Mixed symmetry multiplets

\&

higher-spin curvatures

Darío Francía

Scuola Normale Superiore \& INFN
VII Round Table
Italy-Russia@Dubna
24 November 2015

SCUOLA
NORMALE SUPERIORE

Higher spins call for higher derivatives

Higher spins call for higher derivatives

known to be an intrinsic feature of their interactions

Higher spins call for higher derivatives

known to be an intrinsic feature of their interactions
\rightarrow free local Lagrangians, however, are usually required to be generated by 2nd order kinetic tensors

Higher spins call for higher derivatives

known to be an intrinsic feature of their interactions
\rightarrow free local Lagrangians, however, are usually required to be generated by 2nd order kinetic tensors
\rightarrow
still, free equations naturally appear in higher-derivative form, once they are formulated à la Bargmann-Wigner
we investigated further the Bargmann-Wigner program extending it to the case of multi-particle representations
we investigated further the Bargmann-Wigner program extending it to the case of multi-particle representations
\longrightarrow alternative to more conventional single-particle equations
$\longrightarrow a k i n ~ t o ~ m a s s l e s s ~ h s p ~ a s ~ e m e r g i n g ~ f r o m ~ t e n s i o n l e s s ~ s t r i n g s ~$

Back to Gasics:

wave equations for particles with zero mass

wave equations for particles with zero mass

 two options:

Wave equations for $m=0, s=2$

gauge dependent

Wave equations for $m=0, s=2$

gauge dependent

$$
h_{\mu \nu} \sim \mu{ }^{\mu}{ }_{G L(D)}
$$

s.t.
$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

Wave equations for $m=0, s=2$

gauge dependent

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

s.t.

$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

$$
\begin{aligned}
& h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu} \\
& \square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
\end{aligned}
$$

Wave equations for $m=0, s=2$

gauge dependent

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

s.t.

$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

$$
\begin{aligned}
& h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu} \\
& \square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
\end{aligned}
$$

$$
i s o(D-2) \text { non compact }
$$

Wave equations for $m=0, s=2$

gauge dependent

Fierz 1939

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

s.t.

$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

$$
\begin{aligned}
& h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu} \\
& \square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
\end{aligned}
$$

$$
i s o(D-2) \text { non compact }
$$

Wave equations for $m=0, s=2$

gauge dependent

Fierz 1939

$$
h_{\mu \nu} \sim \mu \left\lvert\, \nu \begin{array}{l|l}
G L(D) \\
\end{array}\right.
$$

s.t.

$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

$$
\begin{aligned}
& h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu} \\
& \square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
\end{aligned}
$$

$$
i s o(D-2) \text { non compact }
$$

Wave equations for $m=0, s=2$

gauge dependent

gauge independent

Fierz 1939

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

$$
\mathcal{R}_{\mu \nu, \rho \sigma} \sim \begin{array}{|l|l|}
\hline \mu & \rho \\
\hline \nu & \sigma \\
G L(D) \\
\hline
\end{array}
$$

s.t.

$$
\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0
$$

$$
\begin{aligned}
& h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu} \\
& \square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
\end{aligned}
$$

$$
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0
$$

$$
\eta^{\mu \rho} \mathcal{R}_{\mu \nu, \rho \sigma}=0
$$

$$
i s o(D-2) \text { non compact }
$$

gauge equivalence: finite spin
same tensor as for massive irreps

Wave equations for $m=0, s=2$

gauge dependent

gauge independent

Fierz 1939

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

$$
\mathcal{R}_{\mu \nu, \rho \sigma} \sim \begin{array}{|l|l|}
\hline \mu & \rho \\
\hline \nu & \sigma \\
G L(D) \\
\hline
\end{array}
$$

s.t.

$$
\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h_{\alpha}^{\alpha}=0
$$

$$
h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu}
$$

$$
\square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
$$

$$
\begin{aligned}
& \partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
& \eta^{\mu \rho} \mathcal{R}_{\mu \nu, \rho \sigma}=0
\end{aligned}
$$

$$
i s o(D-2) \text { non compact }
$$

no gauge equivalence to be discussed

Wave equations for $m=0, s=2$

gauge dependent

Fierz 1939

$$
h_{\mu \nu} \sim \mu \mid \nu G L(D)
$$

s.t.

$\square h_{\mu \nu}=0, \quad \partial^{\alpha} h_{\alpha \mu}=0, \quad h^{\alpha}{ }_{\alpha}=0$

$$
h_{\mu \nu} \sim h_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}+\partial_{\nu} \Lambda_{\mu}
$$

$$
\square \Lambda_{\mu}=0, \quad \partial^{\alpha} \Lambda_{\alpha}=0
$$

gauge independent

Bargmann-Wigner 1948

$$
\mathcal{R}_{\mu \nu, \rho \sigma} \sim \begin{array}{|l|l|}
\hline \mu & \rho \\
\hline \nu & \sigma \\
G L(D)
\end{array}
$$

s.t.
$\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0$
$\eta^{\mu \rho} \mathcal{R}_{\mu \nu, \rho \sigma}=0$

$$
i s o(D-2) \text { non compact }
$$

finite spin
no gauge equivalence to be discussed

Wave equations for $m=0, s=2$

Connecting the two descriptions:

$$
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \quad \underbrace{}_{\text {Poincaré Lemma }} \mathcal{R}_{\mu \nu, \rho \sigma}(h)=\partial_{\mu} \partial_{\rho} h_{\nu \sigma}+\ldots
$$

