AdS_{4} black holes and 3d Gauge Theories

Alberto Zaffaroni

Università di Milano-Bicocca

VII Round Table Italy-Russia, November 2015

[work in collaboration with F. Benini, K. Hristov]
F. Benini-AZ; arXiv 1504.03698
F. Benini-K.Hristov-AZ; arXiv 1511.04085
[Thanks to A. Tomasiello for many related discussions]

Introduction

In this talk I want to consider a two-faced story about 3d gauge theories and black holes.

Introduction

In this talk I want to consider a two-faced story about 3d gauge theories and black holes.

- I consider supersymmetric black holes in AdS_{4}

Introduction

In this talk I want to consider a two-faced story about 3d gauge theories and black holes.

- I consider supersymmetric black holes in AdS_{4}
- I relate the counting of their micro-states to a field theory computation

Introduction

One of the success of string theory is the microscopic counting of micro-states for a class of asymptotically flat black holes entropy [Vafa-Strominger'96]

- The black holes are realized by putting together D-branes, extended objects that have gauge theories on the world-volume
- The entropy is obtained by counting states in the corresponding gauge theory

Introduction

No similar result for AdS black holes. But AdS should be simpler and related to holography:

- A gravity theory in AdS_{d+1} is the dual description of a CFT_{d}

The entropy should be related to the counting of states in the dual CFT. People failed for AdS_{5} black holes (states in $\mathrm{N}=4 \mathrm{SYM}$).

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

- they arise in $\mathcal{N}=2$ gauged supergravity
- solutions asymptotic to magnetic AdS_{4} and with horizon $\mathrm{AdS}_{2} \times S^{2}$
- characterized by a collection of magnetic charges $\int_{S^{2}} F$

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

Some arise in truncation of M theory on $\mathrm{AdS}_{4} \times S^{7}$

- four abelian vectors $U(1)^{4} \subset S O(8)$ that come from the reduction on S^{7}.
- vacua of a $N=2$ gauged supergravity with 3 vector multiplets; one vector is the graviphoton.

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\begin{gathered}
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2} \\
F=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}} \\
e^{-\mathcal{K}(X)}=i\left(\bar{X}^{\wedge} F_{\Lambda}-X^{\wedge} \bar{F}_{\Lambda}\right)=\sqrt{16 X^{0} X^{1} X^{2} X^{3}} \\
X^{i}=\frac{1}{4}-\frac{\beta_{i}}{r}, \quad X^{0}=\frac{1}{4}+\frac{\beta_{1}+\beta_{2}+\beta_{3}}{r}
\end{gathered}
$$

with arbitrary parameters $\beta_{1}, \beta_{2}, \beta_{3}$.

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

The parameters are related to the magnetic charges supporting the black hole

$$
\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}_{3}, \mathfrak{n}_{4}, \quad \mathfrak{n}_{i}=\frac{1}{2 \pi} \int_{S^{2}} F^{(i)}, \quad \sum \mathfrak{n}_{i}=2
$$

by

$$
\begin{aligned}
& \mathfrak{n}_{1}=8\left(-\beta_{1}^{2}+\beta_{2}^{2}+\beta_{3}^{2}+\beta_{2} \beta_{3}\right), \\
& \mathfrak{n}_{2}=8\left(-\beta_{2}^{2}+\beta_{1}^{2}+\beta_{3}^{2}+\beta_{1} \beta_{3}\right), \\
& \mathfrak{n}_{3}=8\left(-\beta_{3}^{2}+\beta_{1}^{2}+\beta_{2}^{2}+\beta_{1} \beta_{2}\right) .
\end{aligned}
$$

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

Asymptotic to AdS_{4} for $r \gg 1$ and with horizon $\mathrm{AdS}_{2} \times S^{2}$ at some $r=r_{h}$

AdS_{4}
$\left.d s^{2} \sim \frac{d r^{2}}{r^{2}}+r^{2}\left(-d t^{2}+d \theta^{2}+\sin \theta^{2} d \phi^{2}\right)\right)$ $d s^{2} \sim-\left(r-r_{h}\right)^{2} d t^{2}+\frac{d r^{2}}{\left(r-r_{h}\right)^{2}}+\left(d \theta^{2}+\sin \theta^{2} d \phi^{2}\right)$

