Higher-Spin Theory and Holography

M.A.Vasiliev

MV 1504.07289
Gelfond, MV 1510.03488

Lebedev Institute, Moscow

VII round table

Dubna
27 November 2015

Plan

- Brief introduction
- Holography via unfolding
- Field-current-field correspondence
- $4 d$ HS theory, $S p(8)$ symmetry and its breaking by interactions
- Invariant functionals in $A d S_{4} / C F T_{3}$ HS theory

HS gauge theory

Higher derivatives in interactions
A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

$$
S=S^{2}+S^{3}+\ldots, \quad S^{3}=\sum_{p, q, r}\left(D^{p} \varphi\right)\left(D^{q} \varphi\right)\left(D^{r} \varphi\right) \rho^{p+q+r+\frac{1}{2} d-3}
$$

HS Gauge Theories $(m=0): \quad$ Fradkin, M.V. (1987)

$$
A d S_{d}: \quad\left[D_{n}, D_{m}\right] \sim \rho^{-2}=\lambda^{2}
$$

Non-locality beyond any (=Plank) scale: Quantum Gravity?!
$A d S_{4}$ HS theory is dual to $3 d$ vectorial conformal models
Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009);
Maldacena, Zhïboedov (2011,2012); MV (2012); Koch, Jevicki, Jin, Rodrigues (2011-2014);
Giombi, Klebanov; Tseytlin (2013-2015);; Boulanger, Kessel, Skvortsov, Taronna (2015);
Bekaert, Erdmenger, Ponomarev, Sleight (2015) ...
$A d S_{3} / C F T_{2}$ correspondence
Henneaux and Rey (2010), Campoleoni, Fredenhagen, Pfenninger and Theisen (2010)
Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of $A d S / C F T$?!

Despite significant progress in the construction of actions during last thirty years: A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984); Fradkin, MV (1987); ... Boulanger, Sundell (2012) ...

Construction of the generating functional for correlators was lacking

Unfolded dynamics

First-order form of differential equations

$$
\dot{q}^{i}(t)=\varphi^{i}(q(t)) \quad \text { initial values: } \quad q^{i}\left(t_{0}\right)
$$

Unfolded dynamics: multidimensional covariant generalization

$$
\begin{gathered}
\frac{\partial}{\partial t} \rightarrow d, \quad q^{i}(t) \rightarrow W^{\Omega}(x)=d x^{n_{1}} \wedge \ldots \wedge d x^{n_{p}} \\
\mathrm{dW}^{\Omega}(\mathrm{x})=\mathrm{G}^{\Omega}(\mathrm{W}(\mathrm{x})), \quad \mathrm{d}=\mathrm{dx}^{\mathrm{n}} \partial_{\mathrm{n}}
\end{gathered}
$$

$G^{\Omega}(W)$: function of "supercoordinates" W^{Φ}

$$
G^{\Omega}(W)=\sum_{n=1}^{\infty} f^{\Omega} \Phi_{1} \ldots \Phi_{n} W^{\Phi_{1}} \wedge \ldots \wedge W^{\Phi_{n}}
$$

$d>1$: Nontrivial compatibility conditions

$$
G^{\Phi}(W) \wedge \frac{\partial G^{\Omega}(W)}{\partial W^{\Phi}} \equiv 0
$$

Any solution: FDA Sullivan (1968); D'Auria and Fre (1982)
The unfolded equation is invariant under the gauge transformation

$$
\delta W^{\Omega}(x)=d \varepsilon^{\Omega}(x)+\varepsilon^{\Phi}(x) \wedge \frac{\partial G^{\Omega}(W(x))}{\partial W^{\Phi}(x)}
$$

Properties

- General applicability
- Manifest (HS) gauge invariance
- Invariance under diffeomorphisms
- Clear group-theoretical interpretation of fields and equations in terms of modules and Chevalley-Eilenberg cohomology of a symmetry algebra h
Background fields: flat connection of h
Fields: h-modules
Equations: covariant constancy conditions
- Local degrees of freedom are in 0-forms $C^{i}\left(x_{0}\right)$ at any $x=x_{0}$
(as $q\left(t_{0}\right)$) infinite-dimensional module dual to the space of singleparticle states: $C^{i}\left(x_{0}\right)$ moduli of solutions
- Independence of ambient space-time

