$\label{eq:Linear realization of multi-field BI} \mbox{Partial SuSy breaking $\mathcal{N}=2 \rightarrow \mathcal{N}=1$} \mbox{Embedding in supergravity}$

Multi-field Born-Infeld and Supergravity

Laura Andrianopoli Politecnico di Torino - Italy and INFN Sez. Torino - Italy

The VII Round Table Italy-Russia@Dubna November 25 - 27, 2015

Based on:

Phys.Lett. B744 (2015) 225; Phys.Lett. B744 (2015) 116; JHEP 1511 (2015) 061 From collaborations with P. Concha, R.D'Auria, S. Ferrara, E. Rodriguez, M. Trigiante

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

 $\label{eq:Linear realization of multi-field BI} \mbox{Partial SuSy breaking $\mathcal{N}=2$} \rightarrow $\mathcal{N}=1$ \\ \mbox{Embedding in supergravity} \end{tabular}$

BI theory: a non-linear realization of (4D) electro-dynamics enjoying electric-magnetic duality symmetry:

$$\begin{aligned} \mathcal{L}_{BI} &= \frac{1}{\lambda} \Big\{ 1 - \sqrt{\left| \det \left[\eta_{\mu\nu} + \sqrt{\lambda} F_{\mu\nu} \right] \right| \Big\} } \\ &= \frac{1}{\lambda} \left(1 - \sqrt{1 + \frac{\lambda}{2} F_{\mu\nu} F^{\mu\nu} - \frac{\lambda^2}{16} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2} \right) \end{aligned}$$

It admits a two-derivative realization in terms of 2 couples of Lagrange multipliers

$$\mathcal{L}' = \frac{\tilde{g}}{2\lambda} \left(\Lambda + \Sigma^2 - \frac{\lambda}{2} F^2 \right) + \tilde{\theta} \left(\frac{1}{4} F \tilde{F} - \frac{\Sigma}{\lambda} \right) + \frac{1}{\lambda} \left(1 - \sqrt{1 + \Lambda} \right)$$

Variation of \mathcal{L}' w.r.to \tilde{g} , $\tilde{\theta}$ gives \mathcal{L}_{BI} !

...while variation w.r.to Λ, Σ gives a 2-derivative E-D coupled to non-dynamical scalars:

$$ilde{\mathcal{L}}(\mathsf{F}, ilde{g}, ilde{ heta}) = -rac{ ilde{g}}{4}\mathsf{F}^2 + rac{ ilde{ heta}}{4}\mathsf{F} ilde{\mathsf{F}} - \mathcal{V}(ilde{g}, ilde{ heta})$$

with scalar potential:

$$\mathcal{V}(\tilde{g},\tilde{\theta}) = \frac{1}{2\lambda} \left(\tilde{g} + \tilde{\theta}^2 \tilde{g}^{-1} + \tilde{g}^{-1} \right) - \frac{1}{\lambda} = \frac{1}{2\lambda} \mathrm{Tr}[\mathcal{M}] - \frac{1}{\lambda}$$

where: $\mathcal{M}_{MN}[\tilde{g},\tilde{\theta}] = \begin{pmatrix} \tilde{g} + \tilde{\theta} \tilde{g}^{-1} \tilde{\theta} & -\tilde{\theta} \tilde{g}^{-1} \\ -\tilde{\theta} \tilde{g}^{-1} & \tilde{g}^{-1} \end{pmatrix} \in Sp(2,\mathbb{R}).$

[Rocek, Tseytlin; L.A. R. D'Auria, M. Trigiante]

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

We have shown $\tilde{\mathcal{L}}$ to be proportional, modulo an $Sp(2,\mathbb{R})$ rotation N (to introduce charges: $Tr[\mathcal{M}] \to Tr[N \cdot \mathcal{M}]$), to the bosonic lagrangian of $\mathcal{N} = 2$ SuSy vector mult.:

• with a scalar potential: $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ SuSy breaking

in the infrared limit $\partial \phi \ll m\phi$, with $\phi = \theta - ig$

⇒ it describes the dynamics of the gauge field in the Goldstino multiplet [1/2, 1] of $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$, D = 4 theory, for $\Lambda_{SuSy} \rightarrow \infty$

