Multi-cluster decays of heavy nuclei

D.V. Kamanin
for the FOBOS collaboration

Progress report on the JRP "Fission and Clustering"
Focal area "Heavy lons" under JINR-SA Agreement

2 collaboration lines

2nd South Africa - JINR Symposium Models and Methods in Few- and Many-Body Systems

FOBOS 4T-detector of charged particles, 1996

http://fobos.jinr.ru

Challenge to the modern nuclear physics

Is it possible after 60 years of the study of nuclear fission to observe some new bright phenomena in the fission experiment?

With rather simple equipment and within low run time?
With a well studied "simple" system - ${ }^{252} \mathrm{Cf}(\mathrm{ff})$ or ${ }^{235} \mathrm{U}\left(\mathrm{n}_{\mathrm{th}}, \mathrm{f}\right)$?
If possible - would be excellent for young researchers!
Difficult, however, possible, but only with some new ideas!

Collaboration line 1:

Analysis of hidden regularities in the known nuclear data

D. Kamanin ${ }^{1}$, Yu. Pyatkov ${ }^{1,2}$, W. Trzaska ${ }^{3}$, Yu. Lavrova ${ }^{2}$, O. Falomkina ${ }^{4}$, B. Herbst ${ }^{5}$

${ }^{1}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia
${ }^{2}$ National Research Nuclear University "MEPHI", 115409 Moscow, Russia
${ }^{3}$ Department of Physics of University of Jyväskylä, Finland
${ }^{4}$ Lomonosov Moscow State University, 119899,Russia ${ }^{5}$ Stellenbosch University, Matieland, 7602, South Africa

P.Siegler, F.-J. Hambsch, S. Oberstedt, J.P.Theobald Nuclear Physics A 594 (1995) 45-56

Conventional analysis

Calculated Fission Valleys $\left({ }^{252} \mathrm{Cf}\right)$

Fission valleys $2-5$ are connected with different di-cluster configurations.

1. Cluster radioactivity.
2. Cold binary fission, for which no neck has yet developed.
$3 \& 4$. Two different asymmetrical valleys (B, A).
3. Symmetrical valley.

Yu.V.Pyatkov,V.V.Pashkevich et al.,
Nucl. Phys. A 624 (1997) 140

What and why is observed?

Fine structure of mass-energy distribution

- - Bifurcation point at
$\mathrm{M}_{\mathrm{L}}=108 \mathrm{amu}$ (magic ${ }^{108} \mathrm{Mo}$)

Fine structure in neutron gated TKE-M distribution of the fragments.

Experiment:

d~(Z1*Z2)/TKE;
m1~78amu
m2~134amu
d1 $\approx \mathrm{d} 2$
Model:
Z1=s*C;
Z2=s*(L-C);
$\mathrm{d}=\mathrm{C} / 2+(\mathrm{L}-\mathrm{C}) / 2=\mathrm{L} / 2$

Snake - like FS from the reaction ${ }^{238} \mathrm{U}+{ }^{40} \mathrm{Ar}(275 \mathrm{MeV}) \longrightarrow{ }^{278} 110$

Collinear Cluster Tripartition
Conventional ternary fission

Positive theory background

SYMMETRICAL SHAPES OF EQUILIBRIUM FOR A LIQUID DROP MODEL

Nucl. Phys. 46 (1963) 639
two-neck and three-neck shapes

Aligned and compact configurations for α-accompanied and $\alpha+{ }^{6} \mathrm{He}+{ }^{10} \mathrm{Be}$ accompanied cold fission of ${ }^{252} \mathbf{C f}$ D.N. Poenaru et al., Phys. Rev. C 59 (1999) 3457

Fig. 7. The shape of the nucleus at the bottom of the "symmetric" valley ($Q_{2}=7.52$ a.u., $\eta-0.074$) (a): the same system at the point $Q_{2}=7.52$ a.u., η --0.208 (b).