Geometry is encoded by $G^{\Omega}(W)$

Unfolding and holographic duality

Unfolding unifies various dualities including holographic duality

Extension of space-time without changing dynamics by letting the exterior derivative d and differential forms W live in a larger space
$\mathrm{d}=d X^{n} \frac{\partial}{\partial X^{n}} \rightarrow \tilde{\mathrm{~d}}=d X^{n} \frac{\partial}{\partial X^{n}}+d \hat{X}^{\hat{n}} \frac{\partial}{\partial \hat{X}^{\hat{n}}}, \quad d X^{n} W_{n} \rightarrow d X^{n} W_{n}+d \hat{X}^{\widehat{n}} \hat{W}_{\hat{n}}$,
$\hat{X}^{\hat{n}}$ are additional coordinates

$$
\widetilde{\mathrm{d}} W^{\Omega}(X, \hat{X})=G^{\Omega}(W(X, \hat{X}))
$$

Two unfolded systems in different space-times are equivalent (dual) if they have the same unfolded form. Given unfolded system generates a class of holographically dual theories in different dimensions.

Useful applications:
$s p$ (8)-invariant formulation of $4 d$ massless equations 2001 derivation of superfield formulations of SUSY models (Misuna, MV (2013))
HS holography 2012,2015

Rank-one conformal massless equations

$$
\left(\frac{\partial}{\partial x^{\alpha \beta}}+\frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C^{3}(y \mid x)=0, \quad \alpha, \beta=1,2
$$

Bosons (fermions) are even (odd) functions of $y^{\alpha}: C^{3}(-y \mid x)=(-1)^{p_{c}} C^{3}(y \mid$
Rank-two equations: conserved currents

$$
\begin{equation*}
\left\{\frac{\partial}{\partial x^{\alpha \beta}}-\frac{\partial^{2}}{\partial y^{(\alpha} \partial u^{\beta)}}\right\} J^{3}(u, y \mid x)=0 \tag{2003}
\end{equation*}
$$

$J^{3}(u, y \mid x)$: generalized stress tensor. Rank-two equation is obeyed by

$$
J^{3}(u, y \mid x)=C^{3}(u+y \mid x) C^{3}(y-u \mid x)
$$

Primaries: $3 d$ currents of all integer and half-integer spins

$$
\begin{gathered}
J^{3}(u, 0 \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} J_{\alpha_{1} \ldots \alpha_{2 s}}^{3}(x), \quad \tilde{J}^{3}(0, y \mid x)=\sum_{2 s=0}^{\infty} y^{\alpha_{1}} \ldots y^{\alpha_{2 s}} \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}^{3}(x \\
J^{3 a s y m}(u, y \mid x)=u_{\alpha} y^{\alpha} J^{3 a s y m}(x)
\end{gathered}
$$

$$
\Delta J_{\alpha_{1} \ldots \alpha_{2 s}}^{3}(x)=\Delta \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}^{3}(x)=s+1 \quad \Delta J^{3 \text { asym }}(x)=2
$$

Rank-two field (current) in $A d S_{3}$ is equivalent to a rank-one field in a larger space

$$
\begin{gathered}
\left(\frac{\partial}{\partial X^{A B}}+\frac{\partial^{2}}{\partial y^{A} \partial y^{B}}\right) J^{3}(y \mid X)=0, \quad A, B=1, \ldots, 4, \quad X^{A B}=X^{B A} \\
X^{A B}=\left(x^{\alpha \dot{\alpha}}, x^{\alpha \beta}, \bar{x}^{\dot{\alpha} \dot{\beta}}\right), \quad x^{\alpha \dot{\alpha}}=\left(\mathrm{x}^{\alpha \dot{\alpha}}, \varepsilon^{\alpha \dot{\alpha}} \mathbf{z}\right)
\end{gathered}
$$

Reduction to Minkowski coordinates $x^{\alpha \dot{\alpha}}$ gives $4 d$ massless equations for all spins

$$
\begin{array}{r}
J^{3}=C^{4} \\
(3 d, m=0) \otimes(3 d, m=0)=\sum_{s=0}^{\infty}(4 d, m=0)
\end{array}
$$

The full system of all spins exhibits $s p(8)$ symmetry Fronsdal (1985)

```
Bandos, Lukierski, (1999) ; Bandos, Lukierski,D. Sorokin, (2000); MV (2001)
```