[Deser-Puzalowski; Cecotti-Ferrara; Casalbuoni-et-al.;Bagger-Galperin;Rocek-Tseytlin;Komargodski-Seiberg]

 $\label{eq:Linear realization of multi-field BI} \mbox{Partial SuSy breaking $\mathcal{N}=2$} \rightarrow $\mathcal{N}=1$ \\ \mbox{Embedding in supergravity}$

We found a general rule for a 2-derivatives description "dualizing" many-vector BI, both for a generic bosonic theory & in the SuSy case (singular):

$$\begin{split} \mathcal{L}' &= \frac{g_{IJ}}{2\lambda} \left(\Lambda^{IJ} + (\Sigma \cdot \eta \cdot \Sigma^T)^{IJ} - \frac{\lambda}{2} F_{\mu\nu}^I F^{J|\mu\nu} \right) \\ &+ \theta_{IJ}' \left(\frac{1}{4} F^I \tilde{F}^J - \frac{(\Sigma \cdot \eta)^{IJ}}{\lambda} \right) + \frac{1}{\lambda} \left(C - f(\Lambda) \right) \,, \end{split}$$

with $f(\Lambda)$ such that $\mathcal{L}'|_{\bar{\Lambda};\bar{\Sigma}} = \tilde{\mathcal{L}} = -\frac{g_{\mathcal{U}}}{4}F_{\mu\nu}^{I}F^{J|\mu\nu} + \frac{\theta_{\mathcal{U}}}{4}F^{I}\tilde{F}^{J} - \mathcal{V}(g,\theta),$ with $\mathcal{V}(g,\theta) = \frac{1}{2\lambda}\mathrm{Tr}\left(N\cdot\mathcal{M}\right) - \frac{C}{\lambda}$, where $N = \begin{pmatrix} \eta & \mathbf{0} \\ \mathbf{0} & \tilde{\eta} \end{pmatrix}$ $\Rightarrow f(\Lambda) = \mathrm{Tr}\left(\sqrt{(\eta+\Lambda)\cdot\tilde{\eta}}\right)$

Depending on the choice of η , $\tilde{\eta}$, it has different "dual" BI descriptions, both for bosonic and SuSy case, where it reproduces known results

[Ferrara-Porrati-Sagnotti; Ferrara-Sagnotti-Yeranyan]

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Here I will describe a multi-vector $\mathcal{N} = 2$ SuSy model admitting (in the infrared) a BI description. I will discuss its natural interpretation as a rigid limit of $\mathcal{N} = 2$ SuGra coupled to a hypermultiplet and to n_v vector multiplets,

together with a SuSy-breaking scalar potential.

Two scales will play a role, $M_{P\ell}$ and Λ_{Susy} :

- Rigid limit defined by: $\mu \equiv \frac{M_{P\ell}}{\Lambda_{S\mu K v}} \rightarrow \infty$
- BI limit: $\Lambda_{Sugg} \to \infty \Rightarrow \partial z^i << (\Lambda_{Sugg}) z^i$ (z^i scalars).

[L.A., D'Auria, Ferrara, Trigiante; L.A., Concha, D'Auria, Rodriguez, Trigiante]

・ロ・ ・ 四・ ・ 回・ ・ 回・

Field content of the underlying supergravity model: (A = 1, 2)

- n_v Vector mut. $[A'_{\mu}, \lambda^{iA}, z^i]; \quad I, i = 1, \cdots n_v; \quad z^i \in \mathbb{C}$
- 1 Hypermult. $[\zeta_{\alpha}, q^{u}]; \quad \alpha = 1, \cdots 2; u = 1, \cdots 4$
- Supergravity mult. $[g_{\mu\nu}, \psi_{\mu A}, A^0_{\mu}]$

In the rigid limit $\mu \to \infty$:

