{1}=0 .
\end{aligned}
$$

Odd states

\checkmark Two heavy bosons and one light particle $\mathrm{m} / \mathrm{m}_{1} \rightarrow \infty$

$$
A=\frac{m}{m_{1}} \sqrt{1+\frac{m_{1}}{2 m}}\left(\ln \frac{m}{m_{1}}+2 \gamma\right)
$$

Numerical calculation

- for bosonic system with $\lambda_{1} \rightarrow \infty$ and $\lambda_{1}=0$
- for fermionic system with $\lambda_{1}=0$

	$\lambda_{1}=0$		$\lambda_{1} \rightarrow \infty$	
— $_{N}$	$m / m_{1}(A=0)$	$m / m_{1}(\|A\| \rightarrow \infty)$	$m / m_{1}(A=0)$	$m / m_{1}(\|A\| \rightarrow \infty)$
1	-	-	0^{*}	1^{*}
2	0.971	2.86954	5.2107	7.3791
3	9.365	11.9510	16.1197	19.0289
4	22.951	26.218	32.298	35.879
5	4.762	45.673	53.709	57.923
6	65.791	70.317	80.339	85.159
7	95.032	100.151	112.179	117.583
8	129.477	135.170	149.222	155.193
9	169.120	175.374	191.463	197.989
10	213.964	220.765	238.904	245.973

Critical mass ratios $m / m n_{1}$ at which $2+1$ scattering length becomes zero $(A=0)$ and at which the N-th three-body bound state appears $(A-\infty)$ Calculation was done for even states with zero $\lambda_{1}=0$ and infinite $\lambda_{1} \rightarrow \infty$ interaction strength between identical bosons.

Even parity states

Dependence of the three-body binding energies E_{3}^{\prime} (left) and $\operatorname{arctg} 2+1$ scattering lengths A (right) of mass-ratio for even parity states. Analytical solutions are marked by circles
Red line: three-body system with two identical bosons and $\lambda_{1}=0$
Blue line: three-body system with two identical bosons and $\lambda_{1}-\infty$
with two identical fermions and $\lambda_{1}=0$

Odd parity states

There is no odd perrity bound states for three-body system with two-identical noninteracting bosons $\left(\lambda_{1}=0\right)$.
Shown are numerical calculation and asymptotic dependence at large $m / m m_{1}$ of the $2+1$ scattering lengths A of mass-ratio

Phase diagram (even parity)

Three-body system with two identical bosons. $\lambda<0$ and λ_{1} are the strengths of the potential between different and identical particles.

A schematic diagram shows a number of the three-body bound states (marked by \mathbf{N}) and a sign of the $(2+1)$-scattering length (marked by \pm) as a function of the mass $\mathbf{m} / \mathbf{m}_{1}$ and interaction-strength $\lambda_{1} /|\lambda|$ ratios (see figure).

Blue and red lines divide the areas with different numbers of the bound states and sign of the $2+1$ scattering length, respectively.
O.I. Kartavtsev, A.V.Malykh S.A. Sofianos "Bound states and scattering of three onedimensional particles with a contact interaction ${ }^{\prime \epsilon}$, JETP 135, 2 (2009)

Peculiarities of nD-dimensional three-body systems at low energy

$>2 \mathrm{D}$

- there is no Efimov, no Tomas states
- energy and the number of the bound states increase with increasing $\mathrm{m} / \mathrm{m}_{1}$
- Fermi statistics: the first trimer appears at $\mathbf{m} / \mathrm{m}_{1} \simeq 3.33$ ($\mathrm{p}-$ wave)
- Bose statistics: bound states appear at any m / m_{1}
[L. Pricoupenko, P. Pedri, Universal three-body bound states in planar atomic wave guides, 1 Kives $0: 12.37[8] 1$
$>$ 3D: Efimov effect $\mathrm{a} \rightarrow \infty\left(\right.$ Tomas $\left.\mathrm{R}_{\mathrm{e}} \rightarrow 0\right)-$ infinite number of the bound states
- requires an additional parameter, which determines the wave function in the vicinity of the triple-collision point

3D: Main properties of the spectrum

$>\mathrm{L}=0 \quad$ infinite number of the bound states
$>\mathrm{L}>0$

- $a<0 \quad$ no bound states
- Infinite number of the bound state appears at $\mathrm{m} / \mathrm{m}_{1}>\left(\mathrm{m} / \mathrm{m}_{1}\right)_{\mathrm{CL}}$
- Finite number of the bound states exists for $\mathrm{m} / \mathrm{m}_{1} \leq\left(\mathrm{m} / \mathrm{m}_{1}\right)_{\mathrm{CL}}$
- $\mathrm{L}=1,3,5,7,9, \ldots$ if particles 2 and 3 - fermions
- $\mathrm{L}=2,4,6,8,10$...if particles 2 and 3 - bosons
- How many bound states can appear at

$$
\begin{aligned}
\mathrm{m} / \mathrm{m}_{1} \leq & \left(\mathrm{m} / \mathrm{m}_{1}\right)_{\mathrm{CL}} ? \\
& \mathrm{~N}_{\max } \approx 1.1 \sqrt{L(L+1)}+1 / 2
\end{aligned}
$$

