Critical Behavior of a General $O(n)$ symmetric Model of two n Vector Fields in $D=4-2 \epsilon$

Alexej Weber
in collaboration with Yuri Pismak and Franz Wegner

Institute for Theoretical Physics，University of Heidelberg
04．09．2008

Table of contents

(1) Introduction and Descriptive Overview
(2) $4-2 \epsilon$ Expansion
(3) Field rotations
(4) The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents
(6) Summary and Conclusions

Introduction I

- The renormalization group approach provides a natural framework for the understanding of critical properties of phase transitions. A very large variety of critical phenomena can be described by so called ϕ^{4} models, $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$. There are several ϕ^{4} models:
- The common $O(n)$ symmetric one field model (τ is a temperature-like parameter and $g>0$):

$$
S_{O(n)}(\phi)=\frac{1}{2}\left[(\nabla \phi)^{2}+\tau \phi^{2}\right]+\frac{1}{4!} g\left(\phi^{2}\right)^{2}
$$

- Extended $O(n)+O(m)$ symmetric model

$$
\begin{aligned}
S_{O(n)+O(m)}\left(\phi_{1}, \phi_{2}\right) & =\frac{1}{2}\left[\left(\nabla \phi_{1}\right)^{2}+\left(\nabla \phi_{2}\right)^{2}+\tau_{1} \phi_{1}^{2}+\tau_{2} \phi_{2}^{2}\right] \\
& +\frac{1}{4!}\left[g_{1}\left(\phi_{1}^{2}\right)^{2}+g_{2}\left(\phi_{2}^{2}\right)^{2}+g_{3}\left(\phi_{1}^{2}\right)\left(\phi_{2}^{2}\right)\right]
\end{aligned}
$$

Introduction I

- In the $O(n)+O(m)$ model six different fixpoints (FP) were found. Three of them are always unstable and the stability of three others depends on n and m (M.Fisher et al).
- The $O(n)+O(m)$ model has been used to describe multicritical phenomena. (The critical behavior of uniaxial antiferromagnets in a magnetic field parallel to the field direction, the $S O(5)$ theory of high T_{c} superconductors).
- Also interesting phenomena of inverse symmetry breaking, symmetry non restoration and reentrant phase transitions were reported (Weinberg, Ramos, Pinto).

Introduction II

- Recently frustrated spin systems with non collinear or canted spin ordering have been the object of intensive research (Kawamura, Pelissetto and Vicary et al., Holovatch) (Examples: Helical magnets and layered triangular Heisenberg antiferromagnets). Both fields have n components and the model possesses the $O(n) \times O(2)$ symmetry.

$$
\begin{aligned}
S_{O(n) \times O(2)}\left(\phi_{1}, \phi_{2}\right)= & \frac{1}{2}\left[\left(\nabla \phi_{1}\right)^{2}+\left(\nabla \phi_{2}\right)^{2}+\tau\left(\phi_{1}^{2}+\phi_{2}^{2}\right)\right] \\
& +\frac{1}{4!} u\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}+\frac{1}{4!} v\left[\left(\phi_{1} \phi_{2}\right)^{2}-\left(\phi_{1}^{2}\right)\left(\phi_{2}^{2}\right)\right]
\end{aligned}
$$

- Here the scalar product $\phi_{1} \phi_{2}$ is present.
- In the 4-2 2ϵ expansion, the number of FPs and their stability depend on n.

Introduction III

- We have studied the critical behavior of the $\mathrm{O}(n)$-symmetric model with two n-vector fields within the RG field-theoretical approach in $4-2 \epsilon$ expansion.

$$
\begin{aligned}
S_{O(n)}\left(\phi_{1}, \phi_{2}\right)= & \frac{1}{2}\left[\left(\nabla \phi_{1}\right)^{2}+\left(\nabla \phi_{2}\right)^{2}+\tau_{1} \phi_{1}^{2}+\tau_{2} \phi_{2}^{2}+2 \tau_{3} \phi_{1} \phi_{2}\right] \\
+ & \frac{1}{8}\left[g_{11}\left(\phi_{1}^{2}\right)^{2}+g_{22}\left(\phi_{2}^{2}\right)^{2}+2 g_{12}\left(\phi_{1}^{2}\right)\left(\phi_{2}^{2}\right)\right. \\
& \left.+2 g_{33}\left(\phi_{1} \phi_{2}\right)^{2}+2 \sqrt{2} g_{13}\left(\phi_{1}\right)^{2}\left(\phi_{1} \phi_{2}\right)+2 \sqrt{2} g_{23}\left(\phi_{2}\right)^{2}\left(\phi_{1} \phi_{2}\right)\right]
\end{aligned}
$$