- Hyper + SuGra in hidden sector.
- Vector mult. in the visible sector. v.m. scalars masses from Fayet-Iliopoulos terms \mathbb{P}^{xM} , $(x = 1, 2, 3 \in SU(2)); M = 1, \dots 2n_v \in Sp(2n_v)$ Scalar potential as in $\tilde{\mathcal{L}}$ "dualizing" BI:

$$\mathcal{V}_{\mathcal{N}=2}(z,\bar{z}) = \mathbb{P}^{xM}\mathcal{M}_{MN}(z,\bar{z})\mathbb{P}^{xN} = \mathrm{Tr}(N\cdot\mathcal{M}), \text{ for } N = \mathbb{P}^{x}\cdot\mathbb{P}^{x\,T}$$

 \Rightarrow It should allow $\mathcal{N} = 1$ -preserving vacua.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Spontaneous $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ in rigid SuSy has a peculiar story:

• first believed to be impossible (no-go theorems) relying on Susy Ward-identity on the fermion-shifts $\delta^A \lambda^{iB}$

$$\delta_A \, \bar{\lambda}^i_C \, \delta^B \lambda^{iC} = \delta^B_A \, \mathcal{V}(z, \bar{z}) \,, \quad (A = 1, 2 \in U(2)_R)$$

• then shown to be possible (first by Hughes and Polchinski, in 2D), by relaxing the Ward identity to:

 $\delta_A \bar{\lambda}_C^i \, \delta^B \lambda^{iC} = \delta_A^B \, \mathcal{V}(\phi) + \boldsymbol{C}^A{}_B$ for a non-zero $\boldsymbol{C}^A{}_B = \xi^x (\sigma^x)^A{}_B \in \boldsymbol{su}(2) \; (x = 1, 2, 3).$

Ferrara-Maiani; Cecotti-Girardello-Porrati; Hughes-Polchinski; Antoniadis-Partouche-Taylor]

 $\begin{array}{l} \mbox{Linear realization of multi-field BI}\\ \mbox{Partial SuSy breaking $\mathcal{N}=2$} \rightarrow \mathcal{N}=1\\ \mbox{Embedding in supergravity} \end{array}$

Spontaneous $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ in rigid SuSy has a peculiar story:

• first believed to be impossible (no-go theorems) relying on Susy Ward-identity on the fermion-shifts $\delta^A \lambda^{iB}$

$$\delta_A \, \bar{\lambda}^i_C \, \delta^B \lambda^{iC} = \delta^B_A \, \mathcal{V}(z, \bar{z}) \,, \quad (A = 1, 2 \in U(2)_R)$$

• then shown to be possible (first by Hughes and Polchinski, in 2D), by relaxing the Ward identity to:

 $\delta_{A}\bar{\lambda}_{C}^{i}\,\delta^{B}\lambda^{iC} = \delta_{A}^{B}\,\mathcal{V}(\phi) + \mathbf{C}_{B}^{A}$ for a non-zero $\mathbf{C}_{B}^{A} = \xi^{x}(\sigma^{x})^{A}{}_{B} \in su(2) \ (x = 1, 2, 3).$

[Ferrara-Maiani; Cecotti-Girardello-Porrati; Hughes-Polchinski; Antoniadis-Partouche-Taylor]

Generalities Peculiarities of the rigid model

Crucial role of $\xi^{x} = \epsilon^{xyz} m^{yl} e_{l}^{z} \Leftarrow$ requires electric AND magnetic FI terms $\mathbb{P}^{xM} = \begin{pmatrix} m^{xl} \\ e_{l}^{x} \end{pmatrix}$, $M \in Sp(2n_{V}, \mathbb{R})$ \Rightarrow With this FI, Antoniadis, Partouche, Taylor in '95 explic constructed the first $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ rigid SuSy model. On the other hand, the SuGra Ward identity:

 $\delta_A \bar{\lambda}^i_C \, \delta^B \lambda^{iC} + \delta_A \bar{\zeta}_\alpha \, \delta^B \zeta^\alpha - 3 \delta_A \bar{\psi}_{\mu C} \, \delta^B \psi^{\mu C} = \delta^B_A \, \mathcal{V}(\phi)$

allows for partial breaking in SuGra, for $\mathcal{V}|_{vac} \leq 0$, due to the negative contribution from $\psi_{\mu A}$.