Wave equations for $m=0, s=2$

Connecting the two descriptions:

$$
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0
$$

$\longrightarrow \mathcal{R}_{\mu \nu, \rho \sigma}(h)=\partial_{\mu} \partial_{\rho} h_{\nu \sigma}+\ldots$
Poincaré Lemma

Wave equations for $m=0, s=2$

Connecting the two descriptions:
$\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0$

$$
\mathcal{R}_{\mu \nu, \rho \sigma}(h)=\partial_{\mu} \partial_{\rho} h_{\nu \sigma}+\ldots
$$

Poincaré Lemma

$$
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}(h) \equiv 0
$$

Wave equations for $m=0, s=2$

Connecting the two descriptions:
$\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0$

$$
\mathcal{R}_{\mu \nu, \rho \sigma}(h)=\partial_{\mu} \partial_{\rho} h_{\nu \sigma}+\ldots
$$

Poincaré Lemma

* $\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}(h) \equiv 0$
$\eta^{\mu \rho} \mathcal{R}_{\mu \nu, \rho \sigma}(h)=0$
corresponds to the vanishing of the linearised Ricci tensor, that can be written

$$
\square h_{\mu \nu}=\partial_{(\mu} \Lambda_{\nu)}(h)
$$

so as to stress that it reduces to $P^{2}=0$ upon partial gauge fixing

Wave equations for $m=0$, spin s

gauge dependent

```
Fierz 1939
```


Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939

Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939

s.t.
$\square \varphi=0, \quad \partial \cdot \varphi=0, \quad \varphi^{\prime}=0$

Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939

s.t.
$\square \varphi=0, \quad \partial \cdot \varphi=0, \quad \varphi^{\prime}=0$
$\varphi_{\mu_{1} \ldots \mu_{s}} \sim \varphi_{\mu_{1} \ldots \mu_{s}}+\partial_{\left(\mu_{1}\right.} \Lambda_{\left.\mu_{2} \ldots \mu_{s}\right)}$
$\square \Lambda=0, \quad \partial \cdot \Lambda=0, \quad \Lambda^{\prime}=0$

Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939
gauge independent

Bargmann-Wigner 1948

s.t.
$\square \varphi=0, \quad \partial \cdot \varphi=0, \varphi^{\prime}=0$
$\varphi_{\mu_{1} \ldots \mu_{s}} \sim \varphi_{\mu_{1} \ldots \mu_{s}}+\partial_{\left(\mu_{1}\right.} \Lambda_{\left.\mu_{2} \ldots \mu_{s}\right)}$
$\square \Lambda=0, \quad \partial \cdot \Lambda=0, \quad \Lambda^{\prime}=0$

Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939

gauge independent

Bargmann-Wigner 1948

$\mathcal{R} \equiv \mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}} \sim$| | \cdots |
| :--- | :--- |
| | \cdots |

s.t.

$\square \varphi=0, \quad \partial \cdot \varphi=0, \varphi^{\prime}=0$
$\varphi_{\mu_{1} \ldots \mu_{s}} \sim \varphi_{\mu_{1} \ldots \mu_{s}}+\partial_{\left(\mu_{1}\right.} \Lambda_{\left.\mu_{2} \ldots \mu_{s}\right)}$
$\square \Lambda=0, \quad \partial \cdot \Lambda=0, \quad \Lambda^{\prime}=0$

Wave equations for $m=0$, spin s

gauge dependent

Fierz 1939

gauge independent

Bargmann-Wigner 1948
s.t.
$\square \varphi=0, \partial \cdot \varphi=0, \varphi^{\prime}=0$
$\varphi_{\mu_{1} \ldots \mu_{s}} \sim \varphi_{\mu_{1} \ldots \mu_{s}}+\partial_{\left(\mu_{1}\right.} \Lambda_{\left.\mu_{2} \ldots \mu_{s}\right)}$
$\square \Lambda=0, \quad \partial \cdot \Lambda=0, \quad \Lambda^{\prime}=0$
s.t.

$$
d \mathcal{R}=0
$$

$$
\mathcal{R}^{\prime}=0
$$

Wave equations for spin s
 \sim

Connecting the two descriptions:
$d \mathcal{R}=0 \quad \mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}=\partial_{\mu_{1} \ldots \partial_{\mu_{s}} \varphi_{\nu_{1} \ldots \nu_{s}}+\ldots}$
Generalised Poincaré Lemma

Wave equations for spin s
 \sim

Connecting the two descriptions:

$d \mathcal{R}=0 \quad \mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}=\partial_{\mu_{1} \ldots \partial_{\mu_{s}} \varphi_{\nu_{1} \ldots \nu_{s}}+\ldots}$
Generalised Poincaré Lemma

Wave equations for spin s
 \sim

Connecting the two descriptions:

$d \mathcal{R}=0 \quad \mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}=\partial_{\mu_{1} \ldots \partial_{\mu_{s}} \varphi_{\nu_{1} \ldots \nu_{s}}+\ldots}$
Generalised Poincaré Lemma

