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Models with scalar fields are very useful to describe the observable
evolution of the Universe as the dynamics of the spatially flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) background with

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

and cosmological perturbations.
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Friedmann–Lemâıtre–Robertson–Walker (FLRW) background with

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

and cosmological perturbations.

Also scalar-tensor formulations of the many modified gravity models are
given by models with scalar fields.

The confirmed discovery of the Higgs boson at the Large Hadron Collider
(CERN) has initiated an intense research activity with the aim to
understand the cosmological implications of this fundamental scalar field.
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NON-MINIMAL COUPLING

Models with non-minimally coupled scalar fields are interesting because
of their connection with the particle physics.
There are models of inflation, where the role of the inflaton is played by
the Higgs field non-minimally coupled to gravity. (F.L. Bezrukov and
M. Shaposhnikov, Phys. Lett. B 659 (2008) 703–706, arXiv:0710.3755).
The inflationary parameters obtained in this model are in good agreement
with the most recent and accurate observational data (PLANCK’2015).
At the same time, the predictions of the simplest inflationary models with
a minimally coupled scalar field lead to sufficiently large values of the
tensor-to-scalar ratio of the density perturbations r , and are ruled out by
Planck data.
Inflationary scenarios with a minimally coupled scalar field can be
improved by adding a tiny non-minimal coupling of the inflaton field to
gravity. This is not so artificial since the non-minimal Rφ2 term is always
induced by quantum corrections.
Generic quantum corrections to the action of the scalar field minimally
coupled to gravity include the term, proportional to φ2R .
N.A. Chernikov, E.A. Tagirov, Annales Poincare Phys. Theor. A 9 (1968)
109.
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INTEGRABLE COSMOLOGICAL MODELS

The use of the FLRW metric essentially simplify the Einstein equations.
But, only a few cosmological models with scalar fields are integrable.
P. Fré, A. Sagnotti, A.S. Sorin,
Nucl. Phys. B 877 (2013) 1028, arXiv:1307.1910.
Integrable cases are rare but do exist and can provide a lot of unexpected
information that illuminates also the Physics behind the non-integrable
cases.
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The use of the FLRW metric essentially simplify the Einstein equations.
But, only a few cosmological models with scalar fields are integrable.
P. Fré, A. Sagnotti, A.S. Sorin,
Nucl. Phys. B 877 (2013) 1028, arXiv:1307.1910.
Integrable cases are rare but do exist and can provide a lot of unexpected
information that illuminates also the Physics behind the non-integrable
cases.

Our goal is to find integrable model with non-minimal coupling using the
knowledge of integrable models with minimal coupling.
To do this we use the FLRW metric with a parametric time and find the
correspondence between potentials and lapse functions in the Einstein
and Jordan frames.
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HOW TO INTEGRATE A COSMOLOGICAL MODEL?

The standard way to integrate a cosmological model is as follows:

to use the FLRW metric with a parametric time

ds2 = N2(τ)dτ2 − a2(τ)
(

dx21 + dx22 + dx23
)

.

to guess a suitable lapse function N(τ).

to simplify (for example, linearize) equations, introducing new
depending variables.

to get the general solution.
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CONFORMAL TRANSFORMATION

S =

∫

d4x
√−g

[

U(σ)R − 1

2
gµνσ,µσ,ν + V (σ)

]

. (1)

where U(σ) and V (σ) are differentiable functions of the scalar field σ.
Flat Friedmann space-time with the interval

ds2 = N2(τ)dτ2 − a2(τ)
(

dx21 + dx22 + dx23
)

, (2)

where a(τ) is the cosmological radius and N(τ) is the lapse function.
Let us make the conformal transformation of the metric

gµν =
U0

U
g̃µν ,

where U0 is a constant, and introduce a new scalar field σ such that

d ϕ̃

dσ
=

√

U0(U + 3U ′2)

U
⇒ ϕ̃ =

∫

√

U0(U + 3U ′2)

U
dσ. (3)
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In this case the action (1) becomes the action for a minimally coupled
scalar field:

