Study of exotic nuclei

Vratislav Chudoba

Joint Institute for Nuclear Research, Dubna Institute of Physics, Silesian University

2007-2008: Complete and incomplete fusion of ⁶He and ⁶Li with ¹⁶⁵Ho and ¹⁶⁶Er

2007-2008: Complete and incomplete fusion of ⁶He and ⁶Li with ¹⁶⁵Ho and ¹⁶⁶Er

¹⁶⁶Er(⁴He,4n)¹⁶⁶Yb J.D. Bierman et al., PRC 48 (1993) 319

 ${}^{6}\text{Li} + {}^{166}\text{Er} --> {}^{170}\text{Yb}^{*} + d --> {}^{166}\text{Yb} + d + 4n$ --> ${}^{168}\text{Tm}^{*} + alpha$ --> ${}^{172}\text{Lu}^{*} --> {}^{166}\text{Yb} + p + 5n$

2007-2008: Complete and incomplete fusion of ⁶He and ⁶Li with ¹⁶⁵Ho and ¹⁶⁶Er

2009-2010: 6Be structure

- lightest 2p emitter
- just a few experimental works, absence of correlation studies
- offers better acces to ⁶He properties (3 charged particle structure)

E [MeV]	$E_{\alpha pp}$ [MeV]	Γ [MeV]	\mathbf{J}^{π}	Decay
g.s.	1.37	0.092	0+	p, α
1.67	3.04	1.16	$(2)^{+}$	p, α
23		broad	4-	γ, ³ He
26		broad	2-	³ He
27		broad	3-	³ He

2009-2010: 6Be structure – Experimental set-up

0 1 2 3 4 5 m

2009-2010: 6Be structure – Experimental set-up

2009-2010: 6Be structure – Invariant mass

2009-2010: 6Be structure – Angular distribution

- broad bump above the first e.s.
 maximum at 9 12 MeV
 uniform shape at different angles
 - such a rise above the 2⁺ state was observed also in other experiments

2009-2010: 6Be structure – Measured data

2009-2010: 6Be structure – Jacobi coordinates

2009-2010: 6Be structure – Structure

2009-2010: 6Be structure – Preliminary results

- invariant mass (IM) spectrum of ⁶Be was investigated in reaction ¹H(⁶Li, p)⁶Be in full CMS angular range
- In IM spectrum of ⁶Be in addition to well known g.s. (0⁺) and first e.s. (2⁺) the broad bump with the maximum at the energy 8 – 12 MeV was observed
- analysis of the angular distributions allowed us to assigne L_{trans.} = 1 to this structure
- further analysis of inner correlations should elucidate both the structure of this nucleus and reaction mechanism

2011: Study of the ¹⁷Ne two-proton decay

- waiting points of r-p process: ¹⁵O, ¹⁸Ne, ³⁸Ca $\tau_{1/2}$ for β^+ decay: 122 s, 1.67 s, 0.44 s
- pessimistic prediction about possibility to bridge the waiting points by 2p capture (*J. Gorres et al*, Phys. Rev. C 51 (1995) 392)
- only sequential processes taken into account:

- ¹⁸Ne(2p, γ)²⁰Mg
 - ³⁸Ca(2p, γ)⁴⁰Ti omitted 0⁺ at 2100 keV (Q_{2p} = 550÷740 keV)

2011: Study of the ¹⁷Ne two-proton decay

M.J. Chromik et al. PRC66, 024313 (2002) $^{17}Ne+^{197}Au$, Coulomb excitation $\sigma_{3/2-} = 12.0^{+5.3}$ -3.9 mb $\tau_{2p} > 26 \text{ ps}$

¹⁸Ne(p,d)¹⁷Ne / ¹⁷Ne+p QFS

+ Theory and complex simulation of the experiment;
+ High energy resolution ∆E~250 keV (FWHM);
± Problem with a statistics: probability of 2p branch is ~10⁻⁵ for the 3/2- state
↓ ↓

I(¹⁸Ne)~5× 10⁴ / I(¹⁷Ne)~10³ S⁻¹

Table 1: Characteristics of in-flight RIB separators; $\delta_P = \Delta P/P$ is the momentum acceptance and $P/\Delta P$ is the first-order momentum resolution, obtained at a 1 mm object size.

		ACC	ACC-	LISE	A1900	RIPS	BigRIPS	FRS	SuperFRS
			2						
		FLNR, JINR		GANIL	MSU	RIKEN		GSI	
ΔΩ,	msr	0.9	5.8	1.0	8.0	5.0	8.0	0.32	5.0
δ _P ,	%	2.5	6.0	5.0	5.5	6.0	6.0	2.0	5.0
$P/\Delta P$,	a.u.	1000	2000	2200	2915	1500	3300	8600	3050
Bρ _{max} ,	Tm	3.2	3.9	3.2(4.3)	6.0	5.76	9.0	18	18
Length,	m	21	38	19(42)	35	21	77	74	140
E _{min} ,	A·MeV	10	5	40	110	50		220	
E _{max} ,	A·MeV	40	50	80	160	90	350	1000	1500

Conclusion and outlooks

- the RIB research at FLNR JINR is running
- unique experimental opportunities and theoretical background
- ACCULINNA group have an ambition to make FLNR famous in the world not only for *Super Heavy Elements* studies
- collaboration with *iTEMBA Lab* and *Stellenbosch University* is obviously seen and will continue

Thank you for your attention