Joint Institute for Nuclear Research

Stellenbosch University

Web Knowledge Base on Low Energy Nuclear Physics

http://nrv.jinr.ru/nrv//

http://nrv.sun.ac.za//

Everybody time to time does the following:

- Search for available experimental data in the databases
- □ Processing and drawing these data
 - \checkmark Use some graphics packages
- □ Analysis of the experimental data
 - \checkmark Finding appropriate theoretical model
 - \checkmark Preparation of input data and run the code
 - \checkmark Processing of the obtained results

It requires time, resources and experience.

Nuclear Data Resources in the Internet

These databases provide detailed information on their subject only.

□ In order to obtain complete data user needs to visit all databases.

γ-Ray Spectra Radium Institute, St.-Petersburg

CDFE MSU, Moscow

Reaction Data Database Durham, UK

Solution

Combination of the **databases** on nuclear properties and experimental cross sections of nuclear reactions along with **computer codes** of theoretical models

in a unique system which we name

the Knowledge Base on low energy nuclear physics.

We named this specific software the <u>"Nuclear Reactions Video" (NRV)</u>

Features of the NRV knowledge base

- Databases (nuclear properties and cross sections)
- Computing Codes (OM, CC, DWBA, ...)
- Free access for remote user (web-server based)
- Multi-user architecture
- User-friendly interface
- Hypertext and Graphical representation of results
- Processing of the data and obtained results
- Everything is downloadable (text & graphics)

How it works

Remote user

Nuclear Map

Include all available data on properties of overall nuclei Spin, Parity, Half-life, Decay modes Mass, Q-values, Excited states

Radius, Deformations, ...

□ Show data on each nuclide on one screen in hypertext and graphics representation

Compare the properties of different nuclei (Systematics)

Nuclear Reactions Data

Experimental Data on Heavy Ions Fusion Cross sections

- ✓ Digitized excitation functions of more than 400 nuclear reactions (about 5000 experimental points)
- ✓ Search capabilities
- ✓ Short description of the experimental data (authors, Ref., details of experiment, ...)
- ✓ Text and Graphical representation
- ✓ "Comparison" engine
- ✓ Downloading (ASCII text) and export (GIF, JPEG, PDF, ...)

Experimental Data on Evaporation Residues Cross sections

- Digitized excitation functions of about 40 nuclear reactions (about 580 experimental points)
- ✓ All others features

Experimental Data on Elastic scattering Cross sections

- Digitized excitation functions of about 60 nuclear reactions (about 2000 experimental points)
- ✓ All others features

User may analyze experimental data on fusion and elastic scattering reactions within available theoretical model (e.g. Coupled Channels, Optical model, ...)

Nuclear Dynamics: Elastic Scattering

Optical model of the elastic scattering of nuclear particles

The Schrodinger equation

$$\left[-\frac{\hbar^2}{2\mu}\vec{\nabla}^2 + V_{OM}\right]\Psi^{(+)}(\vec{r},\vec{k}) = E_k\Psi^{(+)}(\vec{r},\vec{k})$$

with phenomenological Optical Potential

$$V_{OM}(r) = V_C(r) + V_N(r) + iW(r) + [V_{SO}(r) + iW_{SO}(r)](\vec{l} \cdot \vec{s})$$

and boundary condition at infinity (for uncharged particles)

$$\Psi^{(+)}(\vec{r},\vec{k}) \to e^{ikr\cos\vartheta} + f(\vartheta)\frac{e^{ikr}}{r}$$

Elastic scattering cross section in general case is

$$\frac{d\sigma}{d\Omega}(\vartheta) = \left| f_C(\vartheta) + f'(\vartheta) \right|^2$$

$$f'(\mathcal{G}) = \frac{1}{2ik} \sum_{l} (2l+1)e^{2i\sigma_l} (S_l - 1)P_l(\cos \mathcal{G})$$

Lets go on to the demonstration now

Concluding remarks:

Nearest plans for future :

- Including new models of nuclear dynamics
 - DIC and Fusion-fission within Langevin equations
 - Transfer processes (DWBA)
 - α-decay, β-decay
 - and others

Filling the databases on heavy-ions nuclear reactions

Nuclear Reaction Video

Thank you for attention.

People involved in the project:

Valeri Zagrebaev Head of the NRV project

Andrey Denikin

Noel Jacobs

Tinyiko Maluleke

Alexander

Alekseev

Alexander Karpov

Mikhail Naumenko

Vyacheslav Samarin