[Cecotti-Girardello-Porrati; Ferrara-Girardello-Porrati; Fre-Girardello-Porrati-Trigiante]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Generalities Peculiarities of the rigid model

Crucial role of $\xi^{x} = \epsilon^{xyz} m^{yl} e_{l}^{z} \leftarrow$ requires electric AND magnetic FI terms $\mathbb{P}^{xM} = \begin{pmatrix} m^{xl} \\ e_{l}^{x} \end{pmatrix}$, $M \in Sp(2n_{V}, \mathbb{R})$ \Rightarrow With this FI, Antoniadis, Partouche, Taylor in '95 explicitly constructed the first $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ rigid SuSy model. On the other hand, the SuGra Ward identity:

$$\delta_A \bar{\lambda}^i_C \, \delta^B \lambda^{iC} + \delta_A \bar{\zeta}_\alpha \, \delta^B \zeta^\alpha - 3 \delta_A \bar{\psi}_{\mu C} \, \delta^B \psi^{\mu C} = \delta^B_A \, \mathcal{V}(\phi)$$

allows for partial breaking in SuGra, for $\mathcal{V}|_{vac} \leq 0$, due to the negative contribution from $\psi_{\mu A}$.

[Cecotti-Girardello-Porrati; Ferrara-Girardello-Porrati; Fre-Girardello-Porrati-Trigiante]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Crucial role of $\xi^{x} = \epsilon^{xyz} m^{yl} e_{l}^{z} \leftarrow$ requires electric AND magnetic FI terms $\mathbb{P}^{xM} = \begin{pmatrix} m^{xl} \\ e_{l}^{x} \end{pmatrix}$, $M \in Sp(2n_{V}, \mathbb{R})$ \Rightarrow With this FI, Antoniadis, Partouche, Taylor in '95 explicitly constructed the first $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ rigid SuSy model. On the other hand, the SuGra Ward identity:

$$\delta_{A}\bar{\lambda}_{C}^{i}\,\delta^{B}\lambda^{iC}+\delta_{A}\bar{\zeta}_{\alpha}\,\delta^{B}\zeta^{\alpha}-3\delta_{A}\bar{\psi}_{\mu C}\,\delta^{B}\psi^{\mu C}=\delta^{B}_{A}\,\mathcal{V}(\phi)$$

allows for partial breaking in SuGra, for $\mathcal{V}|_{vac} \leq 0$, due to the negative contribution from $\psi_{\mu A}$.

[Cecotti-Girardello-Porrati; Ferrara-Girardello-Porrati; Fre-Girardello-Porrati-Trigiante]

・ロト ・四ト ・ヨト ・ヨト

In particular it can happen that, in the vacuum:

$$\delta_{A}\bar{\zeta}_{\alpha}\,\delta^{B}\zeta^{\alpha}-3\delta_{A}\bar{\psi}_{\mu C}\delta^{B}\psi^{\mu C}=-\xi^{x}(\sigma^{x})_{A}{}^{B}$$

so that:

$$\delta_{A}\bar{\lambda}_{C}^{i}\,\delta^{B}\lambda^{iC} = \delta_{A}^{B}\,\mathcal{V}(\phi) + \xi^{x}(\sigma^{x})_{A}^{B}$$

This requires that, in the rigid limit, gravitini and hyperini still non trivially transform into each-other, even if decoupled form the visible sector!

This describes precisely the case under investigation!

(日)

Let's discuss the $\mathcal{N} = 2$ SuGra model leading, in the rigid limit $\mu \to \infty$, to the n_v v.m. generalization of the APT model (partial SuSy breaking).

Problem already discussed, for the 1 v.m case, by Ferrara, Girardello, Porrati (FGP).

Here:

- generalization to *n_v* v.m.
- clarification of the origin of the FI terms as electric and magnetic charges in the SuGra model.

In the SuGra model, the charges are turned on by gauging isometries in the $\mathcal{M}_Q(q)$. We choose $\mathcal{M}_Q = SO(4,1)/SO(4)$. We will gauge 2 translational isometries t_m (m = 1, 2).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let's discuss the $\mathcal{N} = 2$ SuGra model leading, in the rigid limit $\mu \to \infty$, to the n_v v.m. generalization of the APT model (partial SuSy breaking).

Problem already discussed, for the 1 v.m case, by Ferrara, Girardello, Porrati (FGP).

