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As one knows (see, e.g. [?]), the term cosmological billiard is used to
describe a remarkable limit behavior of an important dynamical system,
the 1-dimensional Σ-model on homogenous spaces. We shall briefly recall
main definitions from this sphere.

Let P = G/K, where G is semisimple a Lie group and π : G → P the
natural projection. We shall assume, that K is maximal compact subgroup
of G. Then P is homeomorphic to Rn for a suitable n. Let k ⊆ g be the Lie
algebras of K and G, p a complement of k so that g = k⊕p; one can regard p
as the tangent space of P in any given point, since P is topologically trivial.
Here we assume that k⊕ p is a Cartan decomposition of g, in particular that
the Killing form is positive-definite on p and negative-definite on k. Thus we
can use Killing form to induce a metric h on P.

For every map σ : Σ→ P (dimΣ = 1) consider the formula

Lσ(x) = proj⊥p (g−1ġ),

where x ∈ Σ, g : P → G is a local section of π around x and proj⊥p denotes
the orthogonal projection.
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One can show, that L = Lσ does not depend of the choice of g and de-
termines a section Lσ : Σ → TP = P × p, depending on σ. Consider the
Lagrangian action:

S(σ) =

∫
Σ

h(Lσ(x),Lσ(x))dµ. (1)

Here integration is taken over a compact subset (or we assume additional
conditions on the behavior of σ(x) in infinity). We shall restrict our attention
to the case, when Σ = R1, i.e. σ : R1 → G, so that dµ = dt.

In the latter case variation of the action S with respect to σ(t) yields the
following equation:

d
dt

Lσ = −[Mσ ,Lσ], (2)

where Mσ(x) = proj⊥
k

(g−1ġ). One can express this latter element as the
function of Lσ ; this can be done either in terms of the suitable positive roots
system of g, or in terms of the anti-symmetrization of the matrix, represent-
ing Lσ . Also observe, that [Mσ ,Lσ] ∈ p due to the definition of Cartan pairs.
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It is not difficult to see, that the equation (2) is the well-known Toda equa-
tion. For instance, when G = SL(n,R), we can choose K = SO(n,R); then
G/K � B+(n,R) � Sym0(n,R); here B+(n,R) is the group of upper triangu-
lar matrices and Sym0(n,R) is the space of symmetric matrices with trace
equal to 0 (the first isomorphism follows from the QR-decomposition and
the second is clear from linear algebra). Then we choose Cartan pair as
p = Sym0(n,R), k = so(n,R) so that L = Lσ and M = Mσ are given by

L =


a11 a12 ... a1n

a12 a22 ... a2n

. . . . . . . . . . . .
a1n a2n ... ann

 , M =


0 a12 ... a1n

−a12 0 ... a2n

. . . . . . . . . . . .
−a1n −a2n ... 0

 ,
i.e. the equation (2) obtains the usual form of the Adler-Kostant-Symes
scheme. Similar equations can be written in other cases, i.e. for other
semisimple groups G.
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One can take the description, given above, as the definition of Toda system
for arbitrary semisimple Lie group, below we shall repeat main steps of it.
Properties of this system are rather well-studied today. The matrix L (more
generally, the p-valued function L) is called Lax matrix, and equation (2) is
called Lax equation of the Toda system.

First of all, one can show, that this system is an integrable Hamiltonian
system, where the Poisson structure on P comes from its identification with
the dual space of a Lie algebra. The corresponding Hamiltonian is equal to
the integration term in (1). This system is integrable, i.e. it possesses many
independent commuting first integrals.

In particular, in the case G = SL(n,R), P is identified with (b+(n,R))∗. In
this case, which is called the full symmetric Toda flow, eigenvalues of the
Lax matrix L are invariants of the system and one can even give explicit
formulas that will solve this equation for given initial data. This system also
has many other important invariants; some of them will be important for our
work.
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Using explicit solutions (see previous slide), one can show that any solution
of this integrable system tends to diagonal matrix, with given eigenvalues,
when t → ±∞ (in fact, see previous slide, eigenvalues don’t depend on t).
Moreover, if eigenvalues are different,

