Charmonium States

M. L. Lekala

UNISA

 $\mathbf{2}^{nd}$ SA-JINR Symposium: Models and Methods in Few- and Many-Body Systems – p. 1

- Motive & Challenges
- Approach

- Motive & Challenges
- Approach
- Conclusions

• New charmonium states above the $D\bar{D}$ threshold have been recently observed.

- New charmonium states above the $D\bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c\overline{c}$ states, others not.

- New charmonium states above the $D\bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c\overline{c}$ states, others not.
- Look for possible interpretations.

- New charmonium states above the $D\bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c\overline{c}$ states, others not.
- Look for possible interpretations.
- States of charmonium are close to one another.

- New charmonium states above the $D\bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c\overline{c}$ states, others not.
- Look for possible interpretations.
- States of charmonium are close to one another.
- We are concerned with obtaining the spectrum of the $c\overline{c}$ system using few-body methods.

• X(3872) discovered by the Belle experiment (confirmed by BarBar).

• X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass 3872 MeV/ $c^2 \rightarrow J/\psi + \pi^+ + \pi^-$.

• X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass 3872 MeV/ $c^2 \rightarrow J/\psi + \pi^+ + \pi^-$.

However, no signal observed in $B \to X^- K$, $X^- \to \pi^- \pi^0 J/\psi$.

• X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass 3872 MeV/ $c^2 \rightarrow J/\psi + \pi^+ + \pi^-$.

However, no signal observed in $B \to X^- K$, $X^- \to \pi^- \pi^0 J/\psi$.

 $B \to X^- K, X^- \to \pi^- \pi^0 J/\psi \Longrightarrow$ a charged partner of X(3872).

• X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass 3872 MeV/ $c^2 \rightarrow J/\psi + \pi^+ + \pi^-$.

However, no signal observed in $B \to X^- K$, $X^- \to \pi^- \pi^0 J/\psi$.

 $B \to X^- K$, $X^- \to \pi^- \pi^0 J/\psi \Longrightarrow$ a charged partner of X(3872).

• Experimental focus: Determination of mass, width, and decay properties: i.e. quantum numbers & (possible) position in $c\bar{c}$ system of states.

• Experimental knowledge:

• Experimental knowledge:

Decays	$ ightarrow \pi^+\pi^- J/\psi$
	$ ightarrow \gamma J/psi$
	$\rightarrow D^0 \bar{D^0} \pi^0$
Mass	$3872.2\pm0.8~\text{MeV/c}^2$
Γ	$<$ 2.3 MeV ($J/\psi\pi^+\pi^-$)
	$3.0^{1.9}_{1.4}\pm$ 0.9 MeV ($D^0ar{D^0}$)

• Experimental knowledge:

Decays	$\rightarrow \pi^+\pi^- J/\psi$
	$ ightarrow \gamma J/psi$
	$\rightarrow D^0 \bar{D^0} \pi^0$
Mass	$3872.2\pm0.8~\text{MeV/c}^2$
Γ	$<$ 2.3 MeV ($J/\psi\pi^+\pi^-$)
	$3.0^{1.9}_{1.4}\pm$ 0.9 MeV ($D^0ar{D^0}$)

• X(3872) lies well above $D\bar{D}$ threshold

• Experimental knowledge:

Decays	$\rightarrow \pi^+ \pi^- J/\psi$
	$ ightarrow \gamma J/psi$
	$ ightarrow D^0 ar{D^0} \pi^0$
Mass	$3872.2\pm0.8~\text{MeV/c}^2$
Γ	$<$ 2.3 MeV ($J/\psi\pi^+\pi^-$)
	$3.0^{1.9}_{1.4}\pm$ 0.9 MeV ($D^0ar{D^0}$)

• X(3872) lies well above $D\bar{D}$ threshold

 $\implies J^P = 0^-, 1^+, 2^-$ are favoured (which are unnatural).

• Belle collaboration favours $J^{PC} = 1^{++}$.

• Belle collaboration favours $J^{PC} = 1^{++}$.

• CDF cannot distinguish between $J^{PC} = J^{++}$ and $J^{PC} = 2^{-+}$.

• Belle collaboration favours $J^{PC} = 1^{++}$.

• CDF cannot distinguish between $J^{PC} = J^{++}$ and $J^{PC} = 2^{-+}$.

• Also, $J^{PC} = 2^{-+}$ is disfavoured by $D^0 \bar{D^0} \pi$ decay mode

• Belle collaboration favours $J^{PC} = 1^{++}$.

• CDF cannot distinguish between $J^{PC} = J^{++}$ and $J^{PC} = 2^{-+}$.