* $\quad d \mathcal{R}(\varphi) \equiv 0$

Wave equations for spin s

Connecting the two descriptions:

$$
d \mathcal{R}=0 \quad \mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}=\partial_{\mu_{1} \ldots \partial_{\mu_{s}} \varphi_{\nu_{1} \ldots \nu_{s}}+\ldots}
$$

Generalised Poincaré Lemma

* $\quad d \mathcal{R}(\varphi) \equiv 0$
* The higher-derivative equation $\mathcal{R}^{\prime}=0$ can be proven to be equivalent to the wave equation

$$
\square \varphi=\partial \Lambda(\varphi)
$$

where the r.h.s. can be gauge fixed to zero. (! Note: this is not the Fronsdal equation)

Goal of this talk
we focus on hsp curvatures:
$\mathcal{R}_{\mu \nu, \rho \sigma}(h)$

$$
\mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}(\varphi)
$$

we focus on hsp curvatures:

$$
\mathcal{R}_{\mu \nu, \rho \sigma}(h)
$$

$$
\mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}(\varphi)
$$

we focus on hsp curvatures:

For spin 2: Ricci $=0$
we focus on hsp curvatures:
$\mathcal{R}_{\mu \nu, \rho \sigma}(h)$

$$
\mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}(\varphi)
$$

For spin 2: Ricci $=0$

For spin s one can prove

$$
\eta^{\alpha \beta} \mathcal{R}_{\alpha \nu_{1}, \beta \nu_{2}, \ldots, \mu_{s} \nu_{s}}(\varphi)=0 \longrightarrow \square \varphi=\partial \Lambda(\varphi)
$$

we focus on hsp curvatures:
$\mathcal{R}_{\mu \nu, \rho \sigma}(h)$

$$
\mathcal{R}_{\mu_{1} \nu_{1}, \ldots, \mu_{s} \nu_{s}}(\varphi)
$$

For spin 2: Ricci $=0$

For spin s one can prove

$$
\eta^{\alpha \beta} \mathcal{R}_{\alpha \nu_{1}, \beta \nu_{2}, \ldots, \mu_{s} \nu_{s}}(\varphi)=0 \longrightarrow \square \varphi=\partial \Lambda(\varphi)
$$

\rightarrow In Vasiliev unfolded, frame-like formulation one recovers it in the form

$$
\text { "Curvature }=\text { Weyl" }
$$

we focus on hsp curvatures:
$\mathcal{R}_{\mu \nu, \rho \sigma}(h)$

\rightarrow For spin 2: Ricci $=0$ standard hsp theories are "Ricci-like"
For spin s one can prove

$$
\eta^{\alpha \beta} \mathcal{R}_{\alpha \nu_{1}, \beta \nu_{2}, \ldots, \mu_{s} \nu_{s}}(\varphi)=0 \quad \square \varphi=\partial \Lambda(\varphi)
$$

\rightarrow In Vasiliev unfolded, frame-like formulation one recovers it in the form

$$
\text { "Curvature }=\text { Weyl" }
$$

Two cases are slightly different:

Two cases are slightly different:

Spin zero

\rightarrow the potential is its own curvature: $\varphi \sim \mathcal{R}$
\rightarrow one directly imposes $\square \mathcal{R}=0$

Two cases are slightly different:

Spin zero

\rightarrow the potential is its own curvature: $\varphi \sim \mathcal{R}$
\rightarrow one directly imposes $\square \mathcal{R}=0$

Spin one (and p-forms)

$$
\begin{gathered}
A_{\mu} \sim \square \\
\square A_{\mu}=0 \quad \text { s.t. } \quad \partial \cdot A=0 \\
A_{\mu} \sim A_{\mu}+\partial_{\mu} \Lambda \\
\square \Lambda=0
\end{gathered}
$$

Two cases are slightly different:

Spin zero

\rightarrow the potential is its own curvature: $\varphi \sim \mathcal{R}$
\rightarrow one directly imposes $\square \mathcal{R}=0$

Spin one (and p-forms)

$$
\begin{array}{cc}
A_{\mu} \sim \square & \mathcal{R}_{\mu, \nu} \sim \square \\
\square A_{\mu}=0 & \text { s.t. } \\
A_{\mu} \sim A_{\mu}+\partial_{\mu} \Lambda & \text { s.t. } \\
\square \Lambda=0 & \partial_{[\mu} \mathcal{R}_{\nu, \rho]}=0 \\
\square \Lambda=0 & \partial^{\alpha} \mathcal{R}_{\alpha, \mu}=0
\end{array}
$$

Two cases are slightly different:

Spin zero

\rightarrow the potential is its own curvature: $\varphi \sim \mathcal{R}$
\rightarrow one directly imposes $\square \mathcal{R}=0$

Spin one (and p-forms)

$$
\begin{array}{cc}
A_{\mu} \sim \square & \mathcal{R}_{\mu, \nu} \sim \square \\
\square A_{\mu}=0 \begin{array}{c}
\text { s.t. } \\
\text { s.t. } \\
A_{\mu} \sim A_{\mu}+\partial_{\mu} \Lambda \\
\square \Lambda=0
\end{array} & \partial_{[\mu} \mathcal{R}_{\nu, \rho]}=0 \\
\square \partial^{\alpha} \mathcal{R}_{\alpha, \mu}=0
\end{array}
$$