Here:

- generalization to *n_v* v.m.
- clarification of the origin of the FI terms as electric and magnetic charges in the SuGra model.

In the SuGra model, the charges are turned on by gauging isometries in the $\mathcal{M}_Q(q)$. We choose $\mathcal{M}_Q = SO(4, 1)/SO(4)$. We will gauge 2 translational isometries t_m (m = 1, 2).

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Generalizing FGP Understanding η_i as charges

The theory contains $n_v + 1$ electric vectors A^{Λ}_{μ} , $(\Lambda = 0, I)$. Gauging described in terms of $X_{\hat{M}} \equiv (X_{\Lambda}, X^{\Lambda}) \in Sp(2n_v + 2, \mathbb{R})$ $(\hat{M} = 1, \dots 2n_v + 2)$ via the embedding:

$$X_{\hat{M}} = \Theta_{\hat{M}}^{\ m} t_{m}, \quad \text{where } \Theta_{\hat{M}}^{m} : \mathbb{C}^{\hat{M}\hat{N}} \Theta_{\hat{M}}^{m} \Theta_{\hat{N}}^{n} = 0 \quad \leftrightarrow \quad \Theta_{\Lambda}^{\ [m} \Theta^{\Lambda|n]} = 0$$

Here we take (following FGP):

• $ds_{\mathcal{M}_Q}^2 = \frac{1}{2} \left(d\varphi^2 + e^{2\varphi} dq^x dq^x \right), \quad x = 1, 2, 3 = (1, m),$ isometry gen. t_m acting on q^2, q^3 .

•
$$\Theta_{\hat{M}}^{\ m} = \left(\Theta_{\hat{M}}^{\ 1}, \Theta_{\hat{M}}^{\ 2}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ m^{i}/\mu & 0 \end{array}\right): \Theta_{0}^{\ [m}\Theta^{0|n]} = \Theta_{I}^{\ [m}\Theta^{I|n]} = 0,$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Generalizing FGP Understanding η_i as charges

This is not enough to get $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ (for $\mu \rightarrow \infty$)! In this symplectic frame, it further requires a particular behavior of the special-geometry prepotential of the v.m. sector $F(X) = -i(X^0)^2 f(z)$ (in special coordinates $z^i = X^I/X^0$):

$$f(z)_{FGP} \stackrel{=}{_{\mu \to \infty}} \frac{1}{4} + \frac{z}{2\mu} + \frac{\phi(z)}{2\mu^2} + O\left(\frac{1}{\mu^3}\right)$$

We generalized it to

$$\Downarrow$$

$$f(z^{i})_{\mu \to \infty} = \frac{1}{4} + \frac{\eta_{i}z^{i}}{2\mu} + \frac{\phi(z^{i})}{2\mu^{2}} + O\left(\frac{1}{\mu^{3}}\right)$$

so that $\Omega^{\hat{M}} = (1, z^i, -i(2f - z^i \partial_i f), -i\partial_i f) = \Omega^{\hat{M}}(z; \eta)$, and:

$$g_{iar{\jmath}}(z,ar{z};\eta) = rac{1}{\mu^2} \left\{ rac{\eta_i \eta_j}{\mu^2} - rac{1}{2} \left(\overline{\partial_{ij} \phi} + \partial_{ij} \phi
ight)
ight\} = rac{1}{\mu^2} \mathring{g}_{iar{\jmath}}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Generalizing FGP Understanding η_i as charges

It works! We get, for $\mu \rightarrow \infty$, a rigid theory generalizing APT:

• Gravity mult. and hypermult. decouple for $\mu \to \infty$

•
$$\mathcal{V}_{\mathcal{N}=2}^{rigid} = \frac{e^{2\varphi}}{2} \mathcal{M}(z,\bar{z})_{MN} \mathbb{P}^{xM} \mathbb{P}^{xN}, \quad C^{A}{}_{B} = e^{2\varphi} \xi^{x} (\sigma^{x})^{A}{}_{B}$$

$$\xi^{x} = \frac{1}{2} \epsilon^{xyz} \mathbb{P}^{y}_{\mathcal{M}} \mathbb{P}^{z}_{\mathcal{N}} \mathbb{C}^{\mathcal{M}\mathcal{N}} = \epsilon^{xyz} m^{yi} e_{i}^{z} ,$$