S =

∫

d4x
√

−g̃

[

U0R(g̃)−
1

2
g̃µνϕ̃,µϕ̃,ν +W (ϕ̃)

]

, (4)

where

W (ϕ̃) =
U2
0V (σ(ϕ̃))

U2(σ(ϕ̃))
. (5)

The FLRW metric (2) becomes

ds2 = Ñ2dτ2 − ã2
(

dx21 + dx22 + dx23
)

,

where

Ñ =

√

U

U0
N , ã =

√

U

U0
a.
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EQUATIONS WITH PARAMETRIC TIME

6Uȧ2

a2
+

6U ′ȧσ̇

a
=

1

2
σ̇2 + N2V . (6)

4Uä

a
+
2Uȧ2

a2
+
4U ′ȧσ̇

a
− 4UȧṄ

aN
+2U ′′σ̇2+2U ′σ̈− 2U ′σ̇Ṅ

N
= − 1

2
σ̇2+N2V .

(7)
The variation with respect to σ gives the Klein–Gordon equation:

σ̈ +

(

3
ȧ

a
− Ṅ

N

)

σ̇ − 6U ′

[

ä

a
+

ȧ2

a2

]

+ 6
ȧṄ

aN
U ′ + N2V ′ = 0. (8)
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FRIEDMANN EQUATIONS

In the Einstein frame we have the following equations:

6U0h̃
2 =

1

2
˙̃ϕ2 + Ñ2W , (9)

4U0
˙̃h + 6U0h̃

2 − 4U0h̃
˙̃N

Ñ
= −1

2
˙̃ϕ2 + Ñ2W , (10)

¨̃ϕ+

(

3h̃−
˙̃N

Ñ

)

˙̃ϕ+ Ñ2W,ϕ̃ = 0, (11)

where h̃ ≡ ˙̃a/ã.

N(τ) =

√

U0

U(σ[ϕ̃(τ)])
Ñ(τ).
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THE GENERAL ALGORITHM

Let us suppose that for some potential W we know the general exact
solution of the system of equations (9)–(11): ϕ̃(τ), ã(τ), Ñ(τ).
We also suppose that the function σ(ϕ̃) is known explicitly.
In this case, we can also find the general solution of the system of
equations (6)–(8) with the potential

V (σ) =
U2(σ)W (ϕ̃(σ))

U2
0

, (12)

because we know σ(ϕ̃(τ)), so we easily obtain

a(τ) =

√

U0

U(σ(ϕ̃(τ))
ã(τ), N(τ) =

√

U0

U(σ(ϕ̃(τ))
Ñ(τ).

Sometimes really need only we know

N(τ) =

√

U0

U(σ(ϕ̃(τ))
Ñ(τ).

It is the most important information.
After this we consider only equations in the Jordan frame and linearize
them.
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TWO EXAMPLES OF U(σ)

Let us consider the induced gravity with

U(σ) =
1

2
ξσ2. (13)

In this model

ϕ̃ =

√

2U0(1 + 6ξ)

ξ
ln

[

σ

σ0

]

and σ = σ0e

√

ξ
2U0(1+6ξ) ϕ̃. (14)

We put ξ 6= −1/6, because at ξ = −1/6 we have U + 3U ′2 = 0 and
nontrivial solutions exist for the potential V = V0σ

4 only.
(I.Ya. Aref’eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. Vernov,
Class. Quantum Grav. 31 (2014) 065007 [arXiv:1206.2801])
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THE SPECIAL CASE 3U ′2 + U = 0.

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

Is means N = 1, so

6UH2 + 6U̇H =
1

2
σ̇2 + V , (15)

2U
(

2Ḣ + 3H2
)

= − σ̇2

2
− 2Ü − 4HU̇ + V , (16)

σ̈ + 3H σ̇ − 6U ′
(

Ḣ + 2H2
)

+ V ′ = 0 . (17)

From Eqs. (15)–(17) we get the following system:

σ̇ = ψ, ψ̇ = − 3Hψ −
[

(6U ′′ + 1)ψ2 − 4V
]

U ′ + 2UV ′

2 (3U ′2 + U)
,

Ḣ = − 2U ′′ + 1

4(3U ′2 + U)
ψ2 +

2U ′Hψ

3U ′2 + U
− 6U ′2H2

3U ′2 + U
+

U ′V ′

2(3U ′2 + U)
.

