AdS7 solutions and their holographic duals

Alessandro Tomasiello

Dubna, 26.11.2015
based on
1506.05462 with A. Passias, A. Rota;
1502.06620 with F. Apruzzi, M. Fazzi, A. Passias; 1502.06622 with A. Rota I309.2949 with F. Apruzzi, M. Fazzi, D. Rosa; I4O4.07II with D. Gaiotto [ı407.6359 with M. del Zotto, J.Heckman, C.Vafa]

+ work in progress with S. Cremonesi
-

运DEGLI STUDI

Introduction

Introduction

Several reasons to be interested in CFTs in $d>4$.

Introduction

Several reasons to be interested in CFTs in $d>4$.

- Mothers of interesting theories in $d \leq 4$

[Gaiotto 'o9, Alday, Gaiotto, Tachikawa '09...]

Introduction

Several reasons to be interested in CFTs in $d>4$.

- Mothers of interesting theories in $d \leq 4$
[Gaiotto 'o9, Alday,
Gaiotto, Tachikawa '09...]
- Harder to define.
e.g. $\operatorname{Tr}\left(F_{\mu \nu}\right)^{2}$ relevant in $d>4$. Similar problem to $\sqrt{-g} R$ in $d>2$
- They might allow us to get a handle on the elusive (2,0) theory living on M_{5}-brane stacks
- number of degrees of freedom $\sim N^{3}$

crucial features:

- 'chiral tensors': $b_{\mu \nu}$ such that $h_{\mu \nu \rho}$ is self-dual
- They might allow us to get a handle on the elusive (2,0) theory living on M_{5}-brane stacks
- number of degrees of freedom $\sim N^{3}$

crucial features:

- 'chiral tensors': $b_{\mu \nu}$ such that $h_{\mu \nu \rho}$ is self-dual

This talk: Holographic approach

Plan

- Classification of AdS_{7} solutions in type II sugra
- infinitely many; analytical

Plan

- Classification of AdS_{7} solutions in type II sugra
- infinitely many; analytical
- Their CFT_{6} duals: NS5-D6-D8 brane constructions
- natural structure: linear quiver
- in string theory, they appear from NS5-D6-D8 brane constructions

Plan

- Classification of AdS_{7} solutions in type II sugra
- infinitely many; analytical
- Their CFT_{6} duals: NS5-D6-D8 brane constructions
- natural structure: linear quiver
- in string theory, they appear from NS5-D6-D8 brane constructions
- Match of Weyl anomaly!

AdS7 classification

AdS7 classification

- $\operatorname{AdS}_{7} \times M_{4}$ in 11d sugra:

AdS7 classification

- $\operatorname{AdS}_{7} \times M_{4}$ in 11 d sugra:
cone over M_{4} should have reduced holonomy
$\Rightarrow \quad M_{4}=S^{4} / \Gamma_{\mathrm{ADE}}$

AdS7 classification

- $\operatorname{AdS}_{7} \times M_{4}$ in 11 d sugra:
cone over M_{4} should have reduced holonomy
$\Rightarrow \quad M_{4}=S^{4} / \Gamma_{\mathrm{ADE}}$
- $\operatorname{AdS}_{7} \times M_{3}$ in type II: 'pure spinor' methods [Apruzzi, Fazzi, Rosa, AT 'ı3] originally applied to $\mathrm{AdS}_{4} \times M_{6}$ in type II
- IIB: no solutions! $\left[\begin{array}{c}\text { this doesn't include } \\ \text { F-theory }\end{array}\right]$
-IIB: no solutions! $\left[\begin{array}{c}\text { this doesn't include } \\ \text { F-theory }\end{array}\right]$
-IIA: internal M_{3} is locally S^{2}-fibration over interval
[no Ansatz necessary〕 $\quad d s^{2} \sim e^{2 A(r)} d s_{\mathrm{AdS}_{7}}^{2}+d r^{2}+v^{2}(r) d s_{S^{2}}^{2}$
\bullet IIB: no solutions! $\left[\begin{array}{c}\text { this doesn't include } \\ \text { F-theory }\end{array}\right]$
-IIA: internal M_{3} is locally S^{2}-fibration over interval
[no Ansatz necessary] $\quad d s^{2} \sim e^{2 A(r)} d s_{\mathrm{AdS}_{7}}^{2}+d r^{2}+v^{2}(r) d s_{S^{2}}^{2}$
This S^{2} realizes the $\mathrm{SU}(2)$ R-symmetry of a $(1,0) 6 d$ theory.
-IIB: no solutions! $\left[\begin{array}{c}\text { this doesn't include } \\ \text { F-theory }\end{array}\right]$
-IIA: internal M_{3} is locally S^{2}-fibration over interval
[no Ansatz necessary〕 $\quad d s^{2} \sim e^{2 A(r)} d s_{\text {AdS }_{7}}^{2}+d r^{2}+v^{2}(r) d s_{S^{2}}^{2}$