N.B.: here \mathbb{P}^{xM} (index $M = 1, \dots 2n_v$) non trivially related to momentum maps $\mathcal{P}^{x\hat{M}}$: $\mathbb{P}^{x\mathcal{M}} = (m^{ix}, e_i^x)$ with $e_i^x = \eta_i e^x$ and

$$e^{x} = (0, e, \sigma) = (0, e^{m}); m^{ix} = (0, m^{i}, 0) = (0, m^{im}).$$

 \Rightarrow Part of the charges hidden in the geometry of the moduli space!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

 $\label{eq:Linear realization of multi-field BI} \mbox{Partial SuSy breaking $\mathcal{N}=2$} \rightarrow $\mathcal{N}=1$ \\ \mbox{Embedding in supergravity} \end{tabular}$

Generalizing FGP Understanding η_i as charges

Pattern of SuSy breaking

The rigid th. admits partial breaking for $\mathcal{V}_{\mathcal{N}=2}|_{vac} = \sqrt{\xi^{x}\xi^{x}} \neq 0$. In this case, the effective $\mathcal{N} = 1$ potential is

$$\mathcal{V}_{\mathcal{N}=1}(z,\,ar{z})\equiv V^{(extsf{APT})}_{\mathcal{N}=2}(z,\,ar{z})-\sqrt{\xi^{x}\xi^{x}}\,,$$

and the infra-red dynamics ($\Lambda_{SuSy} \to \infty$) is captured by a multi-field Born-Infeld action [Ferrara, Porrati, Sagnotti].

• The squared mass-matrix of the gravitino has eigenvalues:

$$\lambda_{\pm} = \frac{e^{2\varphi}}{4} \left[e^2 + \left(\sigma \pm \frac{\eta_i m^i}{2} \right)^2 \right]$$

 \Rightarrow In general, SuSy is completely broken in the hidden sector!

Generalizing FGP Understanding η_i as charges

Puzzles on charges

In SuGra, charges usually encoded in $\Theta_{\hat{M}}^{m} = (\Theta_{\Lambda}^{m}, \Theta^{\Lambda m})$. Here:

$$\Theta_{\Lambda}^{\ m} = (\Theta_0^{\ m}, \Theta_l^{\ m}) = \frac{1}{\mu^2} (\boldsymbol{e}^m, 0), \Theta^{\Lambda m} = (\Theta^{0m}, \Theta^{lm}) = \frac{1}{\mu} (0, m^{im})$$

so that $\Theta_0^{[m} \Theta^{0|n]} = \Theta_l^{[m} \Theta^{l|n]} = 0$. \leftarrow Locality condition. On the other hand, in the rigid limit they are in $\mathbb{P}^{x\mathcal{M}} = (\mathbb{P}^{xl}, \mathbb{P}_l^x)$:

$$\mathbb{P}^{xI} = \delta_1^x m^i, \mathbb{P}_I^x = \delta_m^x e^m \eta_i \quad \Rightarrow \epsilon^{xyz} \mathbb{P}^{yI} \mathbb{P}_I^z = \xi^x \neq 0$$

Crucial role of η_i appearing in the metric of \mathcal{M}_{SK} ! Questions:

- Charges in the σ -mod geometry instead of in Θ_{M}^{m} ??
- Is the rigid theory local?

Generalizing FGP Understanding η_i as charges

Puzzles on charges

• Charges in the σ -mod geometry instead of in $\Theta_{\hat{M}}^{m}$??