(18)

In the case 3U ′2 + U = 0 system (18) is not valid!
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In the case ξ = −1/6 we consider models with

Uc = U0 −
σ2

12
, (19)

In this case

ϕ̃ =
√

3U0 ln

[
√
12U0 + σ√
12U0 − σ

]

and σ =
√

12U0 tanh

[

ϕ̃√
12U0

]

. (20)

Physical applications:
K. Bamba, Sh. Nojiri, S.D. Odintsov, D. Sáez-Gómez,
Phys. Lett. B 730 (2014) 136–140 [arXiv:1401.1328]
B. Boisseau, H. Giacomini, D. Polarski and A.A. Starobinsky,
JCAP 1507 (2015) 002 [arXiv:1504.07927]
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EXPONENTIAL POTENTIAL

Let us consider the cosmological model with a minimally coupled scalar
field and the exponential potential:

W = W0e
2
√
3λϕ̃, (21)

where λ 6= ±1.
D.S. Salopek and J.R. Bond, Phys. Rev. D 42 (1990) 3936–3962.
In the induced gravity model the corresponding potential is

V (σ) = 4W0ξ
2σ4

(

σ

σ0

)λ
√

6(1+6ξ)
ξ

= 4W0ξ
2σ4

(

σ

σ0

)6λΓ

.

where Γ ≡
√

1+6ξ
6ξ .

In the model including the Hilbert–Einstein curvature term plus a scalar
field conformally coupled to gravity

V = W0

[

1− σ2

3

]2
(√

3 + σ√
3− σ

)3λ

= W0ΘΥ3λ, Θ ≡
[

1− σ2

3

]2

,Υ ≡
√
3 + σ√
3− σ

.
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Table: POTENTIALS OF INTEGRABLE MODELS

W (minimal coupling) V (induced gravity) V (conformal coupling)

c0e
2
√
3λϕ̃ c̃0σ

4+6λΓ c0ΘΥ3λ

c0 + c1e
√
3ϕ̃ + c2e

−
√
3ϕ̃ c̃0σ

4 + c̃1σ
4+3Γ + c̃2σ

4−3Γ Θ
[

c0 + c1Υ
3
2 + c2Υ

− 3
2

]

c1e
2
√
3λϕ̃ + c2e

√
3(λ+1)ϕ̃ c̃1σ

4+6λΓ + c̃2σ
4+3(λ+1)Γ Θ

[

c1Υ
3λ + c2Υ

3
2 (λ+1)

]

c1e
2
√
3ϕ̃ + c2 σ4

[

c̃1σ
6Γ + c̃2

]

Θ
[

c1Υ
3 + c2

]

c0ϕ̃e
2
√
3ϕ̃

√
3Γc̃0σ

4+6Γ ln
[

σ
σ0

] √
3
2 c0ΘΥ3 ln (Υ)

c1e
2
√
3λϕ̃ + c2e

2
√

3
λ

ϕ̃ σ4
[

c̃1σ
6λΓ + c̃2σ

6 Γ
λ

]

Θ
[

c1Υ
3λ + c2Υ

3
λ

]

In Table 1 we present the list of the potentials of integrable cosmological
models. We put U0 = 1/4. The constants c̃i = 4ξ2ci , λ 6= ±1, λ 6= 0.
P. Fré, A. Sagnotti, A.S. Sorin, arXiv:1307.1910 (minimal coupling).
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Table: Lapse functions for integrable cases

Ñ (minimal coupling) N (induced gravity) N (conformal coupling)