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

The entropy is the area of S^{2}

$$
S=-\frac{\pi}{G_{4}} \sqrt{X_{1}\left(r_{h}\right) X_{2}\left(r_{h}\right) X_{3}\left(r_{h}\right) X_{4}\left(r_{h}\right)} \sum_{a} \frac{\mathfrak{n}_{a}}{X_{a}\left(r_{h}\right)}
$$

for example, for $\mathfrak{n}_{1}=\mathfrak{n}_{2}=\mathfrak{n}_{3}$

$$
\sqrt{-1+6 \mathfrak{n}_{1}-6 \mathfrak{n}_{1}^{2}+\left(-1+2 \mathfrak{n}_{1}\right)^{3 / 2} \sqrt{-1+6 \mathfrak{n}_{1}}}
$$

AdS_{4} black holes

There are many BPS asymptotically AdS_{4} static black holes

$$
\mathrm{d} s^{2}=e^{\mathcal{K}(X)}\left(g r+\frac{c}{2 g r}\right)^{2} \mathrm{~d} t^{2}-\frac{e^{-\mathcal{K}(X)} \mathrm{d} r^{2}}{\left(g r+\frac{c}{2 g r}\right)^{2}}-e^{-\mathcal{K}(X)} r^{2} \mathrm{~d} s_{S^{2}}^{2}
$$

Supersymmetry is preserved by a twist

$$
\left(\nabla_{\mu}-i A_{\mu}\right) \epsilon=\partial_{\mu} \epsilon \quad \Longrightarrow \quad \epsilon=\operatorname{cost}
$$

AdS_{4} black holes

AdS black holes are dual to a topologically twisted CFT on $S^{2} \times S^{1}$ with background magnetic fluxes for the global symmetries

AdS_{4}

Partition function of twisted 3d CFT on $\mathrm{S}_{2} \mathrm{X}_{\mathrm{S}_{1}}$

QM fixed point

In one dimension more: [Benini-Bobev]

The background

Consider an $\mathcal{N}=2$ gauge theory on $S^{2} \times S^{1}$

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)+\beta^{2} d t^{2}
$$

with a background for the R-symmetry proportional to the spin connection:

$$
A^{R}=-\frac{1}{2} \cos \theta d \varphi=-\frac{1}{2} \omega^{12}
$$

so that the Killing spinor equation

$$
D_{\mu} \epsilon=\partial_{\mu} \epsilon+\frac{1}{4} \omega_{\mu}^{a b} \gamma_{a b} \epsilon-i A_{\mu}^{R} \epsilon=0 \quad \Longrightarrow \quad \epsilon=\mathrm{const}
$$

The background

This is just a topological twist. [Witten '88]

The result becomes interesting when supersymmetric backgrounds for the flavor symmetry multiplets $\left(A_{\mu}^{F}, \sigma^{F}, D^{F}\right)$ are turned on:

$$
u^{F}=A_{t}^{F}+i \sigma^{F}, \quad \quad q^{F}=\int_{S^{2}} F^{F}=i D^{F}
$$

and the path integral, which can be exactly computed by localization, becomes a function of a set of magnetic charges q^{F} and chemical potentials u^{F}.

A topologically twisted index

The path integral can be re-interpreted as a twisted index: a trace over the Hilbert space \mathcal{H} of states on a sphere in the presence of a magnetic background for the R and the global symmetries,

$$
\begin{aligned}
\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{i J_{F} A^{F}} e^{-\beta H}\right) & \\
& Q^{2}=H-\sigma^{F} J_{F} \\
& \text { holomorphic in } u^{F}
\end{aligned}
$$

where J_{F} is the generator of the global symmetry.

Localization

Exact quantities in supersymmetric theories with a charge $Q^{2}=0$ can be obtained by a saddle point approximation

$$
Z=\int e^{-S}=\int e^{-S+t\{Q, V\}} \underset{t \gg 1}{ }=e^{-\bar{S}_{\text {class }}} \times \frac{\operatorname{det}_{\text {fermions }}}{\operatorname{det}_{\text {bosons }}}
$$

Very old idea that has become very concrete recently, with the computation of partition functions on spheres and other manifolds supporting supersymmetry.

The partition function

The path integral for an $\mathcal{N}=2$ gauge theory on $S^{2} \times S^{1}$ with gauge group G localizes on a set of BPS configurations specified by data in the vector multiplets $V=\left(A_{\mu}, \sigma, \lambda, \lambda^{\dagger}, D\right)$

- A magnetic flux on $S^{2}, \mathfrak{m}=\frac{1}{2 \pi} \int_{S^{2}} F$ in the co-root lattice
- A Wilson line A_{t} along S^{1}
- The vacuum expectation value σ of the real scalar

Up to gauge transformations, the BPS manifold is

$$
\left(u=A_{t}+i \sigma, \mathfrak{m}\right) \in \mathcal{M}_{\mathrm{BPS}}=\left(H \times \mathfrak{h} \times \Gamma_{\mathfrak{h}}\right) / W
$$