A rank-two field in $4 d$ describes $4 d$ conserved currents equivalent to a rank-one field in six dimensions

$$
C^{4} C^{4} \sim J^{4} \sim C^{6}
$$

Free massless fields in $A d S_{4}$

Infinite set of spins $s=0,1,2 \ldots$
1-form $\omega(y, \bar{y} \mid x)$, 0-form $C(y, \bar{y} \mid x)$

$$
A(y, \bar{y} \mid x)=i \sum_{n, m=0}^{\infty} \frac{1}{n!m!} y_{\alpha_{1}} \ldots y_{\alpha_{n}} \bar{y}_{\dot{\beta}_{1}} \ldots \bar{y}_{\dot{\beta}_{m}} A^{\alpha_{1} \ldots \alpha_{n}},{ }^{\dot{\beta}_{1} \ldots \dot{\beta}_{m}}(x)
$$

The unfolded system for free massless fields is

$$
\begin{array}{ll}
\star & R_{1}(y, \bar{y} \mid x)=\eta \bar{H}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \bar{y}^{\alpha} \partial \bar{y}^{\dot{\beta}}} \bar{C}^{4}(0, \bar{y} \mid x)+\bar{\eta} H^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}} C^{4}(y, 0 \mid x) \\
\star & \tilde{D}_{0} C^{4}(y, \bar{y} \mid x)=0
\end{array}
$$

Zero-forms $C^{4}(Y \mid x)$ form a Weyl module \sim boundary current module

Current deformation

Schematically for the flat connection $D=\mathrm{d}+w$

$$
\begin{aligned}
& \qquad \begin{array}{l}
D \omega^{4}+L\left(C^{4}, w\right)=0 \\
\tilde{D} C^{4}=0 \\
D_{2} J^{4}=0
\end{array} \\
& \text { Sector of 0-forms } \quad \Rightarrow\left\{\begin{array}{l}
D \omega^{4}+L\left(C^{4}, w\right)+G\left(w, J^{4}\right)=0 \\
\tilde{D} C^{4}+F\left(w, J^{4}\right)=0 \\
D_{2} J^{4}=0
\end{array}\right. \\
& \hline
\end{aligned}
$$

J^{4} can be interpreted either as a $4 d$ current or as a $6 d$ massless field.
$4 d$ current interactions: mixed linear system of $d 4$ and $d 6$ fields.
Algebraically: semidirect sum of a rank-one and rank-two systems.

What is the symmetry preserved by the deformed system?!
When unmixed, both rank-one and rank-two system are $s p(8)$-invariant.
Is $s p(8)$ preserved by the deformation?
$=$ formal consistency of the deformation with $w \in s p(8) ?$

Current interactions break $s p(8)$ down to the conformal algebra $s u(2,2)$

For manifest conformal invariance introduce

$$
y_{\alpha}^{+}=\frac{1}{2}\left(y_{\alpha}-i \bar{y}_{\alpha}\right), \quad y_{\alpha}^{-}=\frac{1}{2}\left(\bar{y}_{\alpha}-i y_{\alpha}\right), \quad\left[y_{\alpha}^{-}, y^{+\beta}\right]_{\star}=\delta_{\alpha}^{\beta}
$$

$A d S_{4}$ foliation: $x^{n}=\left(\mathrm{x}^{a}, \mathbf{z}\right): \mathrm{x}^{a}$ are coordinates of leaves $(a=0,1,2$, $)$
Poincaré coordinate z is a foliation parameter. AdS infinity is at $\mathrm{z}=0$

$$
\begin{gathered}
W=\frac{i}{\mathbf{z}} d \mathbf{x}^{\alpha \beta} y_{\alpha}^{-} y_{\beta}^{-}-\frac{d \mathbf{z}}{2 \mathbf{z}} y_{\alpha}^{-} y^{+\alpha} \\
e^{\alpha \dot{\alpha}}=\frac{1}{2 \mathbf{z}} d x^{\alpha \dot{\alpha}}, \quad \omega^{\alpha \beta}=-\frac{i}{4 \mathbf{z}} d \mathbf{x}^{\alpha \beta}, \quad \bar{\omega}^{\dot{\alpha} \dot{\beta}}=\frac{i}{4 \mathbf{z}} d \mathbf{x}^{\dot{\alpha} \dot{\beta}}
\end{gathered}
$$

Vacuum connection can be extended to the complex plane of z with all components containing $d \overline{\mathbf{z}}$ being zero.

