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Motivations and contents
Maximally extended gauge theories (with 16 supersymmetries)
are under intensive study for the last few years:

N = 4, 4D =⇒ N = (1,1), 6D =⇒ N = (1,0), 10D .

I N = 4, 4D SYM is UV finite and perhaps completely integrable.

I N = (1, 1), 6D SYM is not renormalizable by formal power counting
(the coupling constant is dimensionful) but is expected to also possess
various unique properties.

I In particular, it respects the so called “dual superconformal symmetry”
like its 4D counterpart.

I It provides the effective theory descriptions of some particular low
energy sectors of string theory, such as D5-brane dynamics.

I N = (1, 1) SYM is anomaly free (Frampton, Kephart, 1983, et al), as
distinct from N = (1, 0) SYM.

I N = (1, 1) and N = (1, 0) SYM are analogs of N = 8 supergravity
(also formally non-renormalizable).



I The full effective action of D5-brane is expected to be of non-abelian
Born-Infeld type, generalizing the N = (1, 1) SYM action (Tseytlin,
1997).

I The newest perturbative explicit calculations in N = (1, 1) SYM show a
lot of cancelations of the UV divergencies which cannot be predicted in
advance.

I The theory is UV-finite up to 2 loops, while at 3 loops only a single-trace
counterterm of canonical dim 10 is required. The allowed double-trace
counterterms do not appear (Bern et al, 2010, 2011; Berkovits et al,
2009; Bjornsson et al, 2011, 2012).

I New non-renormalization theorems? The maximally supersymmetric
off-shell formulations are needed!

I Maximum that one can achieve - off-shell N = (1, 0) SUSY. The most
natural off-shell formulation of N = (1, 0) SYM - in harmonic
N = (1, 0), 6D superspace (Howe et al, 1985; Zupnik, 1986) as a
generalization of the N = 2, 4D HSS (Galperin et al, 1984).



I [N = (1, 0) SYM + 6D hypermultiplet ] = [N = (1, 1) SYM], with the
second hidden on-shell N = (0, 1) SUSY.

I How to construct higher-dimension N = (1, 1) invariants in terms of
N = (1, 0) superfields?

I The “brute-force” method: To start with the appropriate dimension
N = (1, 0) SYM invariant and then to complete it to N = (1, 1) invariant
by adding the proper hypermultiplet terms. Very cumbersome
technically and actually works only for the lowest-order invariants.

I The situation is simplified by the fact that for finding all admissible
superfield counterterms it is enough to stay on the mass shell.

I One of the main results of our work with Bossard and Smilga is
developing of the new approach to constructing higher-dimension
N = (1, 1) invariants based on the concept of the on-shell N = (1, 1)
harmonic superspace with the double set of the harmonic variables
u±i , u

±
A , i = 1, 2; A = 1, 2 (Bossard, Howe & Stelle, 2009) and solving

the N = (1, 1) SYM constraints in terms of N = (1, 0) superfields.

I The d = 8 and d = 10 invariants were explicitly constructed and an
essential difference between the single- and double-trace d = 10
invariants was established.



6D superspaces
I The standard N = (1, 0), 6D superspace:

z = (xM , θa
i ) , M = 0, . . . , 5 , a = 1, . . . , 4 , i = 1, 2 ,

with Grassmann pseudoreal θa
i .

I The harmonic N = (1, 0), 6D superspace:

Z := (z, u) = (xM , θa
i , u
±i ) , u−i = (u+

i )∗, u+iu−i = 1 , u±i ∈ SU(2)R/U(1) .

I The analytic N = (1, 0), 6D superspace:

ζ := (xM
(an), θ

+a, u±i ) ⊂ Z , xM
(an) = xM +

i
2
θa

kγ
M
abθ

b
l u+k u−l , θ±a = θa

i u±i .

I Basic differential operators in the analytic basis:

D+
a = ∂−a , D−a = −∂+a − 2iθ−b∂ab ,

D0 = u+i ∂

∂u+i − u−i ∂

∂u−i + θ+a∂+a − θ−a∂−a

D++ = ∂++ + iθ+aθ+b∂ab + θ+a∂−a , D−− = ∂−− + iθ−aθ−b∂ab + θ−a∂+a ,

where ∂±aθ
±b = δb

a and ∂++ = u+i ∂
∂u−i , ∂−− = u−i ∂

∂u+i .