Our goal:

we wish to extend the Bargmann-Wigner program to encompass the Maxwell-like equations

$$
\partial \cdot \mathcal{R}(\varphi)=0
$$

for all spins, in any D, i.e. including tensors with mixed symmetry

Plan

\oint Maxwell-líke equations à Ca Bargmann-Wigner
\oint Curvatures \& wave operators for gauge potentials
\oint Reducible multiplets and tensionless strings

Based on

* J.Phys.A: Math.Theor. 48 (2015) (with X. Bekaert and N. Boulanger)
* Class.Quant.Grav. 29 (2012)

see also

* Nucl.Phys. B881 (2014) 248-268 (with S. Lyakhovic and A. Sharapov)
* JHEP 1303 (2013) 168 (with A. Campoleoni)
* Prog.Theor.Phys.Suppl. 188 (2011)
* Phys.Lett. B690 (2010)
* J.Phys.Conf. Ser. 222 (2010)

Maxwell-like equations à Ca Bargmann-Wigner

 \curvearrowrightspin 2

$\operatorname{spin} 2$

$$
\begin{aligned}
& \partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
& \partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0
\end{aligned}
$$

$\operatorname{spin} 2$

$$
h_{\mu \nu} \sim \begin{array}{|l|}
\hline \\
\mathcal{R}_{\mu \nu, \rho \sigma}
\end{array} \begin{array}{|l|l|}
\hline \mu & \rho \\
\hline \nu & \sigma \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
& \partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0 \\
& P^{2}=0 \longrightarrow \mathcal{R}_{\mu \nu, \rho \sigma}=0 \\
& p_{\mu}=\left(p_{+}, 0, \ldots, 0\right)
\end{aligned}
$$

$\operatorname{spin} 2$

$$
\begin{aligned}
& \partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
& \partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0 \\
& P^{2}=0 \longrightarrow \mathcal{R}_{\mu \nu, \rho \sigma}=0 \\
& p_{\mu}=\left(p_{+}, 0, \ldots, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0 \quad \longrightarrow \mathcal{R}_{-\nu, \rho \sigma}=0 \\
& \partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \quad \longrightarrow \mathcal{R}_{i j, k l}=0
\end{aligned}
$$

$\operatorname{spin} 2$

The only non-vanishing components of $\mathcal{R}_{\mu \nu, \rho \sigma}$ are

$$
\mathcal{R}_{+i,+j} \sim h_{i j}
$$

i.e. they define a symmetric tensor of $G L(D-2)$

$\operatorname{spin} 2$

The only non-vanishing components of $\mathcal{R}_{\mu \nu, \rho \sigma}$ are

$$
\mathcal{R}_{+i,+j} \sim h_{i j}
$$

i.e. they define a symmetric tensor of GL(D-2)

The only non-vanishing components of $\mathcal{R}_{\mu \nu, \rho \sigma}$ are

$$
\mathcal{R}_{+i,+j} \sim h_{i j}
$$

i.e. they define a symmetric tensor of $G L(D-2)$

In terms of particles (irreps of $O(D-2)$) this means

$$
\begin{array}{cl}
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
\partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0 & \quad \begin{array}{l}
\text { one particle with } m=0, s=2 \\
\text { one particle with } m=0, s=0
\end{array}
\end{array}
$$

The only non-vanishing components of $\mathcal{R}_{\mu \nu, \rho \sigma}$ are

$$
\mathcal{R}_{+i,+j} \sim h_{i j}
$$

i.e. they define a symmetric tensor of GL(D-2)
$\rightarrow \quad$ In terms of particles (irreps of $O(D-2)$) this means

$$
\begin{array}{ll}
\partial_{[\lambda} \mathcal{R}_{\mu \nu], \rho \sigma}=0 \\
\partial^{\mu} \mathcal{R}_{\mu \nu, \rho \sigma}=0 & \begin{array}{l}
\text { one particle with } m=0, s=2 \\
\text { one particle with } m=0, s=0
\end{array}
\end{array}
$$

Maxwell-like eqs propagate reducible multiplets

Arbitrary spin in arbitrary \mathcal{D}

Arbitrary spin in arbitrary \mathcal{D}

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

Arbitrary spin in arbitrary \mathcal{D}

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

$\rightarrow \quad$ Require $\mathcal{R}_{G L(D)}$ to satisfy the closure and co-closure conditions

$$
\begin{gathered}
d \mathcal{R}=0 \\
d^{\dagger} \mathcal{R}=0
\end{gathered} \quad \longrightarrow \quad P^{2}=0 \quad \longrightarrow \quad p_{\mu}=\left(p_{+}, 0, \ldots, 0\right)
$$

(w.r.t all rectangular blocks)

Arbitrary spin in arbitrary \mathcal{D}

General case: consider an arbitrary tableau in GL(D-2) and build its Bargmann-Wigner counterpart, by adding a row on its top

$\rightarrow \quad$ Require $\mathcal{R}_{G L(D)}$ to satisfy the closure and co-closure conditions

$$
\begin{gathered}
d \mathcal{R}=0 \\
d^{\dagger} \mathcal{R}=0
\end{gathered} \quad \longrightarrow \quad P^{2}=0 \quad \longrightarrow \quad p_{\mu}=\left(p_{+}, 0, \ldots, 0\right)
$$

(w.r.t all rectangular blocks)
\rightarrow The non-vanishing components, $\mathcal{R}_{+j_{1}^{1} \ldots j_{l_{1}}^{1}, \ldots,+j_{1}^{i} \ldots j_{l_{i}}^{i}, \ldots,+j_{1}^{s} \ldots j_{l_{s}}^{s}}$, correspond to a multiplet of massless particles: branching of the GL(D-2)-irrep in terms of its O(D-2)-components.