Generating functional for the boundary correlators

$$
S=\frac{1}{2 \pi i} \oint_{\mathrm{z}=0} \mathcal{L}(\phi)
$$

An on-shell closed ($d+1$)-form $\mathcal{L}(\phi)$ for a d-dimensional boundary

$$
\mathrm{d} \mathcal{L}(\phi)=0, \quad \mathcal{L} \neq \mathrm{d} M
$$

The residue at $\mathrm{z}=0$ gives the boundary functional of the structure analogous to $\phi_{n_{1} \ldots n_{s}} J^{n_{1} \ldots n_{s}}$
$S_{M^{3}}(\omega)=\int_{M^{3}} \mathcal{L}, \quad \mathcal{L}=\frac{1}{2} \omega_{\mathrm{x}}^{\alpha_{1} \ldots \alpha_{2(s-1)}} e_{\mathrm{x}}^{\alpha_{2 s-1}}{ }_{\beta} e_{\mathrm{x}}^{\alpha_{2 s} \beta}\left(a C_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)+\bar{a} \bar{C}_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)\right)$
$C_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)$ has conformal properties of currents.

$$
a C_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)+\bar{a} \bar{C}_{\alpha_{1} \ldots \alpha_{2 s}}(\omega)=a_{-} \mathcal{T}_{-\alpha_{1} \ldots \alpha_{2 s}}(\omega)+a_{+} \mathcal{T}_{+\alpha_{1} \ldots \alpha_{2 s}}(\omega)
$$

\mathcal{T}_{-}describes local boundary terms
\mathcal{T}_{+}describes nontrivial correlators via the variation of $S_{M_{3}}$ over the HS gauge fields $\omega_{\mathrm{x}}^{\alpha_{1} \ldots \alpha_{2(s-1)}}$

$$
\left\langle J\left(\mathrm{x}_{1}\right) J\left(\mathrm{x}_{2}\right) \ldots\right\rangle=\left.\frac{\delta^{n} \exp \left[-S_{M^{3}}(\omega, C(\omega))\right]}{\delta \omega\left(x_{1}\right) \delta \omega\left(x_{2}\right) \ldots}\right|_{\omega=0}
$$

$\omega^{j j}$ has conformal dimension of the shadow field but does not describe new degrees of freedom being related to $\mathcal{T}_{ \pm}^{j j}$ via unfolded equations

Computation of a_{+}: Didenko, Misuna, MV work in progress

Nonlinear HS equations

$$
\mathcal{W}(Z ; Y ; k, \bar{k} \mid x)=(\mathrm{d}+W)+S, \quad W=d x^{n} W_{n}, \quad S=d z^{\alpha} S_{\alpha}+d \bar{z}^{\dot{\alpha}} \bar{S}_{\dot{\alpha}}
$$

$$
\begin{gathered}
\mathcal{W} \star \mathcal{W}=i\left(d Z^{A} d Z_{A}+\eta d z^{\alpha} d z_{\alpha} B \star k \star \kappa+\bar{\eta} d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} B \star \bar{k} \star \bar{\kappa}\right) \\
\mathcal{W} \star B=B \star \mathcal{W}, \quad B=B(Z ; Y ; k, \bar{k} \mid x)
\end{gathered}
$$

HS star-product
$(f \star g)(Z ; Y)=\frac{1}{(2 \pi)^{4}} \int d^{4} U d^{4} V \exp \left[i U_{A} V^{A}\right] f(Z+U ; Y+U) g(Z-V ; Y+V)$
Manifest gauge invariance

$$
\delta \mathcal{W}=[\varepsilon, \mathcal{W}]_{\star}, \quad \delta B=\varepsilon \star B-B \star \varepsilon, \quad \varepsilon=\varepsilon(Z ; Y ; K \mid x)
$$

Klein operator

$$
\begin{gathered}
\kappa=\exp i z_{\alpha} y^{\alpha}, \quad \kappa \star \kappa=1 \\
\kappa \star f(z, y)=f(-z,-y) \star \kappa
\end{gathered}
$$

Invariants of the $A d S_{4}$ HS theory

The new proposal is to consider invariants that are not of the form $\operatorname{str}(L)$ via the following extension of the HS unfolded equations

$$
\mathcal{W} \star \mathcal{W}=F(\mathcal{B})+\mathcal{L} I d, \quad \mathcal{W} \star \mathcal{B}=\mathcal{B} \star \mathcal{W}, \quad \mathrm{d} \mathcal{L}=0
$$

$\mathcal{W}=d+W$ and \mathcal{B} are differential forms of odd and even degrees, respectively (both in $d x$ and $d Z$).