Basic superfields
I Analytic gauge N = (1, 0) SYM connection:

∇++ = D++ + V++ , δV++ = −∇++Λ , Λ = Λ(ζ) .

I Second harmonic (non-analytic) connection:

∇−− = D−− + V−− , δV−− = −∇−−Λ .

I Related by the harmonic flatness condition

[∇++,∇−−] = D0 ⇒ D++V−− − D−−V++ + [V++,V−−] = 0

⇒ V−− = V−−(V++, u±) .

I Wess-Zumino gauge:

V++ = θ+aθ+bAab + 2(θ+)3
aλ
−a − 3(θ+)4D−− .

Here Aab is the gauge field, λ−a = λaiu−i is the gaugino and
D−− = Dik u−i u−k , where Dik = Dki , are the auxiliary fields.



I Covariant derivatives

∇−a = [∇−−,D+
a ] = D−a +A−a , ∇ab =

1
2i

[D+
a ,∇−b ] = ∂ab +Aab ,

A−a (V ) = −D+
a V−−, Aab(V ) =

i
2

D+
a D+

b V−−,

[∇++,∇−a ] = D+
a , [∇++,D+

a ] = [∇−−,∇−a ] = [∇±±,∇ab] = 0 .

I Covariant superfield strengths

[D+
a ,∇bc ] =

i
2
εabcd W+d , [∇−a ,∇bc ] =

i
2
εabcd W−d ,

W+a = −1
6
εabcd D+

b D+
c D+

d V−− , W−a := ∇−−W+a ,

∇++W+a = ∇−−W−a = 0 , ∇++W−a = W+a ,

D+
b W+a = δa

bF++ , F++ =
1
4

D+
a W+a = (D+)4V−− ,

∇++F++ = 0 , D+
a F++ = 0 .

I Hypermultiplet

q+A(ζ) = q iA(x)u+
i − θ

+aψA
a (x) + An infinite tail of auxiliary fields , A = 1, 2 .



N = (1,0) superfield actions
I The N = (1, 0) SYM action (Zupnik, 1986):

SSYM =
1
f 2

∞∑
n=2

(−1)n+1

n
Tr
∫

d6x d8θ du1 . . . dun
V++(z, u1) . . .V++(z, un)

(u+
1 u+

2 ) . . . (u+
n u+

1 )
,

δSSYM = 0 ⇒ F++ = 0 .

I The hypermultiplet action

Sq = − 1
2f 2 Tr

∫
dζ−4q+A∇++q+

A , ∇++q+
A = D++q+

A + [V++, q+
A ] ,

δSq = 0 ⇒ ∇++q+A = 0 .

I The N = (1, 0) superfield form of the N = (1, 1) SYM action:

S(V+q) = SSYM + Sq =
1
f 2

(∫
dZLSYM − 1

2
Tr
∫

dζ−4q+A∇++q+
A

)
,

δS(V+q) = 0 ⇒ F++ +
1
2

[q+A, q+
A ] = 0 , ∇++q+A = 0 .

It is invariant under the second N = (0, 1) supersymmetry:

δV++ = ε+Aq+
A , δq+A = −(D+)4(ε−A V−−) , ε±A = εaAθ

±a .



Higher-dimensional N = (1,0) and N = (1,1)
invariants

I d = 6: In the pure SYM case it is unique

S(6)
SYM =

1
2g2 Tr

∫
dζ−4du

(
F++)2 ∼ Tr

∫
d6x [(∇MFML)2 + . . .]

I Does its off-shell completion to an off-shell N = (1, 1) invariant exist?
The answer is NO, only an expression can be found whose N = (0, 1)
variation vanishes on-shell. It is unique up to a real parameter

Ld=6 =
1

2g2 Tr
∫

dudζ(−4)
(

F++ +
1
2

[q+A, q+
A ]

)(
F++ + 2β[q+A, q+

A ]
)

But it vanishes on-shell by itself! We have thus shown that the
non-vanishing on-shell counterterms of canonical dimension 6 are
absent, and this proves one-loop finiteness of N = (1, 1) SYM.