1
√
6√
c0
e−

√
3λϕ̃

√
3√
ξc0
σ−3λΓ−1

√

18
c0(3−σ2)Υ

−3λ/2

2 1
√
2√
ξσ

√

3
3−σ2

3 e−
√
3λϕ̃ 1√

2ξ
σ−3Γλ−1

√

3
3−σ2 Υ

−3λ/2

4 e−
√
3ϕ̃ 1√

2ξ
σ−3Γ−1

√

3
3−σ2 Υ

−3/2

5
e−2

√
3ϕ̃

ã3
9(Γ2−1)2

a3σ4

(

σ
σ0

)−6Γ
9
a3

(
√
3−σ)

(
√
3+σ)5

6 ã3 σ2
a
3

3(Γ2−1)

(

1− σ2

3

)2

a3

A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi, and
S.Yu. V., Class. Quant. Grav. 31 (2014) 105003, arXiv:1312.3540
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ONE INTERESTING EXAMPLE

Let us consider the model with a minimally coupled scalar field

W (φ) = 2U0Λ cosh4
(

φ

2
√
3U0

)

− 144U2
0c sinh

4

(

φ

2
√
3U0

)

. (22)

Make the conformal transformation and get the corresponding model with

Uc = U0 −
σ2

12
, Vc = 2U0Λ− cσ4 , (23)

It is easy to show that the Ricci scalar Rc = 4Λ, so it the second integral
of motion and the system is integrable one.
The integrability of the system with minimal coupled scalar field has been
proved in
Bars I., Chen S. H., 2011, Phys. Rev. D 83 043522 (arXiv:1004.0752)
Bars I., Chen S. H., Turok N., 2011, Phys. Rev. D 84 083513
(arXiv:1105.3606)
by another way.
The existence of the integrable system with Uc and Vc has been found in
Boisseau B., Giacomini H., Polarski D., Starobinsky A.A., 2015, J.
Cosmol. Astropart. Phys. 1507 002 (arXiv:1504.07927).
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Integrable model with a constant R

Recently the following model with nonminimal coupling has been
proposed:
B. Boisseau, H. Giacomini, D. Polarski and A.A. Starobinsky,
Bouncing Universes in Scalar-Tensor Gravity Models admitting Negative
Potentials, JCAP 1507 (2015) 002, arXiv:1504.07927
The function U is given by (23):

U = U0 −
σ2

12
,

the potential
V = 2U0Λ− cσ4,

c > 0, U0 > 0, Λ > 0.

R = 6(Ḣ + 2H2) = 4Λ, H =

√

Λ

3
tanh

(

√

2Λ

3
(t − t0)

)

,

where t is the cosmic time.
It is a bounce solution!
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After conformal transformation to the Einstein frame this model
coincides with one of models from the Fré–Sagnotti–Sorin paper.
The potential in the Einstein frame is

W = C1 cosh(γϕ̃)
2/γ−2 + C2 sinh(γϕ̃)

2/γ−2, (24)

at γ = 1/3.
B. Boisseau, H. Giacomini and D. Polarski, JCAP 1510 (2015) 033
(arXiv:1507.00792).
The integrable cosmological models can be interesting to describe a
possible evolution of the Universe.
The integrability is invariant under conformal transformation of the
metric.
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coincides with one of models from the Fré–Sagnotti–Sorin paper.
The potential in the Einstein frame is

W = C1 cosh(γϕ̃)
2/γ−2 + C2 sinh(γϕ̃)

2/γ−2, (24)

at γ = 1/3.
B. Boisseau, H. Giacomini and D. Polarski, JCAP 1510 (2015) 033
(arXiv:1507.00792).
The integrable cosmological models can be interesting to describe a
possible evolution of the Universe.
The integrability is invariant under conformal transformation of the
metric.