Fluxes: $F_{0}, F_{2} \sim \operatorname{vol}_{S^{2}}, H \sim d r \wedge \operatorname{vol}_{S^{2}}$
This S^{2} realizes the $\mathrm{SU}(2) \mathrm{R}$-symmetry of a $(1,0) 6 d$ theory.

- IIB: no solutions! $\left[\begin{array}{c}\text { this doesn't include } \\ \text { F-theory }\end{array}\right]$
-IIA: internal M_{3} is locally S^{2}-fibration over interval
[no Ansatz necessary〕 $\quad d s^{2} \sim e^{2 A(r)} d s_{\operatorname{AdS}_{7}}^{2}+d r^{2}+v^{2}(r) d s_{S^{2}}^{2}$

Fluxes: $F_{0}, F_{2} \sim \operatorname{vol}_{S^{2}}, H \sim d r \wedge \operatorname{vol}_{S^{2}}$
This S^{2} realizes the $\operatorname{SU}(2)$ R-symmetry of a $(1,0) 6 d$ theory.
$A(r), \phi(r), v(r)$ determined by ODEs
solved at first numerically [Apruzzi, Fazzi, Rosa, AT $\left.{ }^{\prime}{ }^{3}\right]$] then analytically with the help of AdS_{4} and AdS_{5}

- Warm-up: $F_{0}=0$
- Warm-up: $F_{0}=0$

We can reduce
$\mathrm{AdS}_{7} \times S^{4}$ to IIA:

- Warm-up: $F_{0}=0$

We can reduce $\operatorname{AdS}_{7} \times S^{4}$ to IIA:

- Warm-up: $F_{0}=0$

We can reduce $\operatorname{AdS}_{7} \times S^{4}$ to IIA:

- $F_{0} \neq 0$: many new solutions

we can make one of the poles regular:

- $F_{0} \neq 0$: many new solutions

we can make
 one of the poles regular:

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann 'ır〕 susy-breaking? in [Junghans, Schmidt, Zagermann 'I4]

- $F_{0} \neq 0$: many new solutions

we can make
 one of the poles regular:

$$
d s_{M_{3}}^{2}=\frac{n_{\mathrm{D} 6}}{F_{0}}\left(\frac{d y^{2}}{4 \sqrt{y+2}(1-y)}+\frac{1}{3} \frac{(1-y)(y+2)^{3 / 2}}{8-4 y-y^{2}} d s_{S^{2}}^{2}\right)
$$

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann 'ır] susy-breaking? in [Junghans, Schmidt, Zagermann 'I4]
more generally we can have two unequal D6 stacks

more generally we can have two unequal D6 stacks

or also an O6 and a D6 stack

more generally we can have two unequal D6 stacks

or also an O6 and a D6 stack

these solutions are also analytic, but a bit more complicated.

metric: gluing of two pieces of earlier metric

we can also

include D8's:
actually, 'magnetized' D8's
D8-D6 bound states

D8-D6 stack
metric: gluing of two pieces of earlier metric

intuitively: D8's don't slip off because of electric attraction

stacks with opposite D6 charge
metric: gluing of two pieces of metric in prev. slide

+ central region from two slides ago
and so on...