λ1 < λ2 < · · · < λn,

then almost all trajectories go from the matrix λ−∞ = diag(λ1, λ2, . . . , λn)
as t → −∞ to the matrix Λ+∞ = diag(λn, λn−1, ,̇λ1), as t → +∞. Remaining
trajectories also connect two diagonal matrices Λ̂±∞ (in fact, the set of sin-
gular points of this system coincides with diagonal matr, so that the number
of inversions in the sequence of eigenvalues at t → +∞ is greater than
the corresponding number at t → −∞, as it was observed in the paper [?].
A more accurate analysis in the neighborhood of diagonal matrices shows,
that the order of eigenvalues is not changed instantaneously, but in a series
of swaps, as the trajectory approaches singular points. It is this behavior,
that earned the name of cosmological billiard.
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In our previous paper we showed that the order, in which trajectories of
Toda flow on SL(n,R) connect diagonal matrices, is not quite arbitrary and
is not completely determined by the number of swaps, or inversions in the
sequence of eigenvalues. It turned out that the behavior of trajectories of
this equation is determined by the Bruhat order on the group Sn (the Weyl
group of SL(n,R)), if all the eigenvalues {λj} of L are distinct. In fact, we
proved the following result:

Theorem
Two diagonal matrices are connected by a trajectory of the full symmetric
Toda flow, if and only if the corresponding permutations of eigenvalues are
comparable in the sense of (strong) Bruhat order in Sn.

This can be rephrased as follows: the phase portrait of the full symmetric
Toda system coincides with the Bruhat diagram of the permutation group
Sn.
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It turns out, that similar statements hold in many other cases too. Namely,
in this talk I will explain the following two results:

Let G = SL(n,R), but not all eigenvalues are distinct, then the
trajectories of the system still connect diagonal matrices, so that two
such matrices are connected iff the corresponding multiset
permutations are compareble in the sense of Bruhat order;

Let G be any simple group of rank 2; then the phase portrait of the
Toda flow coincides with Bruhat diagram of the corresponding Weyl
group.

It is natural to conjecture, that the same statement is true always, namely
that the phase portrait of the trajectories of Toda system, associated with
any semisimple Lie group G, coincides with the Bruhat diagram of the cor-
responding Weyl group. However, at present we cannot prove this in full
generality.
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In the rest of this talk I will recall basic definitions, necessary for the under-
standing of these results, and give a brief outline of the proofs. We shall
begin with the definition of Weyl group of a semisimple Lie group G.

Let T ⊆ G be the maximal commutative subgroup of G (it is homeomorphic
to a multidimensional torus). It can be regarded as the exponent of the
maximal commutative Lie subalgebra t of g, called Cartan subalgebra. As
one knows, all such subgroups/subalgebras are conjugate by the action of
G, so their dimension does not depend on the choices made; this dimension
is called rank of the group G.

Let NG(T) ⊆ G be the normalizer subgroup of T in G, i.e. the maximal
subgroup of G, which contains T as a normal subgroup. Then the quotient
group

WG = NG(T)/T

is called Weyl group of G. As one sees, this group does not depend on the
choices we have made.
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It follows from the definition, that Weyl group WG acts on the maximal torus
T: this action is induced by conjugations in NG(T); alternatively, one can
consider the induced adjoint action on Cartan subalgebra. This represen-
tation is exact, so one can identify WG with the corresponding group of
linear transformations of t.

Under this assumption one can show, that Weyl group of any semisimple
Lie group is generated by a finite number of reflections with respect to hy-
perplanes in a multidimensional Euclidean space t. This gives a very spe-
cial set of generators ti, such that t2

i = 1, where ti is a reflection. Another
way to formulate it is to say that WG has structure of a finite Coxeter group.

Every Coxeter reflection group has a partial order on it. First of all, one can
define length l(g) of an element g ∈ W

l(g) = min{n | g = ti1 . . . tin}.

Thus, we can order the elements by comparing their lengths. This gives
(rather rude) partial order.
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A more subtle partial order is the so called strong Bruhat order, which can
be defined as the closure (in the sense of partial orders) of the following
elementary relation:

u ≺ v⇔ v = tu, for some elementary reflection t.

An important particular case of this order is Bruhat order on symmetric
group Sn, which is equal to the Weyl group of SL(n,C). In this case the role
of reflections is played by transpositions of two elements and the length of
a permutation w is equal to the number of inversions in the corresponding
sequence (w(1),w(2), . . . ,w(n)).

