AdS7 solutions and their holographic duals

Alessandro Tomasiello

Dubna, 26.11.2015

based on

1506.05462 with A. Passias, A. Rota; 1502.06620 with F. Apruzzi, M. Fazzi, A. Passias; 1502.06622 with A. Rota 1309.2949 with F. Apruzzi, M. Fazzi, D. Rosa; 1404.0711 with D. Gaiotto [1407.6359 with M. del Zotto, J.Heckman, C.Vafa] + work in progress with S. Cremonesi

Several reasons to be interested in CFTs in d > 4.

Several reasons to be interested in CFTs in d > 4.

• Mothers of interesting theories in $d \le 4$

[Gaiotto '09, Alday, Gaiotto, Tachikawa '09...]

Several reasons to be interested in CFTs in d > 4.

• Mothers of interesting theories in $d \le 4$

[Gaiotto '09, Alday, Gaiotto, Tachikawa '09...]

• Harder to define.

e.g. $\operatorname{Tr}(F_{\mu\nu})^2$ relevant in d > 4. Similar problem to $\sqrt{-g}R$ in d > 2

• They might allow us to get a handle on the elusive (2,0) theory living on M5-brane stacks

• number of degrees of freedom $\sim N^3$ crucial features:

• 'chiral tensors': $b_{\mu\nu}$ such that $h_{\mu\nu\rho}$ is self-dual

• They might allow us to get a handle on the elusive (2,0) theory living on M5-brane stacks

• number of degrees of freedom $\sim N^3$ crucial features: • 'chiral tensors': $b_{\mu\nu}$ such that $h_{\mu\nu\rho}$ is self-dual

This talk: Holographic approach

Plan

• Classification of AdS₇ solutions in type II sugra

• infinitely many; analytical

Plan

• Classification of AdS7 solutions in type II sugra

• infinitely many; analytical

- Their CFT₆ duals: NS5-D6-D8 brane constructions
 - natural structure: linear quiver
 - in string theory, they appear from NS5-D6-D8 brane constructions

Plan

• Classification of AdS7 solutions in type II sugra

• infinitely many; analytical

- Their CFT₆ duals: NS5-D6-D8 brane constructions
 - natural structure: linear quiver
 - in string theory, they appear from NS5-D6-D8 brane constructions
- •Match of Weyl anomaly!

AdS7 classification

• $AdS_7 \times M_4$ in 11d sugra:

• $AdS_7 \times M_4$ in 11d sugra:

cone over M_4 should have reduced holonomy

 $\Box > M_4 = S^4 / \Gamma_{\rm ADE}$

AdS7 classification

• $AdS_7 \times M_4$ in 11d sugra:

cone over M_4 should have reduced holonomy

• AdS₇ × M_3 in type II: 'pure spinor' methods [Apruzzi, Fazzi, Rosa, AT'13] originally applied to AdS₄ × M_6 in type II [Graña, Minasian, Petrini, AT'05] later extended to any 10d solution in type II [AT'11] we will later see a similar classification for AdS₅ × M_5 in IIA [Apruzzi, Fazzi, Passias, AT'15]

this doesn't include F-theory

this doesn't include F-theory

•IIA: internal M_3 is locally S^2 -fibration over interval

this doesn't include F-theory

•IIA: internal M_3 is locally S^2 -fibration over interval

[no Ansatz necessary]

of a (1,0) 6d theory.

•IIB: no solutions! this doesn't include F-theory

•IIA: internal M_3 is locally S^2 -fibration over interval

$$\begin{array}{ll} \mbox{[no Ansatz necessary]} & ds^2 \sim e^{2A(r)} ds^2_{AdS_7} + dr^2 + v^2(r) ds^2_{S^2} \\ & & \\ \mbox{Fluxes:} \ F_0, F_2 \sim \mathrm{vol}_{S^2}, H \sim dr \wedge \mathrm{vol}_{S^2} \end{array} \begin{array}{ll} & & \\ \mbox{This } S^2 \ \mathrm{realizes} \\ & & \\ \mbox{the } \mathrm{SU}(2) \ \mathrm{R-symmetry} \\ & & \\ \mbox{of a } (1,0) \ \mathrm{6d \ theory.} \end{array} \end{array}$$