Curvatures \& wave operators for gauge potentíals

\mathcal{H} figh-derivative equations from curvatures
 \sim

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

H-Hh-derivative equations from curvatures
 \sim

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

$$
d \mathcal{R}=0 \quad \longrightarrow \quad \mathcal{R}(\varphi) \equiv d^{1} d^{2} \cdots d^{s} \varphi
$$

(w.r.t all rectangular blocks)

\mathcal{H}-igh-derivative equations from curvatures

We make contact with gauge potentials solving for the closure conditions via the Generalised Poincaré Lemma:

$$
d \mathcal{R}=0
$$

$$
\mathcal{R}(\varphi) \equiv d^{1} d^{2} \cdots d^{s} \varphi
$$

(w.r.t all rectangular blocks)
where $\mathcal{R}(\varphi)$ corresponds to the irrep of $G L(D)$ obtained from a given tableau Y by adding an extra row on top of it:

High-derivative equations from curvatures

We go through the Bargmann-Wigner analysis again, but now for high-derivative functions of gauge potentials

$$
\mathcal{R}(\varphi) \equiv d^{1} d^{2} \cdots d^{s} \varphi
$$

computing the divergence of \mathcal{R}

$$
d_{1} \mathcal{R}(\varphi)=d^{2} \cdots d^{s}\left(\square-d^{i} d_{i}\right) \varphi \sim \mathcal{O}(d) M=0
$$

where

$$
M=\left(\square-d^{i} d_{i}\right) \varphi
$$

is a sort of second-order Maxwell-like wave operator

From high- to 2 nd-order equations

Problem: determine the kernel of the operator $\mathcal{O}(d)$ two steps:

From Figh- to 2 nd-order equations

Problem: determine the kernel of the operator $\mathcal{O}(d)$ two steps:

$$
d^{2} \cdots d^{s}\left(\square-d^{i} d_{i}\right) \varphi=0
$$

Getting an equation for M
via the Generalised Poincaré Lemma

$$
M=d^{i} d^{j} D_{i j}(\varphi)
$$

From high- to 2 nd-order equations

Problem: determine the kernel of the operator $\mathcal{O}(d)$ two steps:

$$
d^{2} \cdots d^{s}\left(\square-d^{i} d_{i}\right) \varphi=0
$$

Getting an equation for M
via the Generalised Poincaré Lemma

$$
M=d^{i} d^{j} D_{i j}(\varphi)
$$

$$
\square \varphi=d^{i} \Lambda_{i}(\varphi)
$$

Show that the resulting equation can be gauge fixed to $P^{2}=0$:

$$
\square \varphi=0 \quad d^{\dagger} \varphi=0
$$

Same analysis for the '`standard" BW trace conditions:

Same analysis for the " standard" BW trace conditions:

$$
T_{12} \mathcal{R}(\varphi)=d^{3} \cdots d^{s} \mathcal{F} \sim \hat{\mathcal{O}}(d) \mathcal{F}=0
$$

Same analysis for the "‘standard" BW trace conditions:

$$
\begin{array}{r}
T_{12} \mathcal{R}(\varphi)=d^{3} \cdots d^{s} \mathcal{F} \sim \hat{\mathcal{O}}(d) \mathcal{F}=0 \\
\text { where } \quad \mathcal{F}:=\square \varphi-d^{i} d_{i} \varphi+\frac{1}{2} d^{i} d^{j} T_{i j} \varphi
\end{array}
$$

Same analysis for the "‘standard" BW trace conditions:

$$
T_{12} \mathcal{R}(\varphi)=d^{3} \cdots d^{s} \mathcal{F} \sim \hat{\mathcal{O}}(d) \mathcal{F}=0
$$

where

$$
\mathcal{F}:=\square \varphi-d^{i} d_{i} \varphi+\frac{1}{2} d^{i} d^{j} T_{i j} \varphi
$$

$$
T_{i j} \mathcal{R}(\varphi)=0
$$

Solving for the kernel of $\hat{\mathcal{O}}(d)$:

$$
\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi)
$$

Same analysis for the "‘standard" BW trace conditions:

$$
T_{12} \mathcal{R}(\varphi)=d^{3} \cdots d^{s} \mathcal{F} \sim \hat{\mathcal{O}}(d) \mathcal{F}=0
$$

where

$$
\mathcal{F}:=\square \varphi-d^{i} d_{i} \varphi+\frac{1}{2} d^{i} d^{j} T_{i j} \varphi
$$

$$
T_{i j} \mathcal{R}(\varphi)=0
$$

Solving for the kernel of $\hat{\mathcal{O}}(d)$:

$$
\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi)
$$

Same analysis for the "‘standard" BW trace conditions:

$$
T_{12} \mathcal{R}(\varphi)=d^{3} \cdots d^{s} \mathcal{F} \sim \hat{\mathcal{O}}(d) \mathcal{F}=0
$$

where

$$
\mathcal{F}:=\square \varphi-d^{i} d_{i} \varphi+\frac{1}{2} d^{i} d^{j} T_{i j} \varphi
$$

$$
T_{i j} \mathcal{R}(\varphi)=0
$$

Solving for the kernel of $\hat{\mathcal{O}}(d)$:

$$
\begin{gathered}
\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi) \\
\square \varphi=d^{i} \Lambda_{i}(\varphi)
\end{gathered}
$$