I d = 8: All N = (1, 0) superfield terms of such dimension in the pure
N = (1, 0) SYM theory prove to vanish on the gauge fields mass shell,
in accord with the old statement (Howe & Stelle, 1984). Can adding the
hypermultiplet terms change this? Our analysis showed that there exist
NO N = (1, 0) supersymmetric off-shell invariants of the dimension 8
which would respect the on-shell N = (1, 1) invariance.

I Surprisingly, the d = 8 superfield expression which is non-vanishing on
shell and respects the on-shell N = (1, 1) supersymmetry can be
constructed by giving up the requirement of off-shell N = (1, 0)
supersymmetry.

I An example of such an invariant in N = (1, 0) SYM is very simple

S̃(8)
1 ∼ Tr

∫
dζ−4 εabcd W+aW+bW+cW+d .

Indeed, D+
a W+b = δb

aF++, which vanishes on shell. Thus, W+a is an
analytic superfield, when disregarding the terms proportional to the
equations of motion, and the above action respects N = (1, 0)
supersymmetry on shell. Also, double-trace on-shell invariant exists

S̃(8)
2 ∼

∫
dζ−4 εabcd Tr(W+aW+b)Tr(W+cW+d ) .

I Do these invariants admit N = (1, 1) completions? YES, they do!



I By varying the pure N = (1, 0) SYM action by the transformations of
the second hidden N = (0, 1) supersymmetry and picking the
appropriate compensating hypermultiplet terms, after rather
cumbersome computations we find

L+4
(1,1) = Tr(S)

{1
4
εabcd W+aW+bW+cW+d + 3iq+A∇abq+

A W+aW+b

− q+A∇abq+
A q+B∇abq+

B −W+a[D+
a q−A , q

+
B ]q+Aq+B

− 1
2

[q+C , q+
C ][q−A , q

+
B ]q+Aq+B

}
.

It is analytic, D+
a L+4

(1,1) = 0, on the full shell F++ + 1
2 [q+A, q+

A ] = 0,
∇++q+A = 0 , and also N = (1, 1) supersymmetric. Tr(S) stands for the
symmetrized trace. Also, it is possible to extend the double-trace d = 8
invariant in a similar way.

I Though the nontrivial on-shell d = 8 invariants exist, the perturbative
expansion for the amplitudes for the N = (1, 1) SYM theory does not
involve divergences at the two-loop level. The matter is that these
invariants do not possess the full off-shell N = (1, 0) supersymmetry
which the physically relevant counterterms should obey. Indeed, we
have at hand the harmonic off-shell N = (1, 0) superfields. On the
basis of that, one can construct the N = (1, 0) gauge-covariant
supergraph technique such that all the amplitudes and the
counterterms would enjoy N = (1, 0) supersymmetry off shell.



N = (1,1) on-shell harmonic superspace
I Though such d = 8 terms cannot appear as counterterms in N = (1, 1)

SYM theory, they can appear, e.g., as quantum corrections to the
effective Wilsonian action. For the pure N = (1, 0) SYM theory this was
recently observed in Buchbinder & Pletnev, 2015. It would be desirable
to work out some simple and systematic way of constructing such
higher-order on-shell N = (1, 1) invariants. This becomes possible in
the framework of the on-shell harmonic N = (1, 1) superspace.

I As the first step, extend the N = (1, 0) superspace to the N = (1, 1)
one,

z = (xab, θa
i ) ⇒ ẑ = (xab, θa

i , θ̂
A
a ).

I Then we define the covariant spinor derivatives,

∇i
a =

∂

∂θa
i
− iθbi∂ab +Ai

a , ∇̂aA =
∂

∂θ̂Aa
− i θ̂A

b∂
ab + ÂaA .

I The constraints defining the N = (1, 1) SYM theory are as follows
(Howe, Sierra, Townsend, 1983; Howe, Stelle, 1984):

{∇(i
a ,∇

j)
b } = {∇̂a(A, ∇̂bB)} = 0 , {∇i

a, ∇̂bA} = δb
aφ

iA

⇒ ∇(i
aφ

j)A = ∇̂a(AφB)i = 0 (By Bianchis) .