this doesn't include F-theory

•IIA: internal M_3 is locally S^2 -fibration over interval

$$\begin{array}{ll} \mbox{Ino Ansatz necessary} & ds^2 \sim e^{2A(r)} ds^2_{AdS_7} + dr^2 + v^2(r) ds^2_{S^2} \\ & & & \\ \mbox{Fluxes:} \ F_0, F_2 \sim \mathrm{vol}_{S^2}, H \sim dr \wedge \mathrm{vol}_{S^2} \\ \end{array} \begin{array}{ll} & & \\ \mbox{Fluxes:} \ F_0, F_2 \sim \mathrm{vol}_{S^2}, H \sim dr \wedge \mathrm{vol}_{S^2} \\ & & \\ \mbox{final} & & \\ \m$$

 $A(r), \phi(r), v(r)$ determined by ODEs

solved at first numerically [Apruzzi, Fazzi, Rosa, AT '13] then analytically with the help of AdS4 and AdS5 [Rota, AT '15] [Apruzzi, Fazzi, Passias, AT '15]

• Warm-up:
$$F_0 = 0$$

We can reduce $AdS_7 \times S^4$ to IIA:

• Warm-up:
$$F_0 = 0$$

We can reduce $AdS_7 \times S^4$ to IIA:

• Warm-up:
$$F_0 = 0$$

• $F_0 \neq 0$: many new solutions

we can make one of the poles regular:

> local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann '11] susy-breaking? in [Junghans, Schmidt, Zagermann '14]

• $F_0 \neq 0$: many new solutions

we can make one of the poles regular:

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann '11] susy-breaking? in [Junghans, Schmidt, Zagermann '14] • $F_0 \neq 0$: many new solutions

we can make one of the poles regular:

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann '11] susy-breaking? in [Junghans, Schmidt, Zagermann '14] more generally we can have two unequal D6 stacks

more generally we can have two unequal D6 stacks

or also an O6 and a D6 stack

more generally we can have two unequal D6 stacks

or also an O6 and a D6 stack

these solutions are also analytic, but a bit more complicated.

we can also include D8's:

actually, 'magnetized' D8's

D8-D6 bound states

D8–D6 stack

metric: gluing of two pieces of earlier metric

we can also include D8's:

D8-D6 stack

actually, 'magnetized' D8's || D8-D6 bound states

metric: gluing of two pieces of earlier metric

intuitively: D8's don't slip off because of electric attraction

stacks with opposite D6 charge

metric: gluing of two pieces of metric in prev. slide + central region from two slides ago and so on...

Holographic duals

Natural class: linear quivers

At each node, $n_F = 2n_c$

f_i f_{i+1} **Holographic duals**

Natural class: linear quivers

At each node, $n_F = 2n_c$

f_i f_{i+1} **Holographic duals**

Natural class: linear quivers

At each node, $n_F = 2n_c$

 $\mathcal{L} \supset (\phi_{i+1} - \phi_i) \operatorname{Tr} F^2 \qquad \phi_i = x^6 \text{ positions of NS5's}$

f_i f_{i+1} **Holographic duals**

Natural class: linear quivers

At each node, $n_F = 2n_c$

 $\mathcal{L} \supset (\phi_{i+1} - \phi_i) \operatorname{Tr} F^2 \qquad \phi_i = x^6 \text{ positions of NS5's}$

coincident NS5s = strong coupling point; CFT?

Hanany-Witten brane-creation effect

brane supergravity solution not known, but...

brane supergravity solution not known, but...

<u>Conjecture</u>: near-horizon limit gives our AdS7 solutions

brane supergravity solution not known, but...