The partition function

The path integral reduces to a the saddle point around the BPS configurations

$$
\sum_{\mathfrak{m} \in \Gamma_{\mathfrak{h}}} \int \operatorname{dud} \bar{u} \mathcal{Z}^{\mathrm{cl}+1-\text { loop }}(u, \bar{u}, \mathfrak{m})
$$

- The integrand has various singularities where chiral fields become massless
- There are fermionic zero modes

The two things nicely combine and the path integral reduces to an r-dimensional contour integral of a meromorphic form

$$
\frac{1}{|W|} \sum_{\mathfrak{m} \in \Gamma_{\mathfrak{h}}} \oint_{C} z_{\text {int }}(u, \mathfrak{m})
$$

The partition function

- In each sector with gauge flux \mathfrak{m} we have a a meromorphic form

$$
\begin{gathered}
Z_{\text {int }}(u, \mathfrak{m})=Z_{\text {class }} Z_{1 \text {-loop }} \\
Z_{\text {class }}^{\text {CS }}=x^{k \mathfrak{m}} \\
Z_{1 \text {-loop }}^{\text {chiral }}=\prod_{\rho \in \mathfrak{R}}\left[\frac{x^{\rho / 2}}{1-x^{\rho}}\right]^{\rho(\mathfrak{m})-q+1} \\
Z_{1 \text {-loop }}^{\text {gauge }}=\prod_{\alpha \in G}\left(1-x^{\alpha}\right)(i d u)^{r}
\end{gathered}
$$

- Supersymmetric localization selects a particular contour of integration C and picks some of the residues of the form $Z_{\text {int }}(u, \mathfrak{m})$.
[Jeffrey-Kirwan residue - similar to Benini,Eager,Hori,Tachikawa '13; Hori,Kim,Yi '14]

A Simple Example: SQED

The theory has gauge group $U(1)$ and two chiral Q and \tilde{Q}

$$
\begin{gathered}
Z=\sum_{\mathfrak{m} \in \mathbb{Z}} \int \frac{d x}{2 \pi i x}\left(\frac{x^{\frac{1}{2}} y^{\frac{1}{2}}}{1-x y}\right)^{\mathfrak{m}+\mathfrak{n}}\left(\frac{x^{-\frac{1}{2}} y^{\frac{1}{2}}}{1-x^{-1} y}\right)^{-\mathfrak{m}+\mathfrak{n}} \\
\\
\hline Q \\
\hline Q \\
\tilde{Q} \\
\hline(1)_{g} \\
-1
\end{gathered}{U(1)_{A}}^{1} \begin{aligned}
& U(1)_{R} \\
& \hline
\end{aligned}
$$

A Simple Example: SQED

The theory has gauge group $U(1)$ and two chiral Q and \tilde{Q}

$$
\begin{gathered}
Z=\sum_{\mathfrak{m} \in \mathbb{Z}} \int \frac{d x}{2 \pi i x}\left(\frac{x^{\frac{1}{2}} y^{\frac{1}{2}}}{1-x y}\right)^{\mathfrak{m}+\mathfrak{n}}\left(\frac{x^{-\frac{1}{2}} y^{\frac{1}{2}}}{1-x^{-1} y}\right)^{-\mathfrak{m}+\mathfrak{n}} \\
\begin{array}{c|ccc}
& U(1)_{g} & U(1)_{A} & U(1)_{R} \\
\hline \dot{Q} & 1 & 1 & 1 \\
\mathbb{Q} & -1 & 1 & 1
\end{array}
\end{gathered}
$$

Consistent with duality with three chirals with superpotential $X Y Z$

$$
Z=\left(\frac{y}{1-y^{2}}\right)^{2 \mathfrak{n}-1}\left(\frac{y^{-\frac{1}{2}}}{1-y^{-1}}\right)^{-\mathfrak{n}+1}\left(\frac{y^{-\frac{1}{2}}}{1-y^{-1}}\right)^{-\mathfrak{n}+1}
$$

A Simple Example: SQED

The theory has gauge group $U(1)$ and two chiral Q and \tilde{Q}

$$
\begin{gathered}
Z=\sum_{\mathfrak{m} \in \mathbb{Z}} \int \frac{d x}{2 \pi i x}\left(\frac{x^{\frac{1}{2}} y^{\frac{1}{2}}}{1-x y}\right)^{\mathfrak{m}+\mathfrak{n}}\left(\frac{x^{-\frac{1}{2}} y^{\frac{1}{2}}}{1-x^{-1} y}\right)^{-\mathfrak{m}+\mathfrak{n}} \\
\begin{array}{c|ccc}
& U(1)_{g} & U(1)_{A} & U(1)_{R} \\
\hline \hat{Q} & 1 & 1 & 1 \\
\dot{Q} & -1 & 1 & 1
\end{array}
\end{gathered}
$$

The index adds to and complete the list of existing tools (superconformal indices, sphere partition functions) for testing dualities.