Holographic duals

Holographic duals

Natural class: linear quivers
At each node, $n_{F}=2 n_{c}$

Holographic duals

Natural class: linear quivers
At each node, $n_{F}=2 n_{c}$

Holographic duals

Natural class: linear quivers
At each node, $n_{F}=2 n_{c}$

D-brane engineering:

$$
\mathcal{L} \supset\left(\phi_{i+1}-\phi_{i}\right) \operatorname{Tr} F^{2} \quad \phi_{i}=x^{6} \text { positions of NS''s }
$$

Holographic duals

Natural class: linear quivers
At each node, $n_{F}=2 n_{c}$

$$
\mathcal{L} \supset\left(\phi_{i+1}-\phi_{i}\right) \operatorname{Tr} F^{2} \quad \phi_{i}=x^{6} \text { positions of NS''s }
$$

coincident NS;s = strong coupling point; CFT?
the branes can also be arranged differently...

the branes can also be arranged differently...

the branes can also be arranged differently...

the branes can also be arranged differently...

brane supergravity solution not known, but...

brane supergravity solution not known, but...

Conjecture: near-horizon limit gives our AdS_{7} solutions

brane supergravity solution not known, but...

Conjecture: near-horizon limit gives our AdS_{7} solutions

$$
N=\# \text { NSj's \# D6's ending on a D8 }
$$

flux integer $\int_{M_{3}} H \quad$ D6 charge of the D8

These theories can be labeled by two Young diagrams

[combinatorics well-known in other dimensions]

(4)-(8)-(1)-(1)-(1)-(10)-(1)-(8)-(4)

These theories can be labeled by two Young diagrams

[combinatorics well-known in other dimensions]

These theories can be labeled by two Young diagrams

[combinatorics well-known in other dimensions]

$$
\begin{gathered}
d s^{2}=8 \sqrt{-\frac{\ddot{\alpha}}{\alpha}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\alpha}{\ddot{\alpha}}} d z^{2} \\
+\frac{\alpha^{3 / 2}(-\ddot{\alpha})^{1 / 2}}{\sqrt{2 \alpha \ddot{\alpha}-\dot{\alpha}^{2}}} d s_{S^{2}}^{2}
\end{gathered}
$$

Some notable examples:

reduction of
$\operatorname{AdS}_{7} \times S^{4} / \mathbb{Z}_{k}$
an orbifold of
the $(2,0)$ theory

Some notable examples:

reduction of $\operatorname{AdS}_{7} \times S^{4} / \mathbb{Z}_{k}$
an orbifold of the $(2,0)$ theory

k

Some notable examples:

Anomaly match

Anomaly match

- Cancel gauge anomalies [Green,Schwarz,West'86, Sagnotti '92]
[Intriligator 'ı4, Ohmori, Shimizu, Tachikawa, Yonekura 'ı4]

Anomaly match

- Cancel gauge anomalies [Green,Schwarz,West'86, Sagnotti '92]
- Compute global $\mathrm{SU}(2)_{\mathrm{R}}$ and gravitational anomaly

[Intriligator 'ı4, Ohmori, Shimizu, Tachikawa, Yonekura 'i4]
[Cordova, Dumitrescu, Intriligator ' 15 § $\left\langle T_{\mu}^{\mu}\right\rangle \sim a$ Euler + Weyl comb.

Anomaly match

- Cancel gauge anomalies [Green,Schwarz,West’86, Sagnotti '92]
- Compute global $\mathrm{SU}(2)_{\mathrm{R}}$ and gravitational anomaly

[Cordova, Dumitrescu, Intriligator '15] $\left\langle T_{\mu}^{\mu}\right\rangle \sim a$ Euler + Weyl comb.

Cartan of $\operatorname{SU}(N)$
..ranks of gauge groups

- $a=\frac{192}{7} \sum_{i, j} C_{i j}^{-1} r_{i} r_{j}+$ subleading

Anomaly match

- Cancel gauge anomalies [Green,Schwarz,West'86, Sagnotti '92]
- Compute global $\mathrm{SU}(2)_{\mathrm{R}}$ and gravitational anomaly

[Cordova, Dumitrescu, Intriligator '15] $\left\langle T_{\mu}^{\mu}\right\rangle \sim a$ Euler + Weyl comb.

Cartan of $\operatorname{SU}(N)$ ranks of gauge groups

- $a=\frac{192}{7} \sum_{i, j} C_{i j}^{-1} r_{i} r_{j}+$ subleading

$$
(\# \text { gauge groups })^{3}
$$

- $a=\frac{192}{7} \sum_{i, j} C_{i j} r_{i} r_{j}+$ subleading

This reproduces the famous cubic scaling.