An appropriate choice is
$i F(\mathcal{B})=d Z_{A} d Z^{A}+\eta \delta^{2}(d z) \mathcal{B} \star k \star \kappa+\bar{\eta} \delta^{2}(d \bar{z}) \mathcal{B} \star \bar{k} \star \bar{\kappa}+G(\mathcal{B}) \delta^{4}(d Z) k \star \bar{k} \star \kappa \star \bar{\kappa}+\mathcal{L} I$ $G=g+O(\mathcal{B}), g$ is the coupling constant.
\mathcal{L} are x-dependent space-time differential forms of even degrees.

Density relevant to the generating functional of correlators in $A d S_{4} / C F T_{3}$ HS holography is a four-form \mathcal{L}^{4}
Density relevant to BH entropy is a two-form \mathcal{L}^{2} ?!

Conclusions

Current interactions in $d=4$ break $s p(8)$ to conformal $s u(2,2)$

Holography via unfolding

Invariant functionals via central elements of the HS algebra Manifest holographic duality at the level of the generating functional from the unfolded formulation of HS equations

Proposed formulation is gauge invariant, coordinate independent and applicable to any boundaries and bulk solutions

Two-form and four-form Lagrangian densities in $4 d$ HS theory: BH charges and the boundary generating functional
$A d S_{3} / C F T_{2}$: Invariant functional is a two-form: boundary functional is an integral of a one-form: holomorphicity of CFT_{2}

Contractible system

$$
\mathrm{d} w=\mathcal{L}, \quad \mathrm{d} \mathcal{L}=0
$$

is dynamically empty: gauge transformations

$$
\delta w(x)=\varepsilon(x), \quad \delta \mathcal{L}(x)=\mathrm{d} \varepsilon(x)
$$

Gauge fixing $w=0 \quad \Longrightarrow \quad \mathcal{L}=0$

For the system

$$
\mathrm{d} w+L(W)=\mathcal{L}, \quad \mathrm{d} \mathcal{L}=0
$$

where $L(W)$ is some closed function of other fields W.
In the canonical gauge $w=0$

$$
\mathcal{L}=L(W), \quad \mathrm{d} L(W)=0
$$

The singlet (invariant) field L becomes a Lagrangian giving rise to an invariant action

Vacuum geometry

$\omega=\omega^{\alpha} T_{\alpha}: h$ valued 1-form.

$$
G(\omega)=-\omega \wedge \omega \equiv-\frac{1}{2} \omega^{\alpha} \wedge \omega^{\beta}\left[T_{\alpha}, T_{\beta}\right]
$$

the unfolded equation with $W=\omega$ has the zero-curvature form

$$
d \omega+\omega \wedge \omega=0 .
$$

Compatibility condition: Jacobi identity for h.
FDA: usual gauge transformation of the connection ω.

Zero-curvature equations: background geometry in a coordinate independent way.
If h is Poincare or anti-de Sitter algebra it describes Minkowski or $A d S_{d}$ space-time

Linear equations in a h-invariant background are formulated in terms
of fields valued in h-modules

Field equations at the boundary

Rescaling

$C^{i 1-i}(y, \bar{y} \mid \mathbf{x}, \mathbf{z})=\mathbf{z} \exp \left(y_{\alpha} \bar{y}^{\alpha}\right) T^{i 1-i}(w, \bar{w} \mid \mathbf{x}, \mathbf{z}) \quad \mathbf{w}^{\alpha}=\mathbf{z}^{1 / 2} \mathbf{y}^{\alpha} \quad \overline{\mathbf{w}}^{\alpha}=\mathbf{z}^{1 / 2} \overline{\mathbf{y}}^{\alpha}$

$$
W^{j j}\left(y^{ \pm} \mid \mathbf{x}, \mathbf{z}\right)=\omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, \mathbf{z}\right) \quad \mathbf{v}^{ \pm}=\mathbf{z}^{-1 / 2} \mathbf{y}^{ \pm} \quad \mathbf{w}^{ \pm}=\mathbf{z}^{1 / 2} \mathbf{y}^{ \pm}
$$