• Also, $J^{PC} = 2^{-+}$ is disfavoured by $D^0 \bar{D^0} \pi$ decay mode

• On the other hand, $J^{PC} = 2^{-+}$, it is argued, could naturally explain the observed mass shift between the $\pi^+\pi^- J\psi$ and $D^0 \overline{D^0}$ modes

• X(3930) and/or Z(3980) as $2^{3}P_{2}$ candidate observed in $\gamma\gamma \rightarrow D\bar{D}$ (Belle)

• X(3930) and/or Z(3980) as $2^{3}P_{2}$ candidate observed in $\gamma\gamma \rightarrow D\bar{D}$ (Belle)

• X(3945) and/or Y(3940)

• X(3930) and/or Z(3980) as $2^{3}P_{2}$ candidate observed in $\gamma\gamma \rightarrow D\bar{D}$ (Belle)

• X(3945) and/or Y(3940)

• X(3930) and/or Z(3980) as $2^{3}P_{2}$ candidate observed in $\gamma\gamma \rightarrow D\bar{D}$ (Belle)

• X(3945) and/or Y(3940)

• Experimental work on $c\bar{c}$

• X(3930) and/or Z(3980) as $2^{3}P_{2}$ candidate observed in $\gamma\gamma \rightarrow D\bar{D}$ (Belle)

• X(3945) and/or Y(3940)

- Experimental work on $c\bar{c}$
 - Belle collaboration
 - BarBar collaboration
 - CLEO collaboration
 - CDF collaboration

• Conventional $c\bar{c}$ states

- Conventional $c\bar{c}$ states
 - 1D and 2P are comparable in mass

• Conventional $c\bar{c}$ states

1D and 2P are comparable in mass

 $\implies J^{PC} = 1^{++} 2^{3} P_1$ and $J^{PC} = 2^{-+1} D_2$ assignments are possible.

• Conventional $c\bar{c}$ states

1D and 2P are comparable in mass

 $\implies J^{PC} = 1^{++} 2^{3} P_1$ and $J^{PC} = 2^{-+1} D_2$ assignments are possible.

Need for robust methods

• Reminder

• Reminder

quantum numbers of X(3872) and its identity not well known.

• Reminder

quantum numbers of X(3872) and its identity not well known.

• Suggestion: X(3872) could be

Approach

• Reminder

quantum numbers of X(3872) and its identity not well known.

• Suggestion: X(3872) could be

a candidate for 1^1D_2 state

- # hybrid state
- # $D^0 \bar{D^{*0}}$ "molecule"

Approach

• Reminder

quantum numbers of X(3872) and its identity not well known.

• Suggestion: X(3872) could be

a candidate for 1^1D_2 state

- # hybrid state
- # $D^0 \bar{D^{*0}}$ "molecule"

- Computation of meson properties in QCD is non-perturbative
 - LQCD
 - NRQCD

Approach

• Reminder

quantum numbers of X(3872) and its identity not well known.

• Suggestion: X(3872) could be

a candidate for 1^1D_2 state

- # hybrid state
- # $D^0 \bar{D^{*0}}$ "molecule"

- Computation of meson properties in QCD is non-perturbative
 - LQCD
 - NRQCD
- starting point, Faddeev-like equations (J = 1, 2)

Approach ···

• Case 1=2

$$\left(H_0 + V_\alpha + V_3 + \sum_{\alpha \neq \beta} V_\beta^l - E\right)\psi_\alpha = -V_\alpha \sum_{\beta \neq \alpha} \psi_\beta, \quad \alpha, \beta = 1, 2$$

• Case 1=2

Approach ···

$$\left(H_0 + V_\alpha + V_3 + \sum_{\alpha \neq \beta} V_\beta^l - E\right)\psi_\alpha = -V_\alpha \sum_{\beta \neq \alpha} \psi_\beta, \quad \alpha, \beta = 1, 2$$

• Capable for studying, e.g.

$$X \to J/\psi + \pi + \pi$$

• Expansions leads to linear inhomogeneous equations

$$\sum_{ijk} (A_{ijk} + EB_{ijk}) a_{ijk} = \sum_{ijk} \mathbf{P}_{ijk} a_{ijk}$$

$$\sum_{ijk} (1 + EB_{ijk}A_{ijk}^{-1})\tilde{a}_{ijk} = \sum_{ijk} \mathbf{P}_{ijk}A_{ijk}^{-1}\tilde{a}_{ijk}$$

• Potential: $V(r) = \frac{a}{r} + br$

• Potential: $V(r) = \frac{a}{r} + br$

• $\ell = 1: X \sim 3600 \pm 23$

• Potential: $V(r) = \frac{a}{r} + br$

• $\ell = 1: X \sim 3600 \pm 23$

• $\ell = 2: X \sim 3518 \pm 50$

• Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.

• Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.

• Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.

• Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.

• Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.

• Faddeev approach holds promise.

• Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.

• Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.

• Faddeev approach holds promise.

- Further work necessary and underway.
 - $X(3872) \to \pi^+ + \pi^- + J/\psi?$ or
 - $X(3872) \to \pi^+ + \pi^- + \pi^0 + J/\psi?$