Example:

Example:

$$
\sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{k^{2}}{12}\left(N^{3}-N\right)
$$

"Freudenthal-de Vries
strange formula"

Example:

$$
\sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{k^{2}}{12}\left(N^{3}-N\right)
$$

"Freudenthal-de Vries strange formula"

$$
a=\frac{16}{7} k^{2} N^{3}+\ldots \quad \text { [Ohmori, Shimizu, Tachikawa, Yonekura ’‘4] }
$$

Example:

$$
\begin{aligned}
& r_{i}=k(1,1, \ldots, 1) \\
& \sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{k^{2}}{12}\left(N^{3}-N\right) \\
& a=\frac{16}{7} k^{2} N^{3}+\ldots \quad \text { "Freudenthal-de Vries } \\
& \text { strange formula" }
\end{aligned}
$$

It matches with holographic computation:

$$
a=\frac{R_{\mathrm{AdS}}^{5}}{G_{\mathrm{N}, \mathrm{~d} \mathrm{~d}}}
$$

[Henningson, Skenderis '98]
in IIA
[string frame]

$$
a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}
$$

Another example:

$$
\sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{1}{180} N\left(4 N^{2}-1\right)\left(N^{2}-1\right) \sim \frac{1}{45} N^{5}+\ldots
$$

[because $k=N$ in this case]

$$
a=\frac{16}{7} \frac{4}{15} N^{5}+\ldots
$$

Another example:

(1)-(2)-(3) $\cdots-)^{-N}$

$$
\sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{1}{180} N\left(4 N^{2}-1\right)\left(N^{2}-1\right) \sim \frac{1}{45} N^{5}+\ldots
$$

[because $k=N$ in this case]

$$
a=\frac{16}{7} \frac{4}{15} N^{5}+\ldots
$$

in IIA
[string frame]

$$
a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}
$$

Another example:

(1)-(2)-(3) $\cdots-)^{-N}$

$$
\sum_{i, j} C_{i j}^{-1} r_{i} r_{j}=\frac{1}{180} N\left(4 N^{2}-1\right)\left(N^{2}-1\right) \sim \frac{1}{45} N^{5}+\ldots
$$

[because $k=N$ in this case]

$$
a=\frac{16}{7} \frac{4}{15} N^{5}+\ldots
$$

in IIA
[string frame]

$$
a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}=\frac{16}{7} \frac{4}{15} N^{5}+\ldots
$$

A more elaborate example:

$$
\begin{aligned}
& N
\end{aligned}
$$

A more elaborate example:

$$
\begin{aligned}
& N \\
& a \sim \frac{192}{7} \sum_{i, j} C_{i j}^{-1} r_{i} r_{j}+\ldots=\frac{16}{7} k^{2}\left(N^{3}-4 N k^{2}+\frac{16}{5} k^{3}\right)+\ldots \\
& \text { all large: overall degree } 3 \text { in } N, k
\end{aligned}
$$

A more elaborate example:

in IIA
[string frame]

$$
a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}
$$

A more elaborate example:

$$
\begin{aligned}
& \text { 1-(2)- } \cdots \text { - } k \text { - } k \text { - } \cdots \text { - } k \text { - } k-\cdots \text { - } 2 \text { - } 1 \\
& N \\
& a \sim \frac{192}{7} \sum_{i, j} C_{i j}^{-1} r_{i} r_{j}+\ldots=\frac{16}{7} k^{2}\left(N^{3}-4 N k^{2}+\frac{16}{5} k^{3}\right)+\ldots \\
& \text { all large: overall degree } 3 \text { in } N, k
\end{aligned}
$$

in IIA
[string frame]

$$
a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}=\frac{16}{7} k^{2}\left(N^{3}-4 N k^{2}+\frac{16}{5} k^{3}\right)+\ldots
$$

We have proven that this always works

We have proven that this always works

Heuristic argument:

We have proven that this always works

Heuristic argument:

- $a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}=\frac{192}{7} \int \ddot{\alpha} \alpha$

We have proven that this always works

Heuristic argument:

- $a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi} \operatorname{vol}_{3}=\frac{192}{7} \int \ddot{\alpha} \alpha$

