

M. L. Lekala

UNISA

- Motive \& Challenges
- Motive \& Challenges
- Approach
- Motive \& Challenges
- Approach
- Conclusions

Motive \& Challenges

- New charmonium states above the $D \bar{D}$ threshold have been recently observed.

Motive \& Challenges

- New charmonium states above the $D \bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c \bar{c}$ states, others not.

Motive \& Challenges

- New charmonium states above the $D \bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c \bar{c}$ states, others not.
- Look for possible interpretations.

Motive \& Challenges

- New charmonium states above the $D \bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c \bar{c}$ states, others not.
- Look for possible interpretations.
- States of charmonium are close to one another.

Motive \& Challenges

- New charmonium states above the $D \bar{D}$ threshold have been recently observed.
- Some states consistent with conventional $c \bar{c}$ states, others not.
- Look for possible interpretations.
- States of charmonium are close to one another.
- We are concerned with obtaining the spectrum of the $c \bar{c}$ system using few-body methods.
- X(3872) discovered by the Belle experiment (confirmed by BarBar).

X(3872) state \& interpretation/challenges

- X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass $3872 \mathrm{MeV} / c^{2} \rightarrow J / \psi+\pi^{+}+\pi^{-}$.

- X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass $3872 \mathrm{MeV} / c^{2} \rightarrow J / \psi+\pi^{+}+\pi^{-}$.

However, no signal observed in $B \rightarrow X^{-} K, X^{-} \rightarrow \pi^{-} \pi^{0} J / \psi$.

X(3872) state \& interpretation/challenges

- X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass $3872 \mathrm{MeV} / c^{2} \rightarrow J / \psi+\pi^{+}+\pi^{-}$.

However, no signal observed in $B \rightarrow X^{-} K, X^{-} \rightarrow \pi^{-} \pi^{0} J / \psi$.
$B \rightarrow X^{-} K, X^{-} \rightarrow \pi^{-} \pi^{0} J / \psi \Longrightarrow$ a charged partner of $X(3872)$.

X(3872) state \& interpretation/challenges

- X(3872) discovered by the Belle experiment (confirmed by BarBar).

Considered a narrow state of mass $3872 \mathrm{MeV} / c^{2} \rightarrow J / \psi+\pi^{+}+\pi^{-}$.

However, no signal observed in $B \rightarrow X^{-} K, X^{-} \rightarrow \pi^{-} \pi^{0} J / \psi$.
$B \rightarrow X^{-} K, X^{-} \rightarrow \pi^{-} \pi^{0} J / \psi \Longrightarrow$ a charged partner of $X(3872)$.

- Experimental focus: Determination of mass, width, and decay properties: i.e. quantum numbers \& (possible) position in $c \bar{c}$ system of states.

X(3872) state \& interpretation/challenges

- Experimental knowledge:

X(3872) state \& interpretation/challenges

- Experimental knowledge:
\(\left.\begin{array}{|c|l|}\hline Decays \& \rightarrow \pi^{+} \pi^{-} J / \psi

\& \rightarrow \gamma J / p s i

\& \rightarrow D^{0} \overline{D^{0}} \pi^{0}\end{array}\right]\)| Mass | $3872.2 \pm 0.8 \mathrm{MeV} / c^{2}$ |
| :---: | :--- |
| Γ | $<2.3 \mathrm{MeV}\left(J / \psi \pi^{+} \pi^{-}\right)$ |
| | $3.0_{1.4}^{1.9} \pm 0.9 \mathrm{MeV}\left(D^{0} \overline{D^{0}}\right)$ |

X(3872) state \& interpretation/challenges

- Experimental knowledge:
\(\left.\begin{array}{|c|l|}\hline Decays \& \rightarrow \pi^{+} \pi^{-} J / \psi