I As the next step, we define the N = (1, 1) HSS with the double set of
harmonics (Bossard, Howe & Stelle, 2009):

Z = (xab, θa
i , u
±
k ) ⇒ Ẑ = (xab, θa

i , θ̂
A
b , u
±
k , u

±̂
A )

I Then we pass to the analytic basis and choose the “hatted” spinor
derivatives short, ∇+̂a = D+̂a = ∂

∂θ−̂a
. The set of constraints in the

ordinary N = (1, 1) superspace amounts to the following set in the
N = (1, 1) HSS

{∇+
a ,∇+

b } = 0 , {D+̂a,D+̂b} = 0 , {∇+
a ,D

+̂b} = δb
aφ

++̂ ,

[∇+̂+̂,∇+
a ] = 0 , [∇̃++,∇+

a ] = 0 , [∇+̂+̂,Da+̂] = 0 , [∇̃++,Da+̂] = 0 ,

[∇̃++,∇+̂+̂] = 0 .

I Here

∇+
a = D+

a +A+
a (Ẑ ) , ∇̃++ = D++ + Ṽ++(ζ̂) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂) ,

ζ̂ = (xab
an , θ

±a, θ+̂c , u
±
i , u

±̂
A ) .



Solving N = (1,1) SYM constraints
I The starting point of our analysis was to fix, using the Λ(ζ̂) gauge

freedom, the WZ gauge for the second harmonic connection V +̂+̂(ζ̂) as

V +̂+̂ = iθ+̂a θ
+̂
b Â

ab + εabcdθ+̂a θ
+̂
b θ

+̂
c ϕ

A
d u−̂A + εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d D

ABu−̂A u−̂B
where Âab, ϕA

d and D(AB) are some N = (1, 0) harmonic superfields,
still arbitrary at this step.

I Then the above constraints are reduced to some sets of harmonic
equations which we have explicitly solved. The crucial point was the
requirement that the vector 6D connections in the sectors of hatted and
unhatted variables are identical to each other.

I As the result, we have obtained that the first harmonic connection V++

coincides precisely with the previous N = (1, 0) one, V++ = V++(ζ),
while the dependence of all other geometric N = (1, 1) objects on the
variables with “hat” is strictly fixed

V +̂+̂ = iθ+̂a θ
+̂
b A

ab − 1
3
εabcdθ+̂a θ

+̂
b θ

+̂
c D+

d q−−̂ +
1
8
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, q−−̂]

φ++̂ = q++̂ − θ+̂a W+a − iθ+̂a θ
+̂
b ∇

abq+−̂ +
1
6
εabcdθ+̂a θ

+̂
b θ

+̂
c [D+

d q−−̂, q+−̂]

+
1
24
εabcdθ+̂a θ

+̂
b θ

+̂
c θ

+̂
d [q+−̂, [q+−̂, q−−̂]] .



I Here, q+±̂ = q+A(ζ)u±̂A , q−±̂ = q−A(ζ)u±̂A and W+a, q±A are just the
N = (1, 0) superfields explored previously. In the process of solving the
constraints, there appeared the analyticity conditions for q+A, as well as
the full set of the superfield equations of motion

∇++q+A = 0 , F++ =
1
4

D+
a W+a = −1

2
[q+A, q+

A ] .

I Also, the structure of the spinor covariant derivatives was fully fixed

∇+
a = D+

a − θ+̂a q+−̂ + θ−̂a φ
++̂ ,

∇−a = D−a − D+
a V−− − θ+̂a q−−̂ + θ−̂a φ

−+̂ , φ−+̂ = ∇−−φ++̂ .

I The basic advantage of using the constrained N = (1, 1) strengths φ±+̂

for constructing various invariants is their extremely simple
transformation rules under the hidden N = (0, 1) supersymmetry

δφ±+̂ = −ε+̂a
∂

∂θ+̂a
φ±+̂ − 2iε−̂a θ

+̂
b ∂

abφ±+̂ − [Λ(comp), φ±+̂] ,

where Λ(comp) is some common composite gauge parameter which
does not contribute under Tr.



Invariants in N = (1,1) superspace
I The previous single-trace d = 8 invariant Lagrangian admits a simple

rewriting in N = (1, 1) superspace

S(1,1) =

∫
dudζ(−4)L+4

(1,1) , L
+4
(1,1) = −Tr

1
4

∫
d ζ̂(−4)dû (φ++̂)4, d ζ̂(−4) ∼ (D−̂)4

δL+4
(1,1) = −2i∂abTr

∫
d ζ̂(−4)dû

[
ε−̂a θ

+̂
b

1
4

(φ++̂)4
]
.