L	λ_{1}	λ_{2}	λ_{3}	$\left(m / m_{1}\right)_{c L}$
1	7.930	12.789	-	13.6069657
2	22.34	31.285	37.657	38.6301583
3	42.98	55.766	67.012	75.9944943
4	69.88	86.420	101.92	125.764635
5	103.1	123.31	142.82	187.958355
6	142.5	166.45	189.86	262.582045
7	188.2	215.86	243.11	349.638445
8	240.3	271.56	302.59	449.128836
9	298.6	333.43	368.03	561.053956
10	363.2	401.79	440.35	685.414145
11	434.0	476.34	518.63	822.209692

3D: Mass-ratio dependence of energies $\mathrm{L}=1$

Examples of the bound states
${ }^{7} \mathrm{Li}^{87} \mathrm{Sr}_{2} \quad: \mathrm{m} / \mathrm{m}_{1}=12.4$
$\left.{ }^{6} \mathrm{Li}^{87} \mathrm{Sr}_{2} \quad: \mathrm{m} / \mathrm{m}_{1}=14.5\right\}$
${ }^{6} \mathrm{Li}{ }^{133} \mathrm{Cs}_{2}: \mathrm{m} / \mathrm{m}_{1}=22.16$
${ }^{6} \mathrm{Li}^{135} \mathrm{Cs}_{2}: \mathrm{m} / \mathrm{m}_{1}=22.5$
$\mathrm{L}=1$
${ }^{4} \mathrm{He}^{133} \mathrm{Cs}_{2}: m / m_{1}=33.25$

3D: Below critical values $m / m_{1}<\lambda_{\mathrm{i}}$ bound states become a resonance

Example: p-wave resonance

$\left|E_{i}+1\right| \propto m / m_{1}-\lambda_{i} \mid$
$\Gamma_{i} \propto\left(\lambda_{i}-m / m_{1}\right)^{2}$

As discussed in

these

resonances can become a bound state. As example, for ${ }^{40} \mathrm{~K}-{ }^{6} \mathrm{Li}$ system it is possible to put system into quasi-two-dimensional confinement. (Calculation with solution a integro-differential equation in the momentum space)

Comparison of results for 1D, 2D, 3D

$>$ For fermionic system the first three-body bound state appears at $\mathrm{m} / \mathrm{m}_{1}=1$ in 1D, 3.33 in 2 D and 8.17260 in 3D

- For bosonic system with noninteracting bosons excited state appears at $\mathrm{m} / \mathrm{m}_{1}=2.869539$ in 1D, 1.77 in 2D, Efimov effect in 3D
Condition $\varepsilon_{3}<\varepsilon_{2}$ means stability of ultracold gases of twoatom molecule against appearance of the three-atom molecule
$>$ For fermionic system $\varepsilon_{3}=\varepsilon_{2}$ for $\mathrm{m} / \mathrm{m}_{1}=49.8335$ in 1D, 18.3 in 2D and 12.69471 in 3D

References

$>3 \mathrm{D}$

- O. I. Kartavtsev, and A. V. Malykh, "Low-energy three-body dynamics in binary quantum gases", J, Phys, B $410: 1429$ (2007)
- O. I. Kartavtsev and A. V. Malykh, "Universal description of the rotationalvibrational spectrum of three particles with zero-range interactions", Pis'mas Zhe I'F' 86, 9-10, 713-717 (2007)
- O.I. Kartavtsev, A.V.Malykh "Universal three-body dynamics in binary mixtures of ultra-cold atoms", F'ey-Buody Syst, 444, 229-2345 (2008)
$>2 \mathrm{D}$
- O. I. Kartavtsev, A. V. Malykh, "Universal low-energy properties of three twodimensional particles", Phys. Rev, A 74, 01250 t (2000)
- L. Pricoupenko, P. Pedri, Universal three-body bound states in planar atomic wave guides, arXive: 0812,3718
>1 D
O.I. Kartavtsev, A.V.Malykh S.A. Sofianos "Bound states and scattering of three onedimensional particles with a contact interaction ${ }^{15}$, JET $\mathrm{T}^{\prime} \mathrm{P} 135,2$ (2DD.9)
$>1 \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D}, 3 \mathrm{D}$ in harmonic traps
- O.I. Kartavtsev, A.V.Malykh, Universal properties of ultra-cola two-component three-bodysystems,, Yejinilk SPDGU 4, 3, 121 (2010)

Thank you for attention