Yu.V. Pyatkov, V.V.
Pashkevich, A.V. Unzhakova et al., Physics of Atomic Nuclei 66 (2003) 1631

cascade fission

direct prolate ternary fission

direct oblate ternary fission

> H. Diehl \& W. Greiner, Nuclear Physics A229 (1974)

PHYSICAL REVIEW C 81, 044608 (2010)

True ternary fission of superheavy nuclei
V. I. Zagrebaev, ${ }^{1}$ A. V. Karpov, ${ }^{1}$ and Walter Greiner ${ }^{2}$

FIG. 6. (Color online) Landscape of potential energy of threebody configurations formed in collision of ${ }^{238} \mathrm{U}+{ }^{238} \mathrm{U}$.

What is measured with mini-FOBOS

"Start" PAC
with source inside
"Stop" PSAC
Ionization chamber

Independent charge-sensitive variables

Missing mass study

relative bump magnitude 0.003

Collaboration line 2:

(Direct) study of multi-cluster decays of heavy nuclei

JINR, Dubna
MEPhl, Moscow

ATOMKI, Debrecen
iThemba LABS
(S.Mullins)

SUN (N. Jacobs, V.Malaza)

This work is supported in part by the grant of the Federal Ministry of Education and Research of Germany

Experimental setup

Data array $5.5^{*} 10^{6}$

Total mass measured

Mass of third particle

Direct registration of all the CCT products: COMETA setup (FLNR, JINR)

Front view of the COMETA setup

COMETA: neutron gated data, $n=3$

Conclusions.

1. By the direct detection of 3 fragments we confirmed the existence of the collinear cluster tripartition (CCT) channel in the ${ }^{252} \mathrm{CF}(\mathrm{sf})$.
2. The middle light fragment of the 3-body chain observed is highly excited.
3. It stays almost at rest after scission of the system.

Hadrons and Nuclei

Collinear cluster tri-partition of ${ }^{252} \mathrm{Cf}$ (sf) and in the ${ }^{235} \mathrm{U}\left(\mathrm{n}_{\mathrm{th}}, \mathrm{f}\right)$ reaction

Yu.V. Pyatkov, D.V. Kamanin, W. von Oertzen, A.A. Alexandrov, I.A. Alexandrova, O.V. Falomkina, N.A. Kondratjev, Yu.N. Kopatch, E.A. Kuznetsova, Yu.E. Lavrova, A.N. Tyukavkin, W. Trzaska and V.E. Zhuhcko

Eur. Phys. J.
A 45, 29-37 (2010)

Potential energy landscape

V.I. Zagrebaev, FLNR, JINR

Fine structures of mass-energy distribution

The typical contour map of the experimental mass-energy distribution

Fine structure of the mass (charge) distribution

Proton odd-even staggering

E-E method

TOF-TOF method (FOBOS setup)

Yu.V.Pyatkov, Nucl. Phys. A 624 (1997) 140

${ }^{238} \mathrm{U}+{ }^{40} \mathrm{Ar}(275 \mathrm{MeV}) \rightarrow{ }^{278} 110$

Projection of TKE vs. fragment mass matrix collected in the reaction ${ }^{238} \mathrm{U}+{ }^{40} \mathrm{Ar}$ at $\mathrm{E}_{\mathrm{Ar}}=$ 275 MeV . The inset shows enlarged center part of the plot revealing small but statistically significant ripples.

${ }^{238} \mathrm{U}+{ }^{40} \mathrm{Ar}(275 \mathrm{MeV}) \rightarrow{ }^{278} 110$

Mean values of sequential 2 MeV wide slices of the TKE-M matrix

Fig. 1 A map of the fine structures in the M-TKE

Yu.V. Pyatkov et al.,
NIM A 488 (2002) 381 distribution of the fission fragments originated from the reaction ${ }^{233} \mathrm{U}\left(\mathrm{n}_{\mathrm{t},} \mathrm{f}\right)$, superimposed on the contour map of the experimental mass-energy distribution.

Is that's true what we see?