In the limit $\mathrm{z} \rightarrow 0$ free HS equations take the form of current conservation equations

$$
\begin{gathered}
{\left[\mathrm{d}_{\mathbf{x}}-i d \mathbf{x}^{\alpha \beta} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{-\beta}}\right] \mathcal{T}_{ \pm}^{j 1-j}\left(w^{+}, w^{-} \mid \mathbf{x}, 0\right)=0} \\
\mathcal{T}_{ \pm}^{\mathrm{jj}}\left(\mathrm{w}^{+}, \mathrm{w}^{-} \mid \mathrm{x}, 0\right)=\eta \mathrm{T}^{\mathrm{j} 1-\mathrm{j}}\left(\mathrm{w}^{+}, \mathrm{w}^{-} \mid \mathrm{x}, 0\right) \pm \bar{\eta} \mathrm{T}^{1-\mathrm{jj}}\left(-\mathrm{iw}^{-}, \mathrm{iw}^{+} \mid \mathrm{x}, 0\right)
\end{gathered}
$$

and
$\left(\mathrm{d}_{\mathbf{x}}+2 i d \mathbf{x}^{\alpha \beta} v_{\alpha}^{-} \frac{\partial}{\partial w^{+\beta}}\right) \omega^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=d \mathbf{x}^{\alpha \gamma} d \mathbf{x}^{\beta \gamma} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}_{-}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right)$
$D_{\mathbf{x}} \omega_{\mathbf{Z}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)+D_{\mathbf{z}} \omega_{\mathbf{x}}^{j j}\left(v^{-}, w^{+} \mid \mathbf{x}, 0\right)=-\frac{i}{2} d \mathbf{x}^{\alpha \beta} d \mathbf{z} \frac{\partial^{2}}{\partial w^{+\alpha} \partial w^{+\beta}} \mathcal{T}_{+}^{j j}\left(w^{+}, 0 \mid \mathbf{x}, 0\right)$

Klein operator

$$
\begin{gathered}
\kappa=\exp i z_{\alpha} y^{\alpha}, \quad \kappa \star \kappa=1 \\
\kappa \star f(z, y)=f(-z,-y) \star \kappa
\end{gathered}
$$

Supertrace

$$
\begin{aligned}
\operatorname{str}(f(z, y))= & \frac{1}{(2 \pi)^{2}} \int d^{2} u d^{2} v \exp \left[-i u_{\alpha} v^{\beta}\right] f(u, v) \\
& \operatorname{str}(f \star g)=\operatorname{str}(g \star f)
\end{aligned}
$$

Klein operators are well-defined with respect to the star product but have divergent supertrace

$$
\operatorname{str}(\kappa) \sim \delta^{4}(0)
$$

In our construction invariant functionals have divergent supertrace.

HS equations have a form of de Rham cohomology in the twistor space arXiv:1502.02271

Symmetries

The system is consistent because \mathcal{B} commutes with itself and Id. Gauge transformations

$$
\begin{gathered}
\delta \mathcal{W}=[\mathcal{W}, \varepsilon]_{\star}, \quad \delta \mathcal{B}=[\mathcal{B}, \varepsilon]_{\star}, \quad \varepsilon=\varepsilon(d x, x, d Z, \ldots) \\
\delta \mathcal{B}=\{\mathcal{W}, \xi\}, \quad \delta \mathcal{W}=\xi^{A} \frac{\partial F(c, \mathcal{B})}{\partial \mathcal{B}^{A}}, \quad \xi=\xi(d x, x, d Z, \ldots) \\
\delta \mathcal{L}(d x, x)=\mathrm{d} \chi(d x, x), \quad \delta \mathcal{W}=\chi I, \quad \chi(d x, x)
\end{gathered}
$$

χ - transformation implies equivalence of \mathcal{L} up to exact forms allowing to choose canonical gauge $\mathcal{W}_{I}:=\pi \mathcal{W}=0$
π is the projection to I

$$
\pi(f(Y, Z \mid x)))=f(0,0 \mid x), \quad \pi(f \star g) \neq \pi(g \star f)
$$

Gauge transformation preserving the canonical gauge

$$
\delta \mathcal{L}=\mathrm{d} \chi, \quad \chi=-\pi\left([\mathcal{W}, \varepsilon]_{\star}+\xi^{A} \frac{\partial F(c, \mathcal{B})}{\partial \mathcal{B}^{A}}\right)
$$

\mathcal{L} is on-shell closed and gauge invariant modulo exact forms

Actions versus supertrace

Gauge invariant action

$$
S=\int_{\Sigma} \mathcal{L}
$$

Since \mathcal{L} is closed, it should be integrated over non-contractible cycles
For $A d S / C F T$ the singularity is at infinity
BH invariants (entropies) are associated with ($d-2$)-forms

If the HS algebra possesses a supertrace

$$
\mathcal{L}=\left.\operatorname{str}(\mathrm{d} W+W \star W)\right|_{d Z=0}
$$

This suggests that the second term vanishes and hence \mathcal{L} is exact. Not applicable if $\operatorname{str}(W \star W)$ is ill-defined:
\mathcal{L} with well-defined $\operatorname{str}(W \star W)$ are exact.
\mathcal{L} with ill-defined $\operatorname{str}(W \star W)$ have a chance to be nontrivial.