Conjecture: near-horizon limit gives our AdS7 solutions

N = # NS5's # D6's ending on a D8 flux integer $\int_{M_3} H$ D6 charge of the D8 $f_i \qquad f_{i+1}$

These theories can be labeled by two Young diagrams

s

[combinatorics well-known in other dimensions]

R = 6

L = 5

 $f_i \qquad f_{i+1}$

These theories can be labeled by two Young diagrams

[combinatorics well-known in other dimensions]

$f_i \qquad f_{i+1}$

These theories can be labeled by two Young diagrams

Some notable examples:

an orbifold of the (2,0) theory

Some notable examples:

N

Some notable examples:

1

[Cremonesi, AT, to appear]

[Cremonesi, AT, to appear]

• Cancel gauge anomalies [Green, Schwarz, West'86, Sagnotti '92]

[Intriligator '14, Ohmori, Shimizu, Tachikawa, Yonekura '14]

[Cremonesi, AT, to appear]

• Cancel gauge anomalies [Green, Schwarz, West'86, Sagnotti '92]

[Intriligator '14, Ohmori, Shimizu, Tachikawa, Yonekura '14]

• Compute global $SU(2)_R$ and gravitational anomaly conformal anomaly a

[Cordova, Dumitrescu, Intriligator '15]

 $\langle T^{\mu}_{\mu} \rangle \sim a$ Euler+ Weyl comb.

[Cremonesi, AT, to appear]

[Cremonesi, AT, to appear]

This reproduces the famous cubic scaling.

$$k k k \cdots k r_i = k(1, 1, \dots, 1)$$

 $\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{k^2}{12} (N^3 - N)$

"Freudenthal-de Vries strange formula"

$$k - k - k - k - k = k(1, 1, ..., 1)$$

$$\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{k^2}{12} (N^3 - N)$$
"Freudenthal-de Vries strange formula"
$$a = \frac{16}{7} k^2 N^3 + ...$$
[Ohmori, Shimizu, Tachikawa, Yonekura '14]

$$k - k - k - k - k - k - k = k(1, 1, ..., 1)$$

$$\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{k^2}{12} (N^3 - N)$$
"Freudenthal-de Vries strange formula"
$$a = \frac{16}{7} k^2 N^3 + ...$$
[Ohmori, Shimizu, Tachikawa, Yonekura '14]

It matches with holographic computation:

$$a = rac{R_{
m AdS}^5}{G_{
m N,7d}}$$

[Henningson, Skenderis '98]

in IIA [string frame]

k

$$a = \frac{3}{56\pi^{4}} \int_{M_{3}} e^{5A - 2\phi} \operatorname{vol}_{3}$$

Another example:

 $1 - 2 - 3 - \cdots - N$

$$\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{1}{180} N (4N^2 - 1) (N^2 - 1) \sim \frac{1}{45} N^5 + \dots$$

[because k = N in this case]

$$a = \frac{16}{7} \frac{4}{15} N^5 + \dots$$

Another example:

$1 - 2 - 3 - \cdots - N$

$$\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{1}{180} N (4N^2 - 1) (N^2 - 1) \sim \frac{1}{45} N^5 + \dots$$

[because k = N in this case]

$$a = \frac{16}{7} \frac{4}{15} N^5 + \dots$$

in IIA [string frame] $a = \frac{3}{56\pi^4} \int_{M_3} e^{5A - 2\phi} \text{vol}_3$

Another example:

$1 - 2 - 3 - \cdots - N$

$$\sum_{i,j} C_{ij}^{-1} r_i r_j = \frac{1}{180} N (4N^2 - 1) (N^2 - 1) \sim \frac{1}{45} N^5 + \dots$$
 [because $k = N$ in this

case]

$$a = \frac{16}{7} \frac{4}{15} N^5 + \dots$$

 $a \sim \frac{192}{7} \sum_{i,j} C_{ij}^{-1} r_i r_j + \ldots = \frac{16}{7} k^2 \left(N^3 - 4Nk^2 + \frac{16}{5}k^3 \right) + \ldots$ all large: overall degree 3 in N, k

$$a \sim \frac{192}{7} \sum_{i,j} C_{ij}^{-1} r_i r_j + \ldots = \frac{16}{7} k^2 \left(N^3 - 4Nk^2 + \frac{16}{5}k^3 \right) + \ldots$$

all large: overall degree 3 in N, k

in IIA [string frame]

$$a = \frac{3}{56\pi^4} \int_{M_3} e^{5A - 2\phi} \operatorname{vol}_3$$

$$a \sim \frac{192}{7} \sum_{i,j} C_{ij}^{-1} r_i r_j + \ldots = \frac{16}{7} k^2 \left(N^3 - 4Nk^2 + \frac{16}{5}k^3 \right) + \ldots$$

all large: overall degree 3 in N, k

in IIA [string frame] $a = \frac{3}{56\pi^4} \int_{M_3} e^{5A - 2\phi} \operatorname{vol}_3 = \frac{16}{7} k^2 \left(N^3 - 4Nk^2 + \frac{16}{5}k^3 \right) + \dots$