No! in the choice of special coordinates $z^i = X^I/X^0$! \Rightarrow in the choice of the symplectic section $\Omega^M = (X^0, X^I, F_0, F_I)$. Consider: $S(n, \mu) = \begin{pmatrix} 1 & \eta_i/\mu & 0 & 0 \\ 0 & \frac{1}{\mu} \mathbf{1}_n & 0 & 0 \end{pmatrix} \in Sn(2n, \pm 2, \mathbb{R}) : S \cdot \Omega = \mathbb{R}$

$$S(\eta,\mu) = \begin{pmatrix} \mu & n \\ 0 & 0 & 1 \\ 0 & 0 & -\eta_i & \mu \mathbf{1_n} \end{pmatrix} \in Sp(2n_v + 2,\mathbb{R}) : S \cdot \Omega = \Omega$$

Now $\tilde{z}^i = \tilde{X}^I / \tilde{X}^0 = \frac{z^i}{\mu + \eta_j z^j}$ and $\tilde{f}(\tilde{z}) = \frac{1}{4} + \frac{1}{2\mu^2} \tilde{\phi}(\tilde{z}) + O(\frac{1}{\mu^3})$ \Rightarrow no linear term! Moreover:

$$\tilde{\Theta}_{\hat{M}}^{\ m} = \Theta_{\hat{N}}^{m} \cdot (S^{-1})_{\ \hat{M}}^{\hat{N}} = \frac{1}{\mu^{2}} \left(\boldsymbol{e}^{m}, -\eta_{i} \boldsymbol{e}^{m}, \eta_{i} \boldsymbol{m}^{im}, \boldsymbol{m}^{im} \right) = \frac{1}{\mu^{2}} \tilde{\Theta}_{\hat{M}}^{m}$$

Now $\mathring{\Theta}^{mI} = \delta_x^m \mathbb{P}^{xI} = m^{im}, \, \mathring{\Theta}_I^m = -\delta_x^m \mathbb{P}_I^x = -\eta_i e^m$

Generalizing FGP Understanding η_i as charges

Puzzles on charges

• Is the rigid theory local?

In new frame $Sp(2n_v + 2, \mathbb{R}) \xrightarrow[\mu \to \infty]{} Sp(2n_v, \mathbb{R})$ manifest. Furthermore: $\mathbb{P}^{xM} = \delta_m^x \mathbb{C}^{MN} \mathring{\Theta}_N^m$, where $\mathring{\Theta}_M^m = (\mathring{\Theta}_I^m, \mathring{\Theta}^{Im})$.

$$\mathring{\Theta}^{\Lambda[m}\mathring{\Theta}^{n]}_{\Lambda} = \mathbf{0} \ \Rightarrow \ \mathring{\Theta}^{0[m}\mathring{\Theta}^{n]}_{0} = -\mathring{\Theta}^{I[m}\mathring{\Theta}^{n]}_{I} = \eta_{i}m^{i[m}e^{n]} = \xi^{1} \neq \mathbf{0}$$

Non locality! Due to non-trivial freezing of the graviphoton gauge-bundle in the rigid limit! This explains why the hidden sector $(\psi_{\mu A}, \zeta_{\alpha})$ plays a role in the rigid theory $(C_B^A = \xi^x (\sigma^x)_B^A \neq 0$ in the SuSY Ward identity).

N.B.: non locality only affects the fermionic directions of superspace! \Rightarrow the rigid theory on space-time is local! Indeed:

$$\delta_{[1}\delta_{2]} A^{\prime}_{\mu} = -i\sqrt{2} \, \overset{\bullet}{\Theta}^{\prime\,m}(\sigma^{m})_{A}{}^{B} \, \bar{\epsilon}_{[2\,B}\gamma_{\mu} \, \epsilon^{A}_{1]} \quad (\star)$$

This is understood in supergravity: for $\Theta^{\Lambda m} \neq 0$, the natural symplectic frame requires to dualize $dq^m \rightarrow {}^*dq^m = dB_{(2)m}$. The gauge fields A^{Λ}_{μ} associated to them are not well defined:

$$F^{\Lambda}_{\mu
u} = \partial_{[\mu}A^{\Lambda}_{\nu]} + \Theta^{\Lambda m}B_{m|\mu
u} \Rightarrow dF^{\Lambda} = \Theta^{\Lambda m}dB_{m} \neq 0$$

and undergo the anti-Higgs mechanism. In the rigid limit:

$$dF^{I} \propto i \mathring{\Theta}^{Im} (\sigma^{m})_{A}{}^{B} \bar{\psi}^{A} \wedge \gamma_{a} \psi_{B} \wedge V^{a} + \cdots \neq 0$$

Superspace counterpart of (*).