The behavior of the Hubble parameter are different in different frames.
For example, it can has a bounce solution in the Jordan frame only.
It is possible that the model with a non-minimal coupling is more easy
integrable and/or more applicable to cosmology than the corresponding
model with a minimal coupling.
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Generalization of the integrable model

Let us make the conformal transformation of the integrable model with
the potential W , given by (24).
We get integrable models with Uc and

Vc(σ) =
c1

144U2
02

2(1−β)
β

[(
√
12U0 + σ)3β + (

√
12U0 − σ)3β ]

2(1−β)
β

(12U0 − σ2)1−3β
−

+
c2

144U2
02

2(1−β)
β

[(
√
12U0 + σ)3β − (

√
12U0 − σ)3β ]

2(1−β)
β

(12U0 − σ2)1−3β
.

(25)
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We also can get integrable models with other function U .
The corresponding induced gravity model with

U(σ) =
1

2
ξσ2.

has the following potential:

Vind =
9γ2σ̃4

4

[

(b + c)

(

[

σ̃

σ̃0

]4Γ

+

[

σ̃

σ̃0

]−4Γ

+ 6

)

+

+ 4(b − c)

(

[

σ̃

σ̃0

]2Γ

+

[

σ̃

σ̃0

]−2Γ
)]

.

A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi,
S.Yu. Vernov, arXiv:1509.00590.
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GENERAL SOLUTIONS

The minisuperspace Lagrangian, generating the Friedmann equations (9),
(10) and the Klein-Gordon equation (11) is

L =
6
(

˙̃a
)2

ãU0

Ñ
− ã3φ̇2

2Ñ
+ ÑW ã3. (26)

If one considers the potential (24) and chooses the lapse functions

Ñ =
4U0

3β2
ã3−6β,

then the Lagrangian has the following form:

L =
9

2
β2 ˙̃a2ã6β−2 − 3β2ã6βφ̇2

8U0
+

4U0

3β2
Wã6−6β. (27)
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Let us introduce new variables x and y defined as

ã6β = xy , exp

(

6β√
12U0

φ

)

=
x

y
, (28)

then the Lagrangian (27) takes the form

L =
1

2
ẋ ẏ +

4U0

3β2
(xy)

1−β
β W . (29)

For the potential W , given by (24), we finally obtain, on introducing
another couple of independent variables

ξ =
x + y

2
, η =

x − y

2
(30)

the following simple expression for the Lagrangian:

L =
ξ̇2 − η̇2

2
+

4U0

3β2

(

c1ξ
2(1−β)

β + c2η
2(1−β)

β

)

. (31)
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The corresponding Euler-Lagrange equations are

ξ̈− c1
4U0

3β2

(

2(1− β)

β

)

ξ
2
β
−3 = 0, η̈+ c2

4U0

3β2

(

2(1− β)

β

)

η
2
β
−3 = 0.

Their first integrals are

ξ̇2

2
− c1

4U0

3β2
ξ

2(1−β)
β = E1,

η̇2

2
+ c2

4U0

3β2
η

2(1−β)
β = E2. (32)

These equations have solutions by quadrature. For β = 1/3 one obtains
the solutions in terms of elliptic functions
(I. Bars and S-H. Chen, Phys. Rev. D 83 (2011) 043522).
It immediately follows from the Friedmann equations that E1 = E2.
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We can now find the cosmological variables

ã =
(

ξ2 − η2
)1/(6β)

, Ñ =
4U0

3β2

(

ξ2 − η2
)(1−2β)/(2β)

, φ =

√
3U0

3β
ln

[

ξ + η

ξ − η

]

.
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We can now find the cosmological variables

ã =
(

ξ2 − η2
)1/(6β)

, Ñ =
4U0

3β2

(

ξ2 − η2
)(1−2β)/(2β)

, φ =

√
3U0

3β
ln

[

ξ + η

ξ − η

]

.