Going back to the black hole

The dual field theory to $\mathrm{AdS}_{4} \times S^{7}$ is known: is the ABJM theory with gauge group $U(N) \times U(N)$

with quartic superpotential

$$
W=A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}
$$

defined on twisted $S^{2} \times \mathbb{R}$ with magnetic fluxes \mathfrak{n}_{i} for the $\mathbb{R} /$ global symmetries

$$
S U(2)_{A} \times S U(2)_{B} \times U(1)_{B} \times U(1)_{R} \subset S O(8)
$$

The dual field theory

The ABJM twisted index is

$$
\begin{aligned}
& Z=\frac{1}{(N!)^{2}} \sum_{\mathfrak{m}, \tilde{\mathfrak{m}} \in \mathbb{Z}^{N}} \int \prod_{i=1}^{N} \frac{d x_{i}}{2 \pi i x_{i}} \frac{d \tilde{x}_{i}}{2 \pi i \tilde{x}_{i}} x_{i}^{k \mathfrak{m}_{i}} \tilde{x}_{i}^{-k \tilde{\mathfrak{m}}_{i}} \times \prod_{i \neq j}^{N}\left(1-\frac{x_{i}}{x_{j}}\right)\left(1-\frac{\tilde{x}_{i}}{\tilde{x}_{j}}\right) \times \\
& \times \prod_{i, j=1}^{N}\left(\frac{\sqrt{\frac{x_{i}}{\tilde{x}_{j}} y_{1}}}{1-\frac{x_{i}}{\tilde{x}_{j}} y_{1}}\right)^{\mathfrak{m}_{i}-\widetilde{\mathfrak{m}}_{j}-\mathfrak{n}_{1}+1}\left(\frac{\sqrt{\frac{x_{i}}{\tilde{x}_{j}} y_{2}}}{1-\frac{x_{i}}{\tilde{x}_{j}} y_{2}}\right)^{\mathfrak{m}_{i}-\widetilde{\mathfrak{m}}_{j}-\mathfrak{n}_{2}+1} \\
&\left(\frac{\sqrt{\frac{\tilde{x}_{j}}{x_{i}} y_{3}}}{1-\frac{\tilde{x}_{j}}{x_{i}} y_{3}}\right)^{\widetilde{\mathfrak{m}}_{j}-\mathfrak{m}_{i}-\mathfrak{n}_{3}+1}\left(\frac{\sqrt{\frac{\tilde{x}_{j}}{x_{i}} y_{4}}}{1-\frac{\tilde{x}_{j}}{x_{i}} y_{4}}\right)^{\widetilde{\mathfrak{m}}_{j}-\mathfrak{m}_{i}-\mathfrak{n}_{4}+1}
\end{aligned}
$$

where $\mathfrak{m}, \widetilde{\mathfrak{m}}$ are the gauge magnetic fluxes and y_{i} are fugacities for the three independent $U(1)$ global symmetries $\left(\prod_{i} y_{i}=1\right)$

The dual field theory

Strategy:

- Re-sum geometric series in $\mathfrak{m}, \widetilde{\mathfrak{m}}$.

$$
Z=\int \frac{d x_{i}}{2 \pi i x_{i}} \frac{d \tilde{x}_{i}}{2 \pi i \tilde{x}_{i}} \frac{f\left(x_{i}, \tilde{x}_{i}\right)}{\prod_{j=1}^{N}\left(e^{i B_{i}}-1\right) \prod_{j=1}^{N}\left(e^{i \widetilde{B}_{j}}-1\right)}
$$

- Find the zeros of denominator $e^{i B_{i}}=e^{i \tilde{B}_{j}}=1$ at large N
- Evaluate the residues at large N

$$
Z \sim \sum_{l} \frac{f\left(x_{i}^{(0)}, \tilde{x}_{i}^{(0)}\right)}{\operatorname{det} \mathbb{B}}
$$