Show that the resulting equation can be gauge fixed to $P^{2}=0$:

$$
\square \varphi=0, d^{\dagger} \varphi=0, \quad T_{i j} \varphi=0
$$

$$
M=d^{i} d^{j} D_{i j}(\varphi)
$$

$$
\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi)
$$

still higher-derivative eqs!
$M=d^{i} d^{j} D_{i j}(\varphi)$
$\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi)$
still higher-derivative eqs!

Our analysis shows that the two "'compensator" structures

$$
D_{i j}(\varphi) \quad \text { and } \quad \mathcal{H}_{i j k}(\varphi)
$$

can be consistently gauge fixed to zero, leading to
$M=d^{i} d^{j} D_{i j}(\varphi)$

still higher-derivative eqs!

$\mathcal{F}=\frac{1}{2} d^{i} d^{j} d^{k} \mathcal{H}_{i j k}(\varphi)$

Our analysis shows that the two "'compensator" structures

$$
D_{i j}(\varphi) \quad \text { and } \quad \mathcal{H}_{i j k}(\varphi)
$$

can be consistently gauge fixed to zero, leading to

$$
\begin{aligned}
& M=0 \\
& d^{i} d^{j} d_{(i} \Lambda_{j)}=0
\end{aligned}
$$

$$
\mathcal{F}=0
$$

$$
T_{(i j} \Lambda_{k)}=0
$$

> To summarise:

To summarise:

BW trace conditions on "curvature precursors" describe one-particle dof
_Via the Poincare' lemma _upon partial gauge fixing one recovers the usual
Fronsdal-Labastida eqs

To summarise:

_Via the Poincare' lemma _upon partial gauge fixing one recovers the usual Fronsdal-Labastida eqs

_Via the Poincare' lemma _upon partial gauge fixing they reduce to

$$
M:=\square \varphi-d^{i} d_{i} \varphi=0
$$

\rightarrow Bargmann-Wigner equations are not Lagrangian eqs (but see later)
$\rightarrow M=0, \mathcal{F}=0$ are. Let us compare the corresponding Lagrangians
\rightarrow Bargmann-Wigner equations are not Lagrangian eqs (but see later) $M=0, \mathcal{F}=0$ are. Let us compare the corresponding Lagrangians

Maxwell-like, N families:
(multi-particle spectrum)

$$
\mathcal{L}=\frac{1}{2} \varphi M \varphi
$$

$$
\begin{gathered}
M=\left(\square-\partial^{i} \partial_{i}\right) \\
\partial^{i} \partial^{j} \partial_{(i} \Lambda_{j)}=0
\end{gathered}
$$

\rightarrow Bargmann-Wigner equations are not Lagrangian eqs (but see later)
$\rightarrow M=0, \mathcal{F}=0$ are. Let us compare the corresponding Lagrangians

Maxwell-like, N families:

$$
\mathcal{L}=\frac{1}{2} \varphi M \varphi
$$

(multi-particle spectrum)

$$
\begin{gathered}
M=\left(\square-\partial^{i} \partial_{i}\right) \\
\partial^{i} \partial^{j} \partial_{(i} \Lambda_{j)}=0
\end{gathered}
$$

Fronsdal-Labastida, N families:
$\mathcal{L}=\frac{1}{2} \varphi\left\{\mathcal{F}+\sum_{p=1}^{N} \frac{(-1)^{p}}{p!(p+1)!} \eta^{i_{1} j_{1}} \ldots \eta^{i_{p} j_{p}} Y_{\left\{2^{p}\right\}} T_{i_{1} j_{1}} \ldots T_{i_{p} j_{p}} \mathcal{F}\right\}$,
$\mathcal{F}=\left(M+\partial^{i} \partial^{j} T_{i j}\right) \varphi$
$\left\{\begin{aligned} T_{(i j} \Lambda_{k)} & =0 \\ T_{(i j} T_{k l)} \varphi & =0\end{aligned}\right.$

Reducible multiplets and tensionless strings

Massless figher spins from tensionless strings

Open bosonic string oscillators

$$
\left[\alpha_{k}^{\mu}, \alpha_{l}^{\nu}\right]=k \delta_{k+l, 0} \eta^{\mu \nu}
$$

Massless figher spins from tensionless strings

Open bosonic string oscillators

$$
\left[\alpha_{k}^{\mu}, \alpha_{l}^{\nu}\right]=k \delta_{k+l, 0} \eta^{\mu \nu}
$$