Boundary functionals, parity, and conformal HS theory

Parity transformation $\mathrm{z} \rightarrow-\mathrm{z}, \mathrm{x} \rightarrow \mathrm{x}$

$$
d z^{\alpha}, z^{\alpha}, y^{\alpha}, k \quad \stackrel{P}{\Longleftrightarrow} \bar{d} z^{\dot{\alpha}}, \bar{z}^{\dot{\alpha}}, \bar{y}^{\dot{\alpha}}, \bar{k} .
$$

For general η HS equations are not P-invariant.
The A-model $(\eta=1)$ and B-model ($\eta=i$) are P-invariant

Since $\mathrm{z}^{-1} d \mathrm{z}$ is P - even, for A and B models $S=S^{l o c}$ only contains boundary derivatives giving some gauge invariant boundary functional.

Actions $S_{A, B}^{l o c}$ describe $3 d$ conformal HS theory and differ by the parity properties of the scalar field.

Naively, $S^{n l o c}=0$ in A and B-models.
For general η it is not difficult to see that

$$
\begin{gathered}
\mathcal{L} \sim \omega\left(\cos (2 \varphi) R_{\mathbf{x x}}-\sin (2 \varphi) R_{\mathbf{Z x}}\right), \quad \eta=\exp i \varphi \\
R_{\mathbf{X x}} \sim \eta e_{\mathbf{x}} e_{\mathbf{X}} C+\bar{\eta} e_{\mathbf{x}} e_{\mathbf{x}} \bar{C}, \quad R_{\mathbf{x Z}} \sim i \eta e_{\mathbf{Z}} e_{\mathbf{X}} C-i \bar{\eta} e_{\mathbf{Z}} e_{\mathbf{X}} \bar{C}
\end{gathered}
$$

$S^{l o c} \sim \cos (2 \varphi), S^{n l o c} \sim \sin (2 \varphi) . S^{n l o c}=0$ for A, B models.

Proper definition: factors in front of $\cos (2 \varphi)$ and $\sin (2 \varphi)$

$$
S_{A, B}^{l o c}=\left.S(\varphi)\right|_{\varphi=0, \frac{\pi}{2}}, \quad S_{A, B}^{n l o c}=\left.\frac{1}{2} \frac{\partial S(\varphi)}{\partial \varphi}\right|_{\varphi=0, \frac{\pi}{2}}
$$

For general η it is impossible to separate $S^{l o c}$ and $S^{n l o c}$
$S^{l o c}+S^{n l o c}$ is gauge invariant: $\delta S^{n l o c}$ can contain local terms compensating $\delta S^{n l o c}$.

Only P-invariant A and B models allow gauge invariant local boundary functionals $S_{A, B}^{l o c}=$ actions of the boundary conformal HS theory.
$S_{A, B}^{n l o c}$ are gauge invariant up to local terms.

Black holes

$4 d$ GR BH is characterized by a spin-one Papapetrou field 1966. Papapetrou two-form \mathcal{F} obeys the sourceless Maxwell equations

$$
\mathrm{d}_{x} \mathcal{F}=0, \quad \mathrm{~d}_{x} \tilde{\mathcal{F}}=0, \quad x \neq 0
$$

For Schwarzschild BH

$$
\mathcal{F}=\frac{4}{r^{2}} d t d r, \quad \tilde{\mathcal{F}}=d \Omega
$$

t and r are the time and radial coordinates. $d \Omega$ is the angular two-form.
$M \tilde{\mathcal{F}}$ supports the BH charge. At the horizon

$$
\tilde{\mathcal{F}}=(2 M)^{-2} V_{H},
$$

where V_{H} is the horizon volume form.