- The model becomes $\mathrm{O}(n)+\mathrm{O}(n)$ symmetric when $\tau_{3}=g_{33}=g_{13}=g_{23}=0$.
- Setting $\tau_{1}=\tau_{2}, \tau_{3}=g_{13}=g_{23}=0, g_{11}=g_{22}, g_{12}=g_{11}-g_{33}$ leads to the $\mathrm{O}(n) \times \mathrm{O}(2)$ model of frustrated spins.
(1) Introduction and Descriptive Overview
(2) 4-2 ϵ Expansion
(3) Field rotations

4 The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents

$4-2 \epsilon$ Expansion I

- It is useful to rewrite the interaction part of $S_{O(n)}$ as

$$
S_{\mathrm{int}}\left(\phi_{1}, \phi_{2}, g\right)=\frac{1}{8} \sum_{k, l=1}^{3} \mathcal{I}_{k} g_{k} \mathcal{I}_{I}=\frac{1}{8} \mathcal{I} g \mathcal{I}
$$

where

$$
\left(\begin{array}{c}
\mathcal{I}_{1} \\
\mathcal{I}_{2} \\
\mathcal{I}_{3}
\end{array}\right)=\left(\begin{array}{c}
\phi_{1}^{2} \\
\phi_{2}^{2} \\
\sqrt{2} \phi_{1} \phi_{2}
\end{array}\right) .
$$

4-2 $\begin{aligned} & \text { Expansion II }\end{aligned}$

- The expression for the critical exponents can be taken from (Brézin, le Guillou, and Zinn-Justin in Domb-Green Vol.6).
- The six β functions $\beta_{i j} \equiv \mu \partial_{\mu} g_{i j}$, where μ is an auxiliar parameter with the critical dimension 1, can be written in 1-loop order

$$
\beta_{i j}=-2 \epsilon g_{i j}+\frac{1}{2}(n+8) g_{i k} g_{k l}+\frac{1}{2} C_{i j, k l, m n} g_{k k} g_{m n}
$$

with

$$
\begin{array}{ll}
i, j & C_{i j, k l, m n} g_{k l} g_{m n} \\
1,1 & -8 g_{12}^{2}+2 g_{12} g_{33}+g_{33}^{2} \\
1,2 & -6 g_{11} g_{12}-6 g_{12} g_{22}-4 g_{13} g_{23}+g_{11} g_{33}+4 g_{12}^{2}+2 g_{13}^{2}+g_{22} g_{33}+2 g_{23}^{2}+g_{33}^{2} \\
1,3 & -6 g_{12} g_{23}-3 g_{13} g_{33}+6 g_{12} g_{13}+3 g_{23} g_{33} \\
2,2 & -8 g_{12}^{2}+2 g_{12} g_{33}+g_{33}^{2} \\
2,3 & -6 g_{12} g_{13}-3 g_{23} g_{33}+6 g_{12} g_{23}+3 g_{13} g_{33} \\
3,3 & -2 g_{13}^{2}-2 g_{23}^{2}-6 g_{33}^{2}+2 g_{11} g_{33}+8 g_{12} g_{33}+4 g_{13} g_{23}+2 g_{22} g_{33}
\end{array}
$$

We have rescaled the couplings by a factor $8 \pi^{2}$ as usual.

- The FPs g^{*} are the solutions of $\beta_{i j}\left(g^{*}\right)=0$. $S_{O(n)}$ is symmetric under the simultaneous interchange of g_{11} with g_{22} and g_{13} with g_{23}. The simultaneous change of signs of g_{13} and g_{23} leaves the solution invariant.

$4-2 \epsilon$ Expansion III

- The stability-matrix can be easily obtained:

$$
\omega_{i j, k l}=\partial \beta_{i j}(g) /\left.\partial g_{k l}\right|_{g=g^{*}}
$$

Its eigenvalues are the critical exponents ω.

- The critical exponents η are obtained from the eigenvalues γ_{ϕ}^{*} of the symmetric 2×2 matrix γ_{Φ} at $g=g^{*}$,

$$
\begin{array}{lr}
\left\{\gamma_{\Phi}\right\}_{11}= & \frac{1}{16}\left(2(n+2) g_{11}^{2}+(n+2) g_{23}^{2}+(n+1) g_{33}^{2}+2 n g_{12}^{2}+4 g_{12} g_{33}+3(n+2) g_{13}^{2}\right), \\
\left\{\gamma_{\Phi}\right\}_{21}= & \frac{\sqrt{2}(n+2)}{16}\left(\left(g_{11}+g_{12}+g_{33}\right) g_{13}+\left(g_{22}+g_{12}+g_{33}\right) g_{23}\right), \\
\left\{\gamma_{\Phi}\right\}_{22}= & \frac{1}{16}\left((n+2) g_{13}^{2}+2(n+2) g_{22}^{2}+2 n g_{12}^{2}+3(n+2) g_{23}^{2}+(n+1) g_{33}^{2}+4 g_{12} g_{33}\right),
\end{array}
$$

calculated at the specific FP, with respect to $\eta_{i}=2 \gamma_{\Phi}^{*}$.