I The double-trace d = 8 invariant is given by

L̂+4
(1,1) = −1

4

∫
d ζ̂(−4)dû Tr (φ++̂)2 Tr (φ++̂)2.

I Now it is easy to construct the single- and double-trace d = 10
invariants possibly responsible for the 3-loop counterterms

S(10)
1 = Tr

∫
dZd ζ̂(−4)dû (φ++̂)2(φ−+̂)2, φ−+̂ = ∇−−φ++̂ ,

S(10)
2 = −

∫
dZd ζ̂(−4)dû Tr

(
φ++̂φ−+̂

)
Tr
(
φ++̂φ−+̂

)
.

I These are N = (1, 1) extensions of the pure N = (1, 0) SYM invariants
∼ εabcd Tr

(
W+aW−bW+cW−d), ∼ εabcd Tr (W+aW−b) Tr (W+cW−d ).



I It is notable that the single-trace d = 10 invariant admits a
representation as an integral over the full N = (1, 1) superspace

S(10)
1 ∼ Tr

∫
dZdẐ φ++̂φ−−̂ , φ−−̂ = ∇−̂−̂φ−+̂ .

I On the other hand, the double-trace d = 10 invariant cannot be written
as the full integral and so looks as being UV protected.

I This could explain why in the perturbative calculations of the amplitudes
in the N = (1, 1) SYM single-trace 3-loop divergence is seen, while no
double-trace structures at the same order were observed (Berkovits et
al 2009; Bjornsson & Green, 2010; Bjornsson, 2011).



I However, this does not seem to be like the standard
non-renormalization theorems because the quantum calculation of
N = (1, 0) supergraphs should give some invariants in the off-shell
N = (1, 0) superspace, not in the on-shell N = (1, 1) superspace. So
the above property seems not enough to explain the absence of the
double-trace divergences and some additional piece of reasoning is
needed.

I Now there exist new methods in the 6D N = (1, 1) SYM perturbative
calculations based on the notion of the so called on-shell harmonic
momentum superspace (Dennen et al, 2010). It also involves two sets
of harmonic coordinates. Perhaps it is closely related to the x-space
harmonic N = (1, 1) superspace approach and would help to prove
that all divergent quantum corrections to N = (1, 1) SYM action arise
just as integrals over the whole N = (1, 1) harmonic superspace.



Summary and outlook
I We applied the off-shell N = (1, 0) and on-shell harmonic N = (1, 1)

superspaces for constructing higher-dimensional invariants in the
N = (1, 0) SYM and N = (1, 1) SYM theories.

I The N = (1, 1) SYM constraints were solved in terms of harmonic
N = (1, 0) superfields. This allowed us to explicitly construct the full set
of the superfield dimensions d = 8 and d = 10 invariants possessing
N = (1, 1) on-shell supersymmetry.

I All possible d = 6 N = (1, 1) invariants were shown to be on-shell
vanishing, proving the UV finiteness of N = (1, 1) SYM at one loop.

I The off-shell d = 8 invariants are absent. The on-shell ones are
integrals over the analytic N = (1, 0) subspace. Assuming that the
N = (1, 0) supergraphs yield integrals over the full N = (1, 0) harmonic
superspace, this means the absence of two-loop counterterms.

I Two d = 10 invariants were explicitly constructed as integrals over the
whole N = (1, 0) harmonic superspace. The single-trace invariant can
be rewritten as an integral over the N = (1, 1) superspace, while the
double-trace one cannot. This property combined with an additional
reasoning could explain why the double-trace invariant is UV protected.



I Some further lines of development:

(a) To construct the next d ≥ 12 invariants in the N = (1, 1) SYM
theory with the help of the on-shell N = (1, 1) harmonic superspace
techniques.

(b) To apply the same method for constructing the Born-Infeld action
with the manifest off-shell N = (1, 0) and hidden on-shell N = (0, 1)
supersymmetries. To check the hypothesis that such an action should
coincide with the full quantum effective action of the N = (1, 1) SYM
theory.

(c) To develop an analogous on-shell harmonic N = 4, 4D superspace
approach to the N = 4, 4D SYM theory in the N = 2 superfield
formulation and apply it to the problem of constructing the relevant
effective action.

(d) Applications in supergravity?
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