- On the other hand: Cartan is "discrete double derivative"

$$
C=\left(\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \cdots \\
0 & -1 & 2 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right) \quad C_{i j}=2 \delta_{i j}-\delta_{i-1, j}-\delta_{i+1, j}
$$

We have proven that this always works

Heuristic argument:

- $a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi}$ vol $_{3}=\frac{192}{7} \int \ddot{\alpha} \alpha$

- On the other hand: Cartan is "discrete double derivative"

$$
C=\left(\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \cdots \\
0 & -1 & 2 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right) \quad C_{i j}=2 \delta_{i j}-\delta_{i-1, j}-\delta_{i+1, j}
$$

- hence $a \sim \frac{192}{7} \sum r_{i} C_{i j}^{-1} r_{j}$

$$
\ddot{\alpha} \alpha
$$

We have proven that this always works

Heuristic argument:

- $a=\frac{3}{56 \pi^{4}} \int_{M_{3}} e^{5 A-2 \phi}$ vol $_{3}=\frac{192}{7} \int \ddot{\alpha} \alpha$

- On the other hand: Cartan is "discrete double derivative"

$$
C=\left(\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \cdots \\
0 & -1 & 2 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right) \quad C_{i j}=2 \delta_{i j}-\delta_{i-1, j}-\delta_{i+1, j}
$$

- hence $a \sim \frac{192}{7} \sum r_{i} C_{i j}^{-1} r_{j}$ $\longrightarrow \frac{192}{7} \int \ddot{\alpha} \alpha$ r

Conclusions \& Extensions

- Classification of type II AdS_{7} solutions
infinitely many new ones!
- Dual field theories: strong coupling points in linear $\mathrm{U}(k)$ quivers

-There are also extensions involving exceptional gauge groups example:

['fractional M5-branes']
[del Zotto, Heckman, AT, Vafa 'ı4]
- One can also 'compactify'

$$
\text { so } \infty \text { new } \mathrm{CFT}_{4}, \mathrm{CFT}_{3} \ldots
$$

[Apruzzi, Fazzi, Passias, AT '15; Rota, AT '15]
in fact there is a
consistent truncation to 7 d
[Passias, Rota, AT ' ${ }^{5}$]

these are also interesting
flux compactifications

Backup Slides

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}
- flux integer $N \equiv \frac{1}{4 \pi^{2}} \int H$

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}
- flux integer $N \equiv \frac{1}{4 \pi^{2}} \int H$

subject to constraints:

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}
- flux integer $N \equiv \frac{1}{4 \pi^{2}} \int H$

subject to constraints:

- $\mu_{i} \quad$ positive and growing for $F_{0}>0$ negative and growing for $F_{0}<0$
\ldots - $_{\ldots}$ - Young diagrams $\rho_{\mathrm{L}}, \rho_{\mathrm{R}}$

$$
\left.\rho_{\mathrm{L}} \square\right\}^{\square} \mu_{1}^{\mathrm{L}}
$$

Generalization:

- numbers N_{i} of D8's, and their D6 charges μ_{i}
- flux integer $N \equiv \frac{1}{4 \pi^{2}} \int H$

subject to constraints:

- $\mu_{i} \quad$ positive and growing for $F_{0}>0$ negative and growing for $F_{0}<0$
$\xrightarrow{-\rightarrow-\rightarrow}$ Young diagrams $\rho_{\mathrm{L}}, \rho_{\mathrm{R}}$
- $N \geq\left|\mu_{1}^{\mathrm{L}}\right|+\left|\mu_{1}^{\mathrm{R}}\right|$
bordering
$F_{0}=0$ region.

Consistent truncations.

For any AdS_{7} solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra' [Passias, Rota, AT' ${ }_{55}$]

Consistent truncations.

For any AdS_{7} solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra'

7 d minimal gauged sugra

$$
\text { fields: } g_{\mu \nu}^{(7)}, A_{\mu}^{i}, X
$$

Consistent truncations.

For any AdS_{7} solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra'

7 d minimal gauged sugra

$$
\text { fields: } g_{\mu \nu}^{(7)}, A_{\mu}^{i}, X
$$

Consistent truncations.

For any AdS_{7} solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra'

7d minimal gauged sugra

$$
\text { fields: } g_{\mu \nu}^{(7)}, A_{\mu}^{i}, X
$$

Consistent truncations.