\& \rightarrow \gamma J / p s i

\rightarrow D^{0} \overline{D^{0}} \pi^{0}\end{array}\right]\)| Mass | $3872.2 \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2}$ |
| :---: | :--- |
| Γ | $<2.3 \mathrm{MeV}\left(J / \psi \pi^{+} \pi^{-}\right)$
 $3.0_{1.4}^{1.9} \pm 0.9 \mathrm{MeV}\left(D^{0} \overline{D^{0}}\right)$ |

- X(3872) lies well above $D \bar{D}$ threshold

X(3872) state \& interpretation/challenges

- Experimental knowledge:
\(\left.\begin{array}{|c|l|}\hline Decays \& \rightarrow \pi^{+} \pi^{-} J / \psi

\& \rightarrow \gamma J / p s i

\rightarrow D^{0} \overline{D^{0}} \pi^{0}\end{array}\right]\)| Mass | $3872.2 \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2}$ |
| :---: | :--- |
| Γ | $<2.3 \mathrm{MeV}\left(J / \psi \pi^{+} \pi^{-}\right)$
 $3.0_{1.4}^{1.9} \pm 0.9 \mathrm{MeV}\left(D^{0} \overline{D^{0}}\right)$ |

- X(3872) lies well above $D \bar{D}$ threshold $\Longrightarrow J^{P}=0^{-}, 1^{+}, 2^{-}$are favoured (which are unnatural).

X(3872) state \& interpretation/challenges

- Belle collaboration favours $J^{P C}=1^{++}$.
- Belle collaboration favours $J^{P C}=1^{++}$.
- CDF cannot distinguish between $J^{P C}=J^{++}$and $J^{P C}=2^{-+}$.

X(3872) state \& interpretation/challenges

- Belle collaboration favours $J^{P C}=1^{++}$.
- CDF cannot distinguish between $J^{P C}=J^{++}$and $J^{P C}=2^{-+}$.
- Also, $J^{P C}=2^{-+}$is disfavoured by $D^{0} \bar{D}^{0} \pi$ decay mode

X(3872) state \& interpretation/challenges

- Belle collaboration favours $J^{P C}=1^{++}$.
- CDF cannot distinguish between $J^{P C}=J^{++}$and $J^{P C}=2^{-+}$.
- Also, $J^{P C}=2^{-+}$is disfavoured by $D^{0} \overline{D^{0}} \pi$ decay mode
- On the other hand, $J^{P C}=2^{-+}$, it is argued, could naturally explain the observed mass shift between the $\pi^{+} \pi^{-} J \psi$ and $D^{0} \overline{D^{0}}$ modes

	Other $c \bar{c}$ states
	X(3930) and/or $Z(3980)$ as $2^{3} P_{2}$ candidate observed in $\gamma \gamma \rightarrow D \bar{D}$ (Belle)

	Other $c \bar{c}$ states
	X(3930) and/or $Z(3980)$ as $2^{3} P_{2}$ candidate observed in $\gamma \gamma \rightarrow D \bar{D}$ (Belle)

- X(3945) and/or Y(3940)

Other ci states

- X(3930) and/or Z(3980) as $2^{3} P_{2}$ candidate observed in $\gamma \gamma \rightarrow D \bar{D}$ (Belle)
- X(3945) and/or Y(3940)

Other ci states

- X(3930) and/or Z(3980) as $2^{3} P_{2}$ candidate observed in $\gamma \gamma \rightarrow D \bar{D}$ (Belle)
- X(3945) and/or Y(3940)
- Experimental work on $c \bar{c}$

Other ci c states

- X(3930) and/or Z(3980) as $2^{3} P_{2}$ candidate observed in $\gamma \gamma \rightarrow D \bar{D}$ (Belle)
- X(3945) and/or Y(3940)
- Experimental work on $c \bar{c}$
- Belle collaboration
- BarBar collaboration
- CLEO collaboration
- CDF collaboration

X(3872) state \& interpretation/challenges

- Conventional $c \bar{c}$ states

X(3872) state \& interpretation/challenges

- Conventional $c \bar{c}$ states
$1 D$ and $2 P$ are comparable in mass

X(3872) state \& interpretation/challenges

- Conventional $c \bar{c}$ states
$1 D$ and $2 P$ are comparable in mass
$\Longrightarrow J^{P C}=1^{++} 2^{3} P_{1}$ and $J^{P C}=2^{-+1} D_{2}$ assignments are possible.