Heuristic argument:

R = 6

L = 5

• On the other hand: Cartan is "discrete double derivative" L=5

R = 6

 $C = \begin{pmatrix} 2 & -1 & 0 & \dots \\ -1 & 2 & -1 & \dots \\ 0 & -1 & 2 & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \qquad C_{ij} = 2\delta_{ij} - \delta_{i-1,j} - \delta_{i+1,j}$

• On the other hand: Cartan is "discrete double derivative" L=5

R = 6

 $C = \begin{pmatrix} 2 & -1 & 0 & \dots \\ -1 & 2 & -1 & \dots \\ 0 & -1 & 2 & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \qquad C_{ij} = 2\delta_{ij} - \delta_{i-1,j} - \delta_{i+1,j}$

• hence
$$a \sim \frac{192}{7} \sum r_i C_{ij}^{-1} r_j$$

 $\ddot{\alpha} \quad \alpha$
We have proven that this always works

• On the other hand: Cartan is "discrete double derivative" L=5

R = 6

 $C = \begin{pmatrix} 2 & -1 & 0 & \dots \\ -1 & 2 & -1 & \dots \\ 0 & -1 & 2 & \ddots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix} \qquad C_{ij} = 2\delta_{ij} - \delta_{i-1,j} - \delta_{i+1,j}$

• hence
$$a \sim \frac{192}{7} \sum r_i C_{ij}^{-1} r_j \longrightarrow \frac{192}{7} \int \ddot{\alpha} \alpha$$

Conclusions & Extensions

• Classification of type II AdS7 solutions

infinitely many new ones!

 \bullet Dual field theories: strong coupling points in linear $\mathrm{U}(k)$ quivers

• There are also extensions involving exceptional gauge groups

example:

 E_8 E_8 Sp(1)

['fractional M5-branes']

[del Zotto, Heckman, AT, Vafa '14]

One can also 'compactify'

so ∞ new CFT4, CFT3... [Apruzzi, Fazzi, Passias, AT'15; Rota, AT'15]

in fact there is a consistent truncation to 7d

[Passias, Rota, AT'15]

[Apruzzi, Fazzi, Rosa, AT'13; Gaiotto, AT'14]

• numbers N_i of D8's, and their D6 charges μ_i

[Apruzzi, Fazzi, Rosa, AT'13; Gaiotto, AT'14]

• numbers N_i of D8's, and their D6 charges μ_i

[Apruzzi, Fazzi, Rosa, AT '13; Gaiotto, AT '14]

- numbers N_i of D8's, and their D6 charges μ_i
- flux integer $N \equiv \frac{1}{4\pi^2} \int H$

[Apruzzi, Fazzi, Rosa, AT'13; Gaiotto, AT'14]

- numbers N_i of D8's, and their D6 charges μ_i
- flux integer $N \equiv \frac{1}{4\pi^2} \int H$

subject to constraints:

- numbers N_i of D8's, and their D6 charges μ_i
- flux integer $N \equiv \frac{1}{4\pi^2} \int H$

subject to constraints:

•
$$\mu_i$$
 positive and growing for $F_0 > 0$
negative and growing for $F_0 < 0$ ----> Young diagrams ρ_L , ρ_R

- numbers N_i of D8's, and their D6 charges μ_i
- flux integer $N \equiv \frac{1}{4\pi^2} \int H$

subject to constraints:

For any AdS7 solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra'

[Passias, Rota, AT '15]

For any AdS7 solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra' [Passias, Rota, AT'15]

For any AdS7 solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra' [Passias, Rota, AT'15]

k

For any AdS7 solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra' [Pass

[Passias, Rota, AT '15]

k

For any AdS7 solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra' [Passias, Rota, AT '15]