For any AdS_{7} solution in IIA there is a consistent truncation to 'minimal gauged 7d sugra'

$$
e^{2 A} d s_{7}^{2}+d r^{2}+\frac{v^{2}}{1+16\left(X^{5}-1\right) v^{2}} e^{2 A} d s_{S^{2}}^{2}
$$

$$
\text { scalar } X \cong \text { an internal 'distortion' }
$$

$$
e^{2 A} d s_{\mathrm{AdS}_{7}}^{2}+d r^{2}+v^{2} d s_{S^{2}}^{2}
$$

7d minimal gauged sugra

$$
\text { fields: } g_{\mu \nu}^{(7)}, A_{\mu}^{i}, X
$$

Many solutions that one can lift:

- $\mathrm{AdS}_{5} \times \Sigma_{2}, \mathrm{AdS}_{4} \times \Sigma_{3}$ solutions dual to CFT5's and CFT4's
actually done earlier:
[Apruzzi, Fazzi, Passias, AT '15; Rota, AT 'I5]

Many solutions that one can lift:

- $\mathrm{AdS}_{5} \times \Sigma_{2}, \mathrm{AdS}_{4} \times \Sigma_{3}$ solutions dual to CFT5's and CFT4's
actually done earlier:
[Apruzzi, Fazzi, Passias, AT '15;
Rota, AT 'I5]
- RG flows from AdS_{7} to $\mathrm{AdS}_{5} \times \Sigma_{2}$ and $\mathrm{AdS}_{4} \times \Sigma_{3}$
- AdS_{3} to $\mathrm{AdS}_{3} \times \Sigma_{4}$ solutions
- non-susy AdS $_{7}$ solution

If you're curious about the analytic expressions:

If you're curious about the analytic expressions:

- All is determined by a single function $\beta(y)$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

If you're curious about the

 analytic expressions:- All is determined by a single function $\beta(y)$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

where $\left(\frac{y^{2} \beta}{\beta^{\prime 2}}\right)^{\prime}=\frac{F_{0}}{72}$
[it's easy to solve]

If you're curious about the

 analytic expressions:- All is determined by a single function $\beta(y)$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

$-\beta$ has single zero \Rightarrow regular point; double zero $\Rightarrow \mathrm{D} 6$ stack
where $\left(\frac{y^{2} \beta}{\beta^{\prime 2}}\right)^{\prime}=\frac{F_{0}}{72}$
[it's easy to solve]

If you're curious about the

 analytic expressions:- All is determined by a single function $\beta(y)$ where $\left(\frac{y^{2} \beta}{\beta^{\prime 2}}\right)^{\prime}=\frac{F_{0}}{72}$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

[it's easy to solve]
$-\beta$ has single zero \Rightarrow regular point; double zero $\Rightarrow \mathrm{D} 6$ stack

$$
F_{0}=0, \text { two D6 stacks } \beta \propto\left(y^{2}-y_{0}^{2}\right)^{2}
$$

examples:

If you're curious about the

 analytic expressions:- All is determined by a single function $\beta(y)$ where $\left(\frac{y^{2} \beta}{\beta^{\prime 2}}\right)^{\prime}=\frac{F_{0}}{72}$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

[it's easy to solve]
$-\beta$ has single zero \Rightarrow regular point; double zero $\Rightarrow \mathrm{D} 6$ stack

$$
\begin{array}{ll}
& F_{0}=0, \text { two D6 stacks } \beta \propto\left(y^{2}-y_{0}^{2}\right)^{2} \\
\text { examples: } & F_{0} \neq 0, \text { one D6 stack } \beta \propto\left(y-y_{0}\right)\left(y+2 y_{0}\right)^{2}
\end{array}
$$

If you're curious about the analytic expressions:

- All is determined by a single function $\beta(y)$ where $\left(\frac{y^{2} \beta}{\beta^{\prime 2}}\right)^{\prime}=\frac{F_{0}}{72}$

$$
d s^{2}=\frac{4}{9} \sqrt{-\frac{\beta^{\prime}}{y}}\left[d s_{\mathrm{AdS}_{7}}^{2}-\frac{1}{16} \frac{\beta^{\prime}}{y \beta} d y^{2}+\frac{\beta / 4}{4 \beta-y \beta^{\prime}} d s_{S^{2}}^{2}\right]
$$