A convenient way to represent this order is by drawing a graph, which is
called the Hasse diagram of the order, or simply Bruhat graph. It is an
oriented graph, whose vertices are elements of WG, and any two vertices
u and v are connected by an edge, iff the elementary relation u ≺ v (see
above) holds.
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There is an important relation between Bruhat order on Sn and the geometry
of full flag space

Fl(n,R) = SL(n,R)/B+(n,R)

and of the group SL(n,R) too; alternatively one can regard Fl(n,R) as the
space of all flags of vector subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 in Rn.

To explain this relation, recall that there is a cell decomposition of Fl(n,R),
called Schubert cell decomposition. One can define it either with the help of
the SL(n,R) action on the flag space, or in terms of the geometry of spaces
Vi. Cells Xw of this decomposition correspond bijectively to the elements w
of Sn. Then one can show, that

u ≺ v⇔ Xu ⊂ Xv,

where X denotes the topological closure of the cell. Moreover, one can
define dual Schubert cells Yv in Fl(n,R); then

u ≺ v⇔ Xu

⋂
Yv , ∅.

G. Sharygin (MSU, JINR) Cosmological billiards and Bruhat order Dubna, 2015 12 / 19



One can use Bruhat order on Sn in order to define similar order on multiset
permutations. Recall, that multiset a is a “set with repeating elements”, i.e.
one can regard it as a collection of n elements a1, . . . , an, where we assume
that

a1 = a2 = · · · = ak1 , ak1+1 = ak1+2 = · · · = ak1+k2 , . . . ,

ak1+···+km−1+1 = ak1+···+km−1+2 = · · · = ak1+···+km−1+km ,

in particular n = k1 + k2 + · · · + km.

Then any permutation w ∈ Sn can be applied to the set (a1, . . . , an), sending
it to the string

w(a) = (aw(1), aw(2), . . . , aw(n)).

Clearly, many permutations w will yield the same string w(a). We shall call
all such strings “permutations with repetitions”. The action of Sn on multiset
a has an evident stabilizer Sk1 × Sk2 × · · · × Skm . Thus, for every permuta-
tion with repetition, there are exactly k1! . . . km! different permutations in Sn,

that represent it, so that there are exactly
n!

k1!k2! . . . km!
permutations with

repetitions of the multiset a.
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We shall denote the set of permutations of a multiset a by S(a). One can use
the considerations of previous slide to pull the Bruhat order from Sn to S(a).
Namely, for any two permutations x, y ∈ S(a) we consider their preimages
s(x), s(y) in Sn (it is clear, that they do not intersect). Then we shall say that

x ≺ y⇔ ∃ u ∈ s(x), v ∈ s(y) : u ≺ v.

Here on the right hand we use the Bruhat order in Sn.

One can find a geometrical interpretation of this partial order too. To this
end we consider the partial flag space Fl(k1, . . . , km,R); it can be obtained
from Fl(n,R) by removing certain subspaces Vi from the list; there exists a
natural projection

Fl(n,R)→ Fl(k1, . . . , km,R),

given by forgetting the “extra” spaces. One can use this projection to pull
Schubert cell decomposition to the partial flag space. This time the cells
will be enumerated by the elements of S(a). Then we shall have a similar
relation between the order on S(a) and intersections of the cells.
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Let us now briefly recall the main results from the theory of Toda flows;
we begin with the full symmetric Toda lattice. Recall that eigenvalues of
the Lax matrix L are first integrals of the flow. Let us fix them. Then in
dimension n the system induces a gradient flow on the orthogonal group
SO(n,R), which we here shall call the Toda flow on SO(n,R), or just Toda
system on SO(n,R). This flow is determined by the vector field

M(Ψ) =
(
(ΨΛΨ−1)+ − (ΨΛΨ−1)−

)
Ψ,

where Λ is the diagonal matrix of eigenvalues of the symmetric Lax matrix
L and Ψ ∈ SO(n,R). To obtain it observe that every symmetric matrix with
distinct eigenvalues can be represented in the form L = ΨΛΨT , and this
representation is locally unique.