Virasoro generators and their rescaling limit:

$$
L_{k}=\frac{1}{2} \sum_{l=-\infty}^{+\infty} \alpha_{k-l}^{\mu} \alpha_{\mu l}, \longrightarrow\left\{\begin{array}{l}
\tilde{L}_{k \neq 0}=\frac{1}{\sqrt{\alpha^{\prime}}} L_{k} \\
\tilde{L}_{0}=\frac{1}{\alpha^{\prime}} L_{0} \\
\alpha^{\prime} \rightarrow \infty
\end{array} \quad \begin{array}{l}
l_{k}=p_{\mu} \alpha_{k}^{\mu} \\
l_{0}=p_{\mu} p^{\mu} \\
\\
\\
\text { `tensionless" " limit }
\end{array}\right.
$$

Massless figher spins from tensionless strings

Open bosonic string oscillators

$$
\left[\alpha_{k}^{\mu}, \alpha_{l}^{\nu}\right]=k \delta_{k+l, 0} \eta^{\mu \nu}
$$

Virasoro generators and their rescaling limit:

$$
\begin{gathered}
L_{k}=\frac{1}{2} \sum_{l=-\infty}^{+\infty} \alpha_{k-l}^{\mu} \alpha_{\mu l}, \longrightarrow\left\{\begin{array}{l}
\tilde{L}_{k \neq 0}=\frac{1}{\sqrt{\alpha^{\prime}}} L_{k} \\
\tilde{L}_{0}=\frac{1}{\alpha^{\prime}} L_{0} \\
\alpha^{\prime} \rightarrow \infty
\end{array} \quad \begin{array}{l}
l_{k}=p_{\mu} \alpha_{k}^{\mu} \\
l_{0}=p_{\mu} p^{\mu} \\
\\
\\
{\left[l_{k}, l_{l}\right]=k \delta_{k+l, 0} l_{0}}
\end{array}\right.
\end{gathered}
$$

Massless figher spins from tensionless strings

Open bosonic string oscillators

$$
\left[\alpha_{k}^{\mu}, \alpha_{l}^{\nu}\right]=k \delta_{k+l, 0} \eta^{\mu \nu}
$$

Virasoro generators and their rescaling limit:

$$
\begin{gathered}
L_{k}=\frac{1}{2} \sum_{l=-\infty}^{+\infty} \alpha_{k-l}^{\mu} \alpha_{\mu l}, \rightarrow\left\{\begin{array}{l}
\tilde{L}_{k \neq 0}=\frac{1}{\sqrt{\alpha^{\prime}}} L_{k} \\
\tilde{L}_{0}=\frac{1}{\alpha^{\prime}} L_{0}
\end{array} \xrightarrow[\alpha^{\prime} \rightarrow \infty]{\longrightarrow} \begin{array}{l}
l_{k}=p_{\mu} \alpha^{\mu}{ }_{k} \\
l_{0}=p_{\mu} p^{\mu} \\
{ }^{\text {ttensionless" } " \text { limit }} \\
{\left[l_{k}, l_{l}\right]=k \delta_{k+l, 0} l_{0}}
\end{array}\right.
\end{gathered}
$$

Algebra with no central charge \longrightarrow identically nilpotent BRST charge \mathcal{Q}
same charge from tensionless limit of open string BRST charge, after rescaling of ghosts

Massless figher spins from tensionless strings

$$
\mathcal{L}=\frac{1}{2}\langle\psi| Q|\psi\rangle \quad \underset{\alpha^{\prime} \rightarrow \infty}{ }
$$

decomposes in diagonal blocks

Massless figher spins from tensionless strings

$$
\mathcal{L}=\frac{1}{2}\langle\psi| Q|\psi\rangle \quad \underset{\alpha^{\prime} \rightarrow \infty}{\longrightarrow} \quad \begin{gathered}
\text { decomposes in } \\
\text { diagonal blocks }
\end{gathered}
$$

for "diagonal blocks" associated to symmetric, rank-s tensors $\varphi_{\mu_{1} \cdots \mu_{s}}$, (states generated by powers of α_{-1}^{μ}) the corresponding Lagrangian is

$$
\mathcal{L}_{\text {triplet }}=\frac{1}{2} \varphi \square \varphi-\frac{1}{2} s C^{2}-\binom{s}{2} D \square D+s \partial \cdot \varphi C+2\binom{s}{2} D \partial \cdot C
$$

Massless figher spins from tensionless strings

$$
\mathcal{L}=\frac{1}{2}\langle\psi| Q|\psi\rangle \quad \underset{\alpha^{\prime} \rightarrow \infty}{\longrightarrow} \quad \begin{gathered}
\text { decomposes in } \\
\text { diagonal blocks }
\end{gathered}
$$

for "diagonal blocks" associated to symmetric, rank-s tensors $\varphi_{\mu_{1} \cdots \mu_{s}}$, (states generated by powers of α_{-1}^{μ}) the corresponding Lagrangian is

$$
\mathcal{L}_{\text {triplet }}=\frac{1}{2} \varphi \square \varphi-\frac{1}{2} s C^{2}-\binom{s}{2} D \square D+s \partial \cdot \varphi C+2\binom{s}{2} D \partial \cdot C
$$

equations of motion
$\square \varphi=\partial C$
$C=\partial \cdot \varphi-\partial D$
$\square D=\partial \cdot C$
$\varphi \rightarrow \operatorname{spin} s$
$C \rightarrow \operatorname{spin} s-1$
$D \rightarrow \operatorname{spin} s-2$
gauge transformations

$$
\begin{aligned}
& \delta \varphi=\partial \Lambda \\
& \delta C=\square \Lambda \\
& \delta D=\partial \cdot \Lambda
\end{aligned}
$$