X(3872) state \& interpretation/challenges

- Conventional $c \bar{c}$ states
$1 D$ and $2 P$ are comparable in mass
$\Longrightarrow J^{P C}=1^{++} 2^{3} P_{1}$ and $J^{P C}=2^{-+1} D_{2}$ assignments are possible.

Need for robust methods

Approach

- Reminder
quantum numbers of $\mathrm{X}(3872)$ and its identity not well known.
- Reminder
quantum numbers of $X(3872)$ and its identity not well known.
- Suggestion: X(3872) could be

Approach

- Reminder
quantum numbers of $\mathrm{X}(3872)$ and its identity not well known.
- Suggestion: X(3872) could be
\# a candidate for $1^{1} D_{2}$ state
\# hybrid state
\# $D^{0} \overline{D^{*}}$ "molecule"

Approach

- Reminder
quantum numbers of $\mathrm{X}(3872)$ and its identity not well known.
- Suggestion: X(3872) could be
\# a candidate for $1^{1} D_{2}$ state
\# hybrid state
\# $D^{0} \overline{D^{*}}$ "molecule"
- Computation of meson properties in QCD is non-perturbative
- LQCD
- NRQCD

Approach

- Reminder
quantum numbers of $\mathrm{X}(3872)$ and its identity not well known.
- Suggestion: X(3872) could be
\# a candidate for $1^{1} D_{2}$ state
\# hybrid state
\# $D^{0} \overline{D^{*}}$ "molecule"
- Computation of meson properties in QCD is non-perturbative
- LQCD
- NRQCD
- starting point, Faddeev-like equations ($J=1,2$)

- Case l=2

$$
\left(H_{0}+V_{\alpha}+V_{3}+\sum_{\alpha \neq \beta} V_{\beta}^{l}-E\right) \psi_{\alpha}=-V_{\alpha} \sum_{\beta \neq \alpha} \psi_{\beta}, \quad \alpha, \beta=1,2
$$

- Capable for studying, e.g.

$$
X \rightarrow J / \psi+\pi+\pi
$$

- Expansions leads to linear inhomogeneous equations

$$
\begin{aligned}
\sum_{i j k}\left(A_{i j k}+E B_{i j k}\right) a_{i j k} & =\sum_{i j k} \mathrm{P}_{i j k} a_{i j k} \\
\sum_{i j k}\left(1+E B_{i j k} A_{i j k}^{-1}\right) \tilde{a}_{i j k} & =\sum_{i j k} \mathrm{P}_{i j k} A_{i j k}^{-1} \tilde{a}_{i j k}
\end{aligned}
$$

- Potential: $V(r)=\frac{a}{r}+b r$
- Potential: $V(r)=\frac{a}{r}+b r$
- $\ell=1: X \sim 3600 \pm 23$

Example

- Potential: $V(r)=\frac{a}{r}+b r$
- $\ell=1: X \sim 3600 \pm 23$
- $\ell=2: X \sim 3518 \pm 50$

Conclusions

- Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.

Conclusions

- Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.
- Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.

Conclusions

- Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.
- Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.
- Faddeev approach holds promise.
- Systematic searches for states such as X(3972), which lies close to threshold are needed. Independent confirmation required.
- Other methods/approaches that are more sensitive may be employed. E.g. global minimization search.
- Faddeev approach holds promise.
- Further work necessary and underway.
- $X(3872) \rightarrow \pi^{+}+\pi^{-}+J / \psi$? or
- $X(3872) \rightarrow \pi^{+}+\pi^{-}+\pi^{0}+J / \psi$?

