Solution of three-dimensional Faddeev equations on example of ultracold Helium trimer

Elena Kolganova BLTP JINR, Dubna, Russia

In collaboration with

V. Roudnev and M. Cavagnero Department of Physics and Astrophysics, Kentucky University, USA

Outline

- Formalism (Faddeev equations)
- Computer code
- Overview experiment and theory (two-body, three-body)
- Results
 - three-body bound states $(^{4}\text{He}_{3})$
- Conclusion and plans for the near-term future

Faddeev Equations: Algebraic scheme

Three-body, theory formalism

Let us deal with Hamiltonian of the form $H = H_0 + V$ with $V = V_1 + V_2 + V_3$

Equation $H\Psi = E\Psi$ is equivalent to the Lippman-Schwinger eq.

$$\Psi = -G_0(E)V\Psi \equiv -G_0(E)\sum V_{\alpha}\Psi$$

We introduce the vectors

 $\Phi_{\alpha} = -G_0(E)V_{\alpha}\Psi$ Definition of the Faddeev components $\Phi_{\alpha} \equiv \Psi$

 $\alpha = 1$

 $\beta=1$

and note,

 $\sum \Phi_{\alpha} \equiv \Psi$

Meanwhile, applying $(H_0 - E)$ to both sides of vectors definition one obtains

$$(H_0 - E)\Phi_{\alpha} = -V_{\alpha}\Psi \equiv -V_{\alpha}\sum \Phi_{\beta}$$

Or, after transfer of Φ_{α} from r.h.s. to l.h.s.:

$$(H_0 + V_\alpha - E)\Phi_\alpha = -V_\alpha \sum_{\beta \neq \alpha} \Phi_\beta$$

Faddeev equations

In the form $\Phi_{\alpha} = -(H_0 + V_{\alpha} - E)^{-1}V_{\alpha} \sum \Phi_{\beta}$ they were introduced by L.D.Faddeev in 1960

Three-body, theory formalism

In describing the three-body system we use the standard Jacobi coordinates [4] $x_{\alpha}, y_{\alpha}, \alpha = 1, 2, 3$, expressed in terms of the position vectors of the particles $r_i \in \mathbb{R}^3$ and their masses m_i ,

$$\boldsymbol{x}_{\alpha} = \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta} + m_{\gamma}}\right]^{1/2} (\boldsymbol{r}_{\beta} - \boldsymbol{r}_{\gamma})$$

$$\boldsymbol{y}_{\alpha} = \left[\frac{2m_{\alpha}(m_{\beta} + m_{\gamma})}{m_{\alpha} + m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\boldsymbol{r}_{\alpha} - \frac{m_{\beta}\boldsymbol{r}_{\beta} + m_{\gamma}\boldsymbol{r}_{\gamma}}{m_{\beta} + m_{\gamma}}\right)$$

where (α, β, γ) stands for a cyclic permutation of the indices (1, 2, 3). The coordinates x_{α}, y_{α} fix the six-dimensional vector $X \equiv (x_{\alpha}, y_{\alpha}) \in \mathbb{R}^{6}$. The vectors x_{β}, y_{β} corresponding to the same point X as the pair x_{α}, y_{α} are obtained using the transformations

$$x_eta = c_{etalpha} x_lpha + s_{etalpha} y_lpha \qquad y_eta = -s_{etalpha} x_lpha + c_{etalpha} y_lpha$$

where the coefficients $c_{\beta\alpha}$ and $s_{\beta\alpha}$ fulfil the conditions $-1 < c_{\beta\alpha} < +1$ and $s_{\beta\alpha}^2 = 1 - c_{\beta\alpha}^2$ with $c_{\alpha\beta} = c_{\beta\alpha}$, $s_{\alpha\beta} = -s_{\beta\alpha}$, $\beta \neq \alpha$ and depend only on the particle masses [4]. For equal masses $c_{\beta\alpha} = -\frac{1}{2}$.

[4] - L.D.Faddeev, S.P.Merkuriev, 1993, Quantum scattering theory for several particles

Three-body, theory formalism

The potential energy is invariant with respect to rotation and it makes possible to separate out the degrees of freedom corresponding to rotation of the system expanding the Faddeev components in term of the Wigner functions

$$\Phi(\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}) = \sum_{L,m,n} \frac{F^{Lmn}(\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha})}{\boldsymbol{x}_{\alpha} \boldsymbol{y}_{\alpha}} D_{mn}^{L}(\boldsymbol{g})$$

When the total angular momentum L of the system is fixed, the three-body dynamics is constrained onto three-dimensional internal space [5], which can be parametrized by coordinates

$$x_{\alpha} = |\mathbf{x}_{\alpha}|, \ y_{\alpha} = |\mathbf{y}_{\alpha}|, \ z_{\alpha} = \cos \theta_{\alpha} = (\hat{\mathbf{x}}_{\alpha}, \hat{\mathbf{y}}_{\alpha})$$