The spin-one sector of linearized HS equations

$$
\mathrm{d} \omega(x)=\left.\left(\eta \bar{H}^{\dot{\alpha} \dot{\beta}} \frac{\partial^{2}}{\partial \bar{y}^{\dot{\alpha}} \partial \bar{y}^{\dot{\beta}}} C^{0}(Y \mid x)+\bar{\eta} H^{\alpha \beta} \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}} C^{0}(Y \mid x)\right)\right|_{Y=0}+\mathcal{L}^{2}
$$

Relation to Papapetrou field

$$
\bar{H}^{\dot{\alpha} \dot{\beta}} \bar{C}_{\dot{\alpha} \dot{\beta}}+H^{\alpha \beta} C_{\alpha \beta}=M \mathcal{F}, \quad H^{\alpha \beta}:=e^{\alpha}{ }_{\dot{\alpha}} e^{\beta \dot{\alpha}}, \quad \bar{H}^{\dot{\alpha} \dot{\beta}}:=e_{\alpha}^{\dot{\alpha}} e^{\alpha \dot{\beta}}
$$

M is the BH mass, zero-forms $C_{\alpha \beta}$ and $\bar{C}_{\dot{\alpha} \dot{\beta}}$ are (anti)self-dual components of the spin-one field strength. The Hodge dual two-form is

$$
i\left(H^{\alpha \beta} C_{\alpha \beta}-\bar{H}^{\dot{\alpha} \dot{\beta}} \bar{C}_{\dot{\alpha} \dot{\beta}}\right)=M \tilde{\mathcal{F}}
$$

$C(Y \mid x)$ extends the spin-two $\mathbf{B H}$ solution to $\mathbf{H S}$ fields
For $\eta=\exp [i \varphi]$ this gives in the canonical gauge $\omega(x)=0$

$$
-\mathcal{L}^{2}=\frac{\sin (\varphi)}{4 M} V_{H}+M \cos (\varphi) \mathcal{F}
$$

The second term does not contribute since \mathcal{F} is the electric field of a point charge: $\omega(x)$ is the Coulomb field regular at infinity: its
contribution to \mathcal{L}^{2} is exact.
$\omega(x)$ for $\tilde{\mathcal{F}}$ describes a monopole solution singular at infinity due to the Dirac string: \mathcal{L}^{2} in the canonical gauge $\omega(x)=0$, is closed but not exact.

For the A-model with $\varphi=0$ the proper definition is

$$
Q(0)=-\left.\frac{\partial \mathcal{L}^{2}(\varphi)}{\partial \varphi}\right|_{\varphi=0} .
$$

\mathcal{L}^{2} supports BH charges.
\mathcal{L}^{2} is closed on-shell with no Killing symmetry of a particular solution?! No on-shell closed local \mathcal{L}^{2} is expected in a nonlinear $4 d$ field theory. \mathcal{L}^{2} in HS theory are in a certain sense nonlocal involving infinitely many derivatives of fields with inverse powers of \wedge (flat limit is obscure). Being independent of local variations of $\Sigma^{2}, Q=\int_{\Sigma^{2}} \mathcal{L}^{2}(\phi)$ effectively // depends on fields away from Σ^{2}
For asymptotically free theory at infinity \mathcal{L}^{2} is asymptotically local, reproducing usual asymptotic charges.

HS star product versus Weyl

Formal map to the Weyl star product

$$
f_{W}(Z ; Y)=\frac{1}{(2 \pi)^{M}} \int d S d T \exp -i S_{A} T^{A} f_{H S}(Z+S ; Y+T)
$$

Being equivalent for polynomials, different star products may be inequivalent beyond this class.

Weyl-Moyal star product

$$
\begin{aligned}
& \left(f_{W} \star g_{W}\right)(Z ; Y)=\frac{1}{(2 \pi)^{2 M}} \int d U d V \exp \left[i\left(-U_{1 A} V_{1}^{A}+U_{2 A} V_{2}^{A}\right)\right] \\
& f_{W}\left(Z+U_{1} ; Y+U_{2}\right) g_{W}\left(Z+V_{1} ; Y+V_{2}\right)
\end{aligned}
$$

The map is singular at $Z \neq 0$

$$
\begin{aligned}
f_{W}(Z ; Y)= & \frac{1}{(2 \pi)^{M}} \int_{0}^{1} d \tau(1-\tau)^{-M} \int d S d T \exp \left[-i S_{A} T^{A}+i \frac{\tau}{1-\tau} Z_{A} Y^{A}\right] \\
& \phi\left(\tau S+\frac{\tau}{1-\tau} Z ; Y+T ; \tau\right)
\end{aligned}
$$