 $e^{2A}ds_7^2 + dr^2 + \frac{v^2}{1+16(X^5-1)v^2}e^{2A}ds_{S^2}^2$

fields: $g^{(7)}_{\mu
u}, A^i_{\mu}, X$

Many solutions that one can lift:

• $AdS_5 \times \Sigma_2$, $AdS_4 \times \Sigma_3$ solutions

dual to CFT5's and CFT4's

actually done earlier: [Apruzzi, Fazzi, Passias, AT '15; Rota, AT '15] Many solutions that one can lift:

• $AdS_5 \times \Sigma_2$, $AdS_4 \times \Sigma_3$ solutions dual to CFT5's and CFT4's

actually done earlier: [Apruzzi, Fazzi, Passias, AT'15; Rota, AT'15]

- RG flows from AdS_7 to $AdS_5 \times \Sigma_2$ and $AdS_4 \times \Sigma_3$
- AdS_3 to $AdS_3 \times \Sigma_4$ solutions
- non-susy AdS₇ solution

• All is determined by a single function $\beta(y)$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16} \frac{\beta'}{y\beta} dy^{2} + \frac{\beta/4}{4\beta - y\beta'} ds^{2}_{S^{2}} \right]$$

• All is determined by a single function $\beta(y)$

where
$$\left(\frac{y^2\beta}{\beta'^2}\right)' = \frac{F_0}{72}$$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16} \frac{\beta'}{y\beta} dy^{2} + \frac{\beta/4}{4\beta - y\beta'} ds^{2}_{S^{2}} \right]$$

• All is determined by a single function $\beta(y)$

where
$$\left(\frac{y^2\beta}{\beta'^2}\right)' = \frac{F_0}{72}$$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16} \frac{\beta'}{y\beta} dy^{2} + \frac{\beta/4}{4\beta - y\beta'} ds^{2}_{S^{2}} \right]$$

• β has single zero \Rightarrow regular point; double zero \Rightarrow D6 stack

• All is determined by a single function $\beta(y)$

where
$$\left(\frac{y^2\beta}{\beta'^2}\right)' = \frac{F_0}{72}$$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16}\frac{\beta'}{y\beta}dy^{2} + \frac{\beta/4}{4\beta - y\beta'}ds^{2}_{S^{2}} \right]$$
 [it's easy to solve]

• β has single zero \Rightarrow regular point; double zero \Rightarrow D6 stack

 $F_0 = 0$, two D6 stacks $\beta \propto (y^2 - y_0^2)^2$

examples:

• All is determined by a single function $\beta(y)$ where $\left(\frac{y^2\beta}{\beta'^2}\right)' = \frac{F_0}{72}$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16}\frac{\beta'}{y\beta}dy^{2} + \frac{\beta/4}{4\beta - y\beta'}ds^{2}_{S^{2}} \right]$$
 [it's easy to solve]

• β has single zero \Rightarrow regular point; double zero \Rightarrow D6 stack

 $F_0=0$, two D6 stacks $\beta \propto (y^2-y_0^2)^2$

examples: $F_0 \neq 0$, one D6 stack $\beta \propto (y - y_0)(y + 2y_0)^2$

• All is determined by a single function $\beta(y)$ where $\left(\frac{y^2\beta}{\beta'^2}\right)' = \frac{F_0}{72}$

$$ds^{2} = \frac{4}{9}\sqrt{-\frac{\beta'}{y}} \left[ds^{2}_{\text{AdS}_{7}} - \frac{1}{16}\frac{\beta'}{y\beta}dy^{2} + \frac{\beta/4}{4\beta - y\beta'}ds^{2}_{S^{2}} \right]$$
 [it's easy to solve]

• β has single zero \Rightarrow regular point; double zero \Rightarrow D6 stack

 $F_0 = 0$, two D6 stacks $\beta \propto (y^2 - y_0^2)^2$

examples:

 $F_0 \neq 0$, one D6 stack $\beta \propto (y - y_0)(y + 2y_0)^2$ $F_0 \neq 0$, most general: $\beta \propto (\sqrt{\hat{y}} - 6)^2 (\hat{y} + 6\sqrt{\hat{y}} + 6b_2 - 72)^2$

$$\hat{y} \equiv 2b_2 \left(\frac{y}{y_0} - 1\right) + 36$$

So far we have seen chains of SU(N) gauge groups

simplest example:

IIA

So far we have seen chains of SU(N) gauge groups

• F-theory allows to include more general gauge groups

So far we have seen chains of SU(N) gauge groups

- F-theory allows to include more general gauge groups
- The D8's should be dual in F-theory to an object called "T-brane"

[del Zotto, Heckman, AT, Vafa '14]

known IIA phenomenon: an NS5 can 'fractionate' on an O6

[Evans, Johnson, Shapere '97] [Elitzur, Giveon, Kutasov, Tsabar '98]

known IIA phenomenon: an NS5 can 'fractionate' on an O6

[Evans, Johnson, Shapere '97] [Elitzur, Giveon, Kutasov, Tsabar '98]

• First generalization: SO/Sp gauge groups

SO(2n+8)

 $\operatorname{Sp}(n)$

SO(2n+8)

In F-theory this is reproduced geometrically:

• First generalization: SO/Sp gauge groups

In F-theory this is reproduced geometrically:

now we need several blowups... E_8 E_8 this pattern also appeared in [Berhadsky, Johansen '96] [Aspinwall, Morrison '97] Final result: the (E_8, E_8) theory tensor multiplets [Intriligator'97]... G_2 G_2 F_4 E_8 Sp(1) E_8 Sp(1) $\mathbf{2}$ $\mathbf{2}$ 1

now we need several blowups... E_8 E_8 this pattern also appeared in [Berhadsky, Johansen '96] [Aspinwall, Morrison '97] Final result: the (E_8, E_8) theory tensor multiplets [Intriligator'97]... G_2 G_2 F_4 E_8 Sp(1) E_8 Sp(1) $\mathbf{2}$ $\mathbf{2}$]

$$- \bigcirc_{2}^{+} = \underset{\text{(no gauge group)}}{\text{two tensors}}$$

In M-theory:

$$\underbrace{E_8}_{1} \underbrace{\bigcirc}_{2} \underbrace{(\operatorname{Sp}(1))}_{2} \underbrace{G_2}_{1} \underbrace{\bigcirc}_{1} \underbrace{(F_4)}_{1} \underbrace{\bigcirc}_{2} \underbrace{(\operatorname{Sp}(1))}_{2} \underbrace{\bigcirc}_{2} \underbrace{\bigcirc}_{1} \underbrace{E_8}_{1} \underbrace{(F_4)}_{2} \underbrace{(\operatorname{Sp}(1))}_{2} \underbrace{\bigcirc}_{2} \underbrace{(\operatorname{Sp}(1))}_{2} \underbrace{\bigcirc}_{2} \underbrace{(\operatorname{Sp}(1))}_{2} \underbrace{(\operatorname{Sp}(1))}$$

$$\underbrace{E_8}_{1} \underbrace{\bigcirc}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{G_2}_{1} \underbrace{\bigcirc}_{1} \underbrace{(F_4)}_{1} \underbrace{\bigcirc}_{1} \underbrace{(G_2)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{\bigcirc}_{1} \underbrace{(F_8)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{\bigcirc}_{1} \underbrace{(F_8)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{(\mathsf{Sp}(1))}_{2$$

In M-theory:

$$\underbrace{E_8}_{1} \underbrace{\bigcirc}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{G_2}_{1} \underbrace{\bigcirc}_{1} \underbrace{(F_4)}_{1} \underbrace{\bigcirc}_{1} \underbrace{(G_2)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{\bigcirc}_{1} \underbrace{(F_8)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{\bigcirc}_{1} \underbrace{(F_8)}_{2} \underbrace{(\mathsf{Sp}(1))}_{2} \underbrace{(\mathsf{Sp}(1))}_{2$$

In M-theory:

M5

Conjecture: 12 fractional M5's

 $\mathbb{R} \times \mathbb{R}^4 / \Gamma_{E_8} \text{ sing.}$

a 'discrete flux' is created whenever a fractional M5 is crossed

> for a nice alternative explanation [Ohmori, Shimizu, Tachikawa, Yonekura '15]