[it's easy to solve]
$-\beta$ has single zero \Rightarrow regular point; double zero $\Rightarrow \mathrm{D} 6$ stack

$$
\begin{aligned}
& \\
& \\
& F_{0}=0, \text { two D6 stacks } \beta \propto\left(y^{2}-y_{0}^{2}\right)^{2} \\
& \text { examples: } \\
& F_{0} \neq 0, \text { one D6 stack } \beta \propto\left(y-y_{0}\right)\left(y+2 y_{0}\right)^{2} \\
& \\
& F_{0} \neq 0, \text { most general: } \beta \propto(\sqrt{\hat{y}}-6)^{2}\left(\hat{y}+6 \sqrt{\hat{y}}+6 b_{2}-72\right)^{2} \\
& \\
& \\
&
\end{aligned}
$$

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

IIA

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

IIA

三OEO … OEOE

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

IIA

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

- F-theory allows to include more general gauge groups

More general CFT6 from F-theory

So far we have seen chains of $S U(N)$ gauge groups
simplest example:

三OEO … OEOE

- F-theory allows to include more general gauge groups
- The D8's should be dual in F-theory to an object called "T-brane"
- First generalization: SO/Sp gauge groups
- First generalization: SO/Sp gauge groups
known IIA phenomenon: an NS5 can 'fractionate' on an O6

[Evans, Johnson,Shapere '97]
〔Elitzur,Giveon, Kutasov, Tsabar '98]
- First generalization: SO/Sp gauge groups
known IIA phenomenon:
an NS5 can 'fractionate' on an O6

- First generalization: SO/Sp gauge groups
known IIA phenomenon:
an NS5 can 'fractionate' on an O6
[Evans, Johnson,Shapere '97]

- First generalization: SO/Sp gauge groups
known IIA phenomenon:
an NS5 can 'fractionate' on an O6

In F-theory this is reproduced geometrically:

fibre deg.

- First generalization: SO/Sp gauge groups

known IIA phenomenon:

an NS5 can 'fractionate' on an O6

In F-theory this is reproduced geometrically:

"blow-up"

fibre deg.

- There is also an analogue for exceptional gauge groups
- There is also an analogue for exceptional gauge groups

- There is also an analogue for exceptional gauge groups

- There is also an analogue for exceptional gauge groups

- There is also an analogue for exceptional gauge groups now we need
several blowups...
Final result: the $\left(E_{8}, E_{8}\right)$ theory
thers pattern also appeared in
[Berhadsky, Johansen'96]
[Aspinwall, Morrison'97]
[Intriligator'97]...

$\underbrace{}_{2}=\begin{gathered}\text { (wo tensors } \\ \text { (no gauge group) }\end{gathered}$
- There is also an analogue for exceptional gauge groups $\begin{gathered}\text { now we need } \\ \text { several blowups... }\end{gathered} \underbrace{\longrightarrow}_{E_{8}} \rightarrow \cdots$$\rightarrow \cdots$

- There is also an analogue for exceptional gauge groups now we need several blowups...

Final result: the $\left(E_{8}, E_{8}\right)$ theory tensor multiplets pattern also appeared in [Berhadsky, Johansen '96] [Aspinwall, Morrison '97] [Intriligator'97]...

Final result: the $\left(E_{8}, E_{8}\right)$ theory

Final result: the $\left(E_{8}, E_{8}\right)$ theory

In M-theory:

Final result: the $\left(E_{8}, E_{8}\right)$ theory

In M-theory:

Conjecture: 12 fractional M5's

$\mathbb{R} \times \mathbb{R}^{4} / \Gamma_{E_{8}}$ sing.

Final result: the $\left(E_{8}, E_{8}\right)$ theory

In M-theory:

$\mathbb{R} \times \mathbb{R}^{4} / \Gamma_{E_{8}}$ sing.

Conjecture: 12 fractional M5's

a 'discrete flux' is created whenever a fractional M_{5} is crossed

Final result: the $\left(E_{8}, E_{8}\right)$ theory

In M-theory:

$\mathbb{R} \times \mathbb{R}^{4} / \Gamma_{E_{8}}$ sing.

Conjecture: i2 fractional M5's

a 'discrete flux' is created whenever a fractional M_{5} is crossed