The large N limit

Step 2: solve the large N Limit of algebraic equations giving the positions of poles

$$
1=x_{i}^{k} \prod_{j=1}^{N} \frac{\left(1-y_{3} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{4} \frac{\tilde{x}_{j}}{x_{i}}\right)}{\left(1-y_{1}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{2}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)}=\tilde{x}_{j}^{k} \prod_{i=1}^{N} \frac{\left(1-y_{3} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{4} \frac{\tilde{x}_{j}}{x_{i}}\right)}{\left(1-y_{1}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{2}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)}
$$

with an ansatz

$$
\log x_{i}=i \sqrt{N} t_{i}+v_{i}, \quad \log \tilde{x}_{i}=i \sqrt{N} t_{i}+\tilde{v}_{i}
$$

The large N limit

Step 3: plug into the partition function. The final result is surprisingly simple

$$
\mathbb{R e} \log Z=-\frac{1}{3} N^{3 / 2} \sqrt{2 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{a} \frac{\mathfrak{n}_{a}}{\Delta_{a}} \quad y_{i}=e^{i \Delta_{i}}
$$

The main result

The index is:

$$
\mathbb{R e} \log Z=-\frac{1}{3} N^{3 / 2} \sqrt{2 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{a} \frac{\mathfrak{n}_{a}}{\Delta_{a}} \quad y_{i}=e^{i \Delta_{i}}
$$

This function can be extremized with respect to the Δ_{i} and

$$
\left.\mathbb{R e} \log Z\right|_{\text {crit }}\left(\mathfrak{n}_{i}\right)=\text { BH Entropy }\left(\mathfrak{n}_{i}\right)
$$

$$
\left.\Delta_{i}\right|_{\text {crit }} \sim X^{i}\left(r_{h}\right)
$$

The main result

Compare the field theory formula

$$
\mathbb{R e} \log Z=-\frac{1}{3} N^{3 / 2} \sqrt{2 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{a} \frac{\mathfrak{n}_{a}}{\Delta_{a}}
$$

with the gravity one

$$
S=-\frac{\pi}{G_{4}} \sqrt{X_{1}\left(r_{h}\right) X_{2}\left(r_{h}\right) X_{3}\left(r_{h}\right) X_{4}\left(r_{h}\right)} \sum_{a} \frac{\mathfrak{n}_{a}}{X_{a}\left(r_{h}\right)}
$$

Attractor mechanism

The BPS equations at the horizon imply that, in our gauge, the quantity

$$
\mathcal{R}=\left(F_{\wedge} p^{\wedge}-X^{\wedge} q_{\wedge}\right)
$$

with (q, p) electric and magnetic charges, is extremized with respect to the scalar fields at the horizon and

$$
S=|\mathcal{R}|
$$

For us $p^{\wedge}=\mathfrak{n}^{\wedge}$ and $q_{\wedge}=0$ and

$$
F_{\Lambda}=-\frac{i}{X^{\Lambda}} \sqrt{X^{0} X^{1} X^{2} X^{3}}
$$

R-symmetry mixing

The extremization reflects exactly what's going on in the bulk. The graviphoton field strength depends on r

$$
T_{\mu \nu}=e^{K / 2} X^{\wedge} F_{\Lambda, \mu \nu}
$$

suggesting that the R -symmetry is different in the IR and indeed

$$
\left.\Delta_{i}\right|_{\text {crit }} \sim X^{i}\left(r_{h}\right)
$$

R-symmetry extremization

Some QFT extremization is at work? symmetry enhancement at the horizon AdS_{2}

$$
\mathrm{QM}_{1} \rightarrow \mathrm{CFT}_{1}
$$

The twisted index depends on Δ_{i} because we are computing the trace

$$
\operatorname{Tr}_{\mathcal{H}}(-1)^{F} e^{i \Delta_{i} J_{i}} \equiv \operatorname{Tr}_{\mathcal{H}}(-1)^{R}
$$

where $R=F+\Delta_{i} J_{i}$ is a possible R-symmetry of the system.

- R is the exact R -symmetry at the superconformal point
- Natural thing to extremize: in even dimensions central charges are extremized, in odd partition functions...

Conclusions

The main message of this talk is that you can related the entropy of a class of AdS_{4} black holes to a microscopic counting of states.

- first time for AdS black holes

Conclusions

The main message of this talk is that you can related the entropy of a class of AdS_{4} black holes to a microscopic counting of states.

- first time for AdS black holes

But don't forget that we also gave a general formula for the topologically twisted path integral of $2 \mathrm{~d}(2,2), 3 \mathrm{~d} \mathcal{N}=2$ and $4 \mathrm{~d} \mathcal{N}=1$ theories.

- Efficient quantum field theory tools for testing dualities.
- With many field theory questions/generalizations