One can also write down the expressions for the solutions of the
corresponding models with non-minimal coupling:

ac =
1

2

(

(ξ + η)1/(3β) + (ξ − η)1/(3β)
)

,

Nc =
2U0

3β2

(

(ξ + η)1/(3β) + (ξ − η)1/(3β)
)

(

ξ2 − η2
)2(1−3β)/(3β)

,

σc =
√

12U0
(ξ + η)1/(3β) − (ξ − η)1/(3β)

(ξ + η)1/(3β) + (ξ − η)1/(3β)

for the model with Uc and Vc .
If β = 1/3, then

ac = ξ. (33)

25 / 31



BOUNCE SOLUTIONS

The strong curvature singularity arising in the past of our Universe in
FLRW models may not be avoided in generic solutions of the Einstein
gravity with minimally coupled scalar fields.
The bounce solution corresponds to expanding universe after a
contraction.
H < 0 before bounce, H = 0 at the bounce, and H > 0 after the bounce.
In the FLRW metric

w(t) ≡ p

̺
= − 1− 2

3

Ḣ

H2
, (34)

where H is the Hubble parameter, p is the pressure and ̺ of an ideal
cosmic fluid.
For a bounce solution there exist t0, such that H(tB) = 0 and Ḣ(tB) > 0.
So, just after the bounce w(tB) < −1 and the NEC is violated.
A minimal coupling field σ should be a phantom or Galileons one to get a
bounce solution.
A nonminimal coupling field σ can be the standard scalar field.
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The model can has bounce at t = t0 if V (σ(t0) < 0).
If h = 0, then

1

2
σ̇2 + N2V = 0,

4Uḣ+
1

6
σ̇2 − 1

3
σσ̈ − N2V = 0,

σ̈ + σḣ + N2V ′ = 0.

We obtain

ḣ =
N2

12U0
(4V − σV ′) .

Therefore, bounce conditions are

4V − σV ′ > 0, V < 0. (35)

at the bounce point.
We always assume U > 0.
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For the case β = 1/3, the potential (25) can be written as

V = V1 + V2σ
4. (36)

We obtain the conditions

V1 > 0, V2 < 0.

Also, Uc(σB ) > 0.
B. Boisseau, H. Giacomini, D. Polarski and A.A. Starobinsky,
JCAP 1507 (2015) 002, arXiv:1504.07927.
For the case β = 1, the potential (25) can be written as

V = V0

(

U0 −
σ2

12

)2

. (37)

We obtain
V0 < 0, 12U0 − σ2 < 0 . (38)

This expression is positive if σ2 > 12U0, so, Uc < 0.
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Another interesting case is β = 2/3. In this case the potential can be
written as

V = V0(12U0 − σ2)(σ2 + 12U0 + 2V1σ). (39)

We shall limit ourselves by consideration of a few particular values of the
constant V1.
If

V1 = −
√

12U0,

then the potential V can be written down as

V = V0(σ
2 − 12U0)(σ −

√

12U0)
2,

In this case two conditions of the existence of bounce are compatible if

V0 < 0, σ >
√

12U0 or − 2
√

12U0 < σ < −
√

12U0.

In the case V1 =
√
12U0, the potential is

V = V0(σ
2 − 12U0)(σ +

√

12U0)
2.

The conditions of the existence of bounces are compatible if

V0 < 0,
√

12U0 < σ < 2
√

12U0.

We see that in these cases the bounce corresponds to a such σB that
U(σB ) < 0.
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Let

c2 = − 289
√
2

48
c1, ⇒ V1 = −289

24

√

6U0.

At U0 = 1, the conditions (35) are satisfied if 0.20412 < σ < 0.27178.
We get a bounce point at U(σB) > 0.

σ
σ

Figure: The potential Vc (solid red line) and the expression 4Vc − σV ′

c (dash
blue line) at U0 = 1, c1 = 1, β = 2/3, V1 = −289

√

6/24. The fine structure,
presented on the right picture, shows that a bounce is possible.
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CONCLUSIONS

Cosmological models with non-minimally coupling scalar fields has
been considered.

We show how to get integrable models with non-minimal coupling
using the suitable parametric time.

Sometimes model with non-minimal coupling can be more easy
(more explicit) integrable, than the corresponding model with a
minimal coupled scalar field.

Models with nonminimal coupling maybe useful to get the bounce
solution without pathology.
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