(日)

 $\label{eq:linear} \begin{array}{l} \mbox{Linear realization of multi-field BI} \\ \mbox{Partial SuSy breaking $\mathcal{N}=2$} \rightarrow $\mathcal{N}=1$ \\ \mbox{Embedding in supergravity} \end{array}$

Generalizing FGP Understanding η_i as charges

$$\mathcal{L}_{sugra} \underset{\mu \to \infty}{\xrightarrow{\longrightarrow}} \mathcal{L}_{\mathcal{N}=2 \to \mathcal{N}=1}^{rigid} + \mathcal{L}_{hidden}$$

$$\begin{split} \mathcal{L}_{\mathcal{N}=2\rightarrow\mathcal{N}=1}^{\prime i g i j} &= \Lambda^{2} \mathring{g}_{i \bar{\jmath}} \partial^{\mu} z^{i} \partial_{\mu} \bar{z}^{\bar{\jmath}} - \frac{i}{2} \mathring{g}_{i \bar{\jmath}} \left(\mathring{\bar{\lambda}}^{i A} \gamma^{\mu} \nabla_{\mu} \mathring{\lambda}_{A}^{\bar{\jmath}} + h.c. \right) + \\ &+ \left(-i \mathring{\mathcal{N}}_{IJ} \mathcal{F}_{\mu\nu}^{+I} \mathcal{F}^{+J\mu\nu} + h.c. \right) + \Lambda^{4} \mathring{\mathcal{V}} + \Lambda \left(\mathring{\mathcal{M}}_{i A j B} \mathring{\bar{\lambda}}^{i A} \mathring{\lambda}^{j B} + h.c. \right) + \\ &+ \Lambda^{-1} \mathcal{F}_{\mu\nu}^{-I} \mathring{I}_{IJ} \left[\frac{1}{2} \nabla_{i} \mathring{f}_{J}^{J} \mathring{\bar{\lambda}}^{i A} \gamma^{\mu\nu} \mathring{\lambda}^{j B} \epsilon_{A B} + h.c. \right] \end{split}$$

$$\begin{split} \mathcal{L}_{hidden} &= M_{P\ell}^{2} \left(-\frac{R}{2} + h_{\hat{u}\hat{v}}\partial_{\mu}q^{\hat{u}}\partial^{\mu}q^{\hat{v}} \right) + 2\frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} M_{P\ell} \mathcal{H}_{m|\nu\rho\sigma} A_{\hat{u}}^{m}\partial_{\mu}q^{\hat{u}} + \\ &+ \frac{\epsilon^{\mu\nu\lambda\sigma}}{\sqrt{-g}} \left(\bar{\psi}_{\mu}^{A}\gamma_{\nu}\rho_{A|\lambda\sigma} + h.c. \right) - \left(i\bar{\zeta}^{\alpha}\gamma^{\mu}\nabla_{\mu}\zeta_{\alpha} + h.c. \right) + \\ &+ \left(-i\mathring{\mathcal{N}}_{00}\mathcal{F}_{\mu\nu}^{+0}\mathcal{F}^{+0\mu\nu} + h.c. \right) + 6M^{mn}\mathcal{H}_{m|\mu\nu\rho}\mathcal{H}_{n}^{\mu\nu\rho} + \\ &- 2\mathcal{U}_{\hat{u}}^{\alpha A}\partial_{\mu}q^{\hat{u}} \left(\bar{\zeta}_{\alpha}\gamma^{\nu}\gamma^{\mu}\psi_{A\nu} + h.c. \right) , \quad (q^{\hat{u}} = q^{0}, q^{1}) \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Conclusions and outlook

- I discussed the supergravity structure hidden in partially broken rigid $\mathcal{N} = 2$ theory of n_v v.m.:
 - Part of charges hidden in moduli-space geometry.
 → They can be turned into the embedding tensor.
 - In the new symplectic frame the rigid theory is non-local. Non-locality only affects the fermionic directions of superspace; it is related to δ_εψ_{μA}|_{vac}, δ_εζ_α|_{vac} ≠ 0 for μ → ∞
- The model has a multi-vector BI limit in the infrared. For n_v > 1, the SuSy case is a singular case of a class of multi-vector 2-derivative lagrangians with a dual description as multi-vector BI.

(日)