Massless figher spins from tensionless strings

\rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian

Massless figher spins from tensionless strings

\rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian
\rightarrow the field D is pure gauge, and as such contains no physical polarisations

Massless figher spins from tensionless strings

\rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian
\rightarrow the field D is pure gauge, and as such contains no physical polarisations

the eom for the physical field from the tensionless string

$$
M \varphi=2 \partial^{2} \mathcal{D}
$$

are just the Maxwell-like equations with a "compensator"

Massless figher spins from tensionless strings

\rightarrow the field C is purely auxiliary (no kinetic term) and can be directly integrated away from the Lagrangian
\rightarrow the field D is pure gauge, and as such contains no physical polarisations

the eom for the physical field from the tensionless string

$$
M \varphi=2 \partial^{2} \mathcal{D}
$$

are just the Maxwell-like equations with a "compensator"

[also valid for mixed-symmetry fields]

Maxwell-like geometric Lagrangians

$\rightarrow \quad$ the field C is purely auxiliary
$\rightarrow \quad$ the field D is pure gauge

how does the Lagrangian would look in terms of the physical field only?

Maxwell-like geometric Lagrangians

$\rightarrow \quad$ the field C is purely auxiliary
$\rightarrow \quad$ the field D is pure gauge

Integrating over the fields C and D we find
$\mathcal{L}_{e f f}(\varphi)=\frac{1}{2} \varphi(\square-\partial \partial \cdot) \varphi+\frac{1}{2}\binom{s}{2} \partial \cdot \partial \cdot \varphi\left(\square+\frac{1}{2} \partial \partial \cdot\right)^{-1} \partial \cdot \partial \cdot \varphi$

Maxwell-like geometric Lagrangians

The inverse of the operator $\mathcal{O}=\square+\frac{1}{2} \partial \partial$. on rank-k tensors is

$$
\mathcal{O}_{(k)}^{-1}=\frac{1}{\square}\left\{1+\sum_{m=1}^{k}(-1)^{m} \frac{m!}{2^{m} \prod_{l=1}^{m}\left(1+\frac{l}{2}\right)} \frac{\partial^{m}}{\square^{m}} \partial \cdot^{m}\right\}
$$

and the resulting Lagrangian is

Maxwell-like geometric Lagrangians

The inverse of the operator $\mathcal{O}=\square+\frac{1}{2} \partial \partial$. on rank-k tensors is

$$
\mathcal{O}_{(k)}^{-1}=\frac{1}{\square}\left\{1+\sum_{m=1}^{k}(-1)^{m} \frac{m!}{2^{m} \prod_{l=1}^{m}\left(1+\frac{l}{2}\right)} \frac{\partial^{m}}{\square^{m}} \partial \cdot^{m}\right\}
$$

and the resulting Lagrangian is

$$
\mathcal{L}_{\text {eff }}(\varphi)=\frac{(-1)^{s}}{2(s+1)} \mathcal{R}_{\mu_{1} \cdots \mu_{s}, \nu_{1} \cdots \nu_{s}}^{(s)} \frac{1}{\square^{s-1}} \mathcal{R}^{(s) \mu_{1} \cdots \mu_{s}, \nu_{1} \cdots \nu_{s}}
$$

Lagrangians \sim squares of curvatures

Conclusions

Conclusions

\sim

$$
\mathcal{R}^{\alpha}{ }_{\alpha \mu_{3} \ldots \mu_{s}, \nu_{1} \ldots \nu_{s}}=0
$$

'`Ricci = 0" provides the backbone of gauge theories...

Conclusions

$$
\mathcal{R}^{\alpha}{ }_{\alpha \mu_{3} \ldots \mu_{s}, \nu_{1} \ldots \nu_{s}}=0
$$

' Ricci $=0$ " provides the backbone of gauge theories...
when the focus is on single-particle interactions

Conclusions

> '`Ricci = 0" provides the backbone of gauge theories...
when the focus is on single-particle interactions

Alternative option:
reducible, multi-particle theories

Conclusions

' 'Ricci = 0" provides the backbone of gauge theories...
when the focus is on single-particle interactions

Alternative option: reducible, multi-particle theories
' 'Maxwell = 0" seems to provide the proper model to this end
wry?

Exploit an alternative basis of field variables

Exploit an alternative basis of field variables

\rightarrow for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory
(Reminiscent of Galileon interactions)

Why?

Exploit an alternative basis of field variables

\rightarrow for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory
(Reminiscent of Galileon interactions)
seemingly, usual (say) self-interacting spin-s vertices would subsume a
\rightarrow number of lower-spin couplings, the majority of which with too many derivatives (wrt Metsaev's classification)

why?

Exploit an alternative basis of field variables

\rightarrow for instance for the spin-2 case the self-interactions of a single field would encompass all the vertices of a scalar-tensor theory
(Reminiscent of Galileon interactions)
seemingly, usual (say) self-interacting spin-s vertices would subsume a
\rightarrow number of lower-spin couplings, the majority of which with too many derivatives (wrt Metsaev's classification)
\rightarrow SFT makes use of this very basis and it is full of such couplings.
what are their actual role and meaning?
in progress...
\sim