For zero angular momentum the Faddeev equations in internal space are given by the set of three coupled three-dimensional equations

$$(H_{0} + V_{\alpha} - E)F_{\alpha}(x_{\alpha}, y_{\alpha}, z_{\alpha}) = -V_{\alpha}\sum_{\beta \neq \alpha}F_{\beta}(x_{\beta}, y_{\beta}, z_{\beta})$$

$$x_{\beta} = \sqrt{c_{\beta\alpha}^{2} x_{\alpha}^{2} + s_{\beta\alpha}^{2} y_{\alpha}^{2} + 2c_{\beta\alpha}s_{\beta\alpha}x_{\alpha}y_{\alpha}z_{\alpha}}$$

$$H_{0} = -\frac{\partial^{2}}{\partial x_{\alpha}^{2}} - \frac{\partial^{2}}{\partial y_{\alpha}^{2}} - (\frac{1}{x_{\alpha}^{2}} + \frac{1}{y_{\alpha}^{2}})\frac{\partial}{\partial z_{\alpha}}(1 - z_{\alpha})^{1/2}\frac{\partial}{\partial z_{\alpha}}$$

$$x_{\beta}y_{\beta}z_{\beta} = \sqrt{(c_{\beta\alpha}^{2} - s_{\beta\alpha}^{2})x_{\alpha}y_{\alpha}z_{\alpha} - c_{\beta\alpha}s_{\beta\alpha}(x_{\alpha}^{2} - y_{\alpha}^{2})}$$
Asymptotic conditions
$$F(x, y, z) \stackrel{=}{_{\rho \to \infty}} \psi_{d}(x)\exp(ipy)a_{0}(z; E) + \frac{\exp(i\sqrt{E}\rho)}{\rho^{1/2}}A(x, y, z; E)$$

[5] - V.V.Kostrykin, A.A.Kvitsinsky, S.P.Merkuriev, Few-Body Syst. 6 (1989) 97

Three-body, theory computer code

The purpose of the code is performing quantum calculation of scattering and bound states of atomic three-body systems.

The code consists of two parts. The first part is a configurator that simplifies composing the necessary configuration files.

The second part is the 3-body computational kernel that performs the actual calculations.

⁴He₃

🕌 JFewBodyConfigurator

		Contract (Contract (Contra	
+ About			
Properties of t	he particles		
Description	Masses (a.u.m)	Identical	
He	m1= 4.002603		
Unknown	m2= 4.002603		
Unknown	m3= 4.002603	V	
Pair 1 (23)	Pair 2 (31) Pair 3 (12)		
The potential	Im2m2Potential	Symmetric 🔾 Antisymmetric	
Reduced mas	ss (me)=3648.149459363227		
Xmax (a.u.)=	1000.0	Generate the grid	
The orid is as	t to Im2m2Datantial 4000.0.2640		
The grid is se		s,149459.grd	
	INTS NX= 150 NY=	50 NZ= 5	
Number of po	······································		
Number of po	Ymax=	= 2000.0	
Number of po	Ymax=	= 2000.0	
Number of po	Ymax=	= 2000.0	Java code
Number of po	Ymax=	= 2000.0	

Three-body, theory

computer code

Two-body, theory

Potential models: Aziz et al. – HFD-B (1987), LM2M2 (1991), Tang et al. – TTY (1995)

where
$$\zeta = x/r_m$$

 $V_b(\zeta) = A \exp(-\alpha\zeta + \beta\zeta^2) - \left[\frac{C_6}{\zeta^6} + \frac{C_8}{\zeta^8} + \frac{C_{10}}{\zeta^{10}}\right] F(\zeta),$

$$V_a(\zeta) = \begin{cases} A_a \left\{ \sin \left[\frac{2\pi(\zeta - \zeta_1}{\zeta_2 - \zeta_1} - \frac{\pi}{2} \right] + 1 \right\}, & \zeta_1 \le \zeta \le \zeta_2\\ 0, & \zeta < \zeta_1, \zeta > \zeta_2 \end{cases}$$

$$F(\zeta) = \begin{cases} \exp\left[-\left(D/\zeta - 1\right)\right]^2, & \text{if } \zeta \le D\\ 1, & \text{if } \zeta > D \end{cases}$$

⁴He₂

Two-body, theory

r, Å

Potential models: Aziz et al. – HFD-B (1987), LM2M2 (1991), Tang et al. – TTY (1995)

⁴He - ⁴He

First observation by Luo et al. (1993) and Schöllkopf, Toennies (1994) First measurement of the bond length by Grisenti et al.(2000)

$$\langle R \rangle = 52 \pm 4 \,\mathrm{A}$$

Estimation of the binding energy and scattering length

 $\varepsilon_d = 1.1_{-0.2}^{+0.3} \,\mathrm{mK}$ $l_{sc} = 104_{-18}^{+8} \,\mathrm{\AA}$