One can show, that vector field M(Ψ) is equal to the gradient of a function
F with respect to an invariant metric on SO(n,R): for a fixed eigenvalues
matrix Λ one can take

F(Ψ) = Tr(ΨΛΨTN), where N = diag(0, 1, . . . , n − 1).
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The SO(n,R)-invariant Riemannian structure that we use here is deter-
mined by its values on son, where it is given by the formula

〈A,B〉J = −Tr(AJ−1(B)),

for any antisymmetric matrices A and B and a linear isomorphism J : son →
son. Then

M(Ψ) = grad〈,〉J F,

It turns out that the last equation does not depend on whether the eigenval-
ues are all distinct, or not. Same formulas as above induce a vector field, a
function and a Riemannian structure on the full flag space

Fln(R) = SO(n;R)/T+
n ,

so that we obtain a gradient field M on Fln(R). It can be shown (see
Chernyakov, Sharygin, Sorin, CMP, 2014 and F. De Mari, M. Pedroni, J.G.A.,1999)
that the function F is Morse function both on SO(n,R) and on the flag space
Fln(R).
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In a similar way, one can modify the constructions of the previous slide to
construct gradient flows on the partial flag spaces in case of a generic set
of eigenvalues. So let us suppose that there are coinciding eigenvalues
of Λ; more accurately, let there be m < n distinct eigenvalues of Λ, with
multiplicities k1, . . . , km. In this case the vector field M(Ψ) on SO(n;R) is
invariant with respect to O(k1,R) × · · · × O(km,R), i.e.

M(Ψg) = M(Ψ)g

for all g ∈ SO(n,R)
⋂

(O(k1,R) × · · · × O(km,R)).

This group action induces the projection Fl(n,R)→ Fl(k1, . . . , km,R), men-
tioned earlier. Using the group action we can pull M(Ψ) down along this
projection and obtain a vector field M̃ on the partial flag space. It turns
out that all the naturality conditions hold (in particular the function F and
the Riemannian structure 〈, 〉J are invariant with respect tot the group ac-
tion). Thus the field M̃ is equal to the gradient of a function F̃ (“image of F”
with respect to projection) with respect to the induced Riemannian struc-
ture. Moreover, one can show that the function F̃ is a Morse function on
Fl(k1, . . . , km,R).
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Another important property of the Toda system is that it admits a wide col-
lection of invariant manifolds in orthogonal groups and in flag manifolds. An
important large collection of such invariant sets is given by so-called minor
surfaces: they are the null-sets of the functions M+

I (g), M−J (where I, J are
poly-index sets I = (1 ≤ i1 < i2 < · · · < ip ≤ n), J = (1 ≤ j1 < j2 < · · · <
jq ≤ n) and g ∈ SO(n,R)), given by the formulas

M+
I (g) = det(gI

1,2,...,p), M−J (g) = det(gJ
n−q+1,...,n−1,n),

where gI
1,2,...,p) and gJ

n−q+1,...,n−1,n are the sub matrices of g, spanned by the
first p (resp. last q) rows and the columns, given by I (resp by J).

Another important family of invariant submanifolds of Toda flow on SO(n,R)
(or on the corresponding flag space) consists of Schubert varieties (or their
images in SO(n,R)). Of course, one should add all the intersections of all
minor surfaces and other invariant surfaces to this list.
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Finally, one can embed Toda system on any classical group into the Toda
system of SL(n,R). Namely, if we embed the group G into a suitable SL(n, R)
so that the Cartan subalgebra is mapped into the diagonal matrices and
root vectors correspond to the upper or lower triangular matrices; then the
Toda equation on G is given by the usual matrix equation

L̇ = −[L,M].

One can show, that the system, obtained in this way is indeed Toda sys-
tem on G as it has been introduced earlier. It is also possible to use this
approach to show that the Toda system on any Lie group G can also be
related to a gradient flow on the maximal compact subgroup of G. In fact,
one can describe this gradient flow in terms of the Lie algebra structure of
G (in terms of root vectors etc.), without the use of the embedding, we use
here. However, this embedding is important, since it allows one use invari-
ant surfaces from SO(n,R) on the image of G to obtain invariant manifolds
of the generalized Toda system.
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Now the outline of the proofs is as follows:

Step 1 Show that invariant surfaces in Fl(n,R), given by unions of
Schubert cells or dual Schubert cells with common projection into
Fl(k1, . . . , km,R), intersect if and only if the corresponding
permutations with repetitions are comparebale with respect to the
Bruhat order.

Step 2 Show that the stable/unstable manifolds of Toda flow in
Fl(k1, . . . , km,R) coincide with the images of Schubert cells or dual
Schubert cells (in neighborhoods of singular points).

These two steps prove the first statement. And the second one follows from
the following

Step 3 Embed the remaining two rank 2 groups Sp(4,R) and G2 into
suitable SL(n,R) as explained in previous slide and use minor
surfaces to describe the phase portrait of the Morse system.
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