 $1 \,\mathrm{mK} \approx 10^{-7} \,eV$

Experiment – Toennies et al. JCP 104, 1155 (1996), JCP 117, 1544 (2002) *Trimer pair distance* $d = 1.1_{-0.5}^{+0.4} \text{ nm}$

Theory – variational, hyperspherical, Faddeev equations (integral, differential)

$$E_{gs} = 126 \,\mathrm{mK}$$
 $E_{ex} = 2.28 \,\mathrm{mK}$

⁴He - ⁴He

Potential models: Aziz et al. – HFD-B (1987), LM2M2 (1991) Tang et al. – TTY (1995)

TABLE I. Dimer energy ε_d , wave length $1/\varkappa^{(2)}$, and ${}^{4}\text{He}-{}^{4}\text{He}$ scattering length $\ell_{sc}^{(2)}$ for the potentials used, as compared to the experimental values of Ref. [5]^{R. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeld, T. Köhler, and M. Stoll, Phys. Rev. Lett. **85**, 2284 (2000).}

	sc (11)	e_d (IIIX)	
LM2M2 -1.30348 96.43 100.23 8 TTY -1.30962 96.20 100.01 HED-B -1.68541 84.80 88.50	104_{-18}^{+8}	$1.1^{+0.3}_{-0.2}$	Expt.
8 TTY -1.30962 96.20 1 HFD-B -1.68541 84.80 8	104_{-18}^{+8}	$1.1_{-0.2}^{+0.5}$	Expt.

4 He - 4 He

Helium dimer

Two-body, theory results

Potentials	H	FD-B [16	HFD	[6]				
	*	[28]	[29]	*	[28]	[29]	эксп.	
$ \varepsilon_d , \mathrm{MK}$	1,685	1,685	1,685	0,830	-	0,830	$1, 1^{+0,3}_{-0,2}$	
< R >, Å	$46,\!178$	46,466	46,18	64.201	E AF	64,21	52 ± 4	
$\sqrt{\langle R^2 \rangle}, \text{\AA}$	62,706	62,971	62,71	88.160	1	88,18		

Potentials	LN	A2M2 [18	3]	J	[6]		
A Contraction	*	[28]	[29]	*	[28]	[29]	эксп.
$ \varepsilon_d , \mathrm{MK}$	1,304	1,303	1,304	1,310	1,313	1,312	$1, 1^{+0,3}_{-0,2}$
< R >, Å	52.001	51,838	52,00	51.889	51,658	51,84	52 ± 4
$\sqrt{\langle R^2 \rangle}, \text{\AA}$	70.926	70,327	70,93	70.768	70,115	70,70	the state

[28] Barletta P. Kievsky A. // Phys. Rev. A. 2001. V. 64. P. 042514(9).
[29] Roudnev V., Yakovlev S.// Chem. Phys. Lett. 2000. V. 328. P. 97.

⁴He₃

$^{4}\text{He}_{3}$

Таблица 1: Results for binding energies of the ⁴He₃ trimer. LM2M2 Potential.

	*	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
$ E_{4He_3} $ (MK)	126.507	125.2	126.45	125.52^{a}	126.41	$126.3(9)^{a}$	126.15	126.2	126.39	125.6^{a}
$\left E_{4}^{*}_{\mathrm{He_{3}}}\right $ (MK)	2.277	2.269	2.28		2.271		2.274		2.268	2.245^{a}

^aIn original paper the energy value is given in cm^{-1} (1 $cm^{-1} = 1.4387752$ K).

- Nielsen E., Fedorov D. V., Jensen A. S. // J. Phys. B. 1998. V. 31. P. 4085–4105.
- [2] Kolganova E.A. // PEPAN. 2010. V. 41 (7).
- [3] Blume D., Greene C. H. // J. Chem. Phys. 2000. V. 112. P. 8053–8067.
- [4] Roudnev V. A., Yakovlev S. L., Sofianos S. A. // Few-Body Syst. 2005. V. 37. P. 179–196.
- [5] Bressanini D., Zavaglia M., Mella M., Morosi G. // J. Chem. Phys. 2000. V. 112. P. 717–722.
- [6] Barletta P., Kievsky A. // Few-Body Syst. 2009. V. 45. P. 123–125.
- [7] Salci M., Yarevsky E., Levin S. B., Elander N. // Int. J. Quant. Chem. 2007. V. 107. P. 464–468.
- [8] Lazauskas R., Carbonell J. // Phys. Rev. A. 2006. V. 73. P. 062717(11).
- [9] Orlandini S., Baccarelli I., Gianturco F.A. // Comp. Phys. Comm. 2009. V. 180. P. 384–391.

Outgoing results and future directions

- To test the program for scattering calculations
- To test the program for calculation of other three-body systems

Acknowledgements

- Diploma student A.Korobitsin
- Alexander von Humboldt foundation

Thank you!