- The critical indices $1 / \nu=2+\gamma_{\tau}^{*}$ are obtained from the eigenvalues γ_{τ}^{*} of (in one-loop order):

$$
\gamma_{\tau}=-\frac{1}{2}\left(\begin{array}{ccc}
(n+2) g_{11} & n g_{12}+g_{33} & (n+2) g_{13} \\
n g_{12}+g_{33} & (n+2) g_{22} & (n+2) g_{23} \\
(n+2) g_{13} & (n+2) g_{23} & 2 g_{12}+(n+1) g_{33}
\end{array}\right)_{g=g^{*}} .
$$

$4-2 \epsilon$ Expansion IV

- The three crossover exponents are eigenvalues of the 3×3 matrix (in one-loop order)

$$
\gamma_{\mathrm{cr}, \mathrm{~s}}=-\frac{1}{2}\left(\begin{array}{ccc}
2 g_{11} & g_{33} & 2 g_{13} \\
g_{33} & 2 g_{22} & 2 g_{23} \\
2 g_{13} & 2 g_{23} & 2 g_{12}+g_{33}
\end{array}\right)_{g=g^{*}}
$$

- The fourth crossover exponent is (in one-loop order)

$$
\gamma_{\mathrm{cr}, \mathrm{a}}=-g_{12}+\frac{1}{2} g_{33} .
$$

table of contents

(1) Introduction and Descriptive Overview
(2) 4-2 $\boldsymbol{6}$ Expansion
(3) Field rotations

44 The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents
(6) Summary and Conclusions

Field rotations I

- The direct calculation of FPs from the β functions leads to more than 50 FPs and several lines of FPs!
- Some FPs are equivalent due to the internal rotation of the fields:

$$
\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}=\left(\begin{array}{cc}
\cos (\varphi) & \sin (\varphi) \\
-\sin (\varphi) & \cos (\varphi)
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

- Performing the rotation yields

$$
\left(\begin{array}{l}
\mathcal{I}_{1}^{\prime} \\
\mathcal{I}_{2}^{\prime} \\
\mathcal{I}_{3}^{\prime}
\end{array}\right)=M\left(\begin{array}{c}
\mathcal{I}_{1} \\
\mathcal{I}_{2} \\
\mathcal{I}_{3}
\end{array}\right), \quad M=\left(\begin{array}{ccc}
\frac{1}{2}+\frac{1}{2} \cos (2 \varphi) & \frac{1}{2}-\frac{1}{2} \cos (2 \varphi) & \sqrt{\frac{1}{2}} \sin (2 \varphi) \\
\frac{1}{2}-\frac{1}{2} \cos (2 \varphi) & \frac{1}{2}+\frac{1}{2} \cos (2 \varphi) & -\sqrt{\frac{1}{2}} \sin (2 \varphi) \\
-\sqrt{\frac{1}{2}} \sin (2 \varphi) & \sqrt{\frac{1}{2}} \sin (2 \varphi) & \cos (2 \varphi)
\end{array}\right)
$$

- The matrix M is orthogonal and the interaction transforms according to

$$
S_{\mathrm{int}}\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, g^{\prime}\right)=\frac{1}{8} \mathcal{I}^{\prime T} g^{\prime} \mathcal{I}^{\prime}, \quad g^{\prime}=M g M^{T}
$$

- Obviously both sets of couplings describe the same critical behavior.

Field rotations II

- One finds that the following is invariant under the rotations

$$
\begin{equation*}
a_{1}=g_{11}+g_{22}+2 g_{12}, \quad a_{2}=g_{11}+g_{22}+g_{33} \tag{1}
\end{equation*}
$$

- whereas

$$
\begin{array}{rr}
a_{31}=g_{11}-g_{22}, & a_{32}=\sqrt{2}\left(g_{13}+g_{23}\right), \\
a_{41}=-g_{11}+2 g_{12}-g_{22}+2 g_{33}, & a_{42}=-\sqrt{8}\left(g_{13}-g_{23}\right)
\end{array}
$$

transform according to

$$
\binom{a_{31}^{\prime}}{a_{32}}=\left(\begin{array}{cc}
\cos (2 \varphi) & \sin (2 \varphi) \\
-\sin (2 \varphi) & \cos (2 \varphi)
\end{array}\right)\binom{a_{31}}{a_{32}}
$$

and

$$
\binom{a_{41}^{\prime}}{a_{42}}=\left(\begin{array}{cc}
\cos (4 \varphi) & \sin (4 \varphi) \\
-\sin (4 \varphi) & \cos (4 \varphi)
\end{array}\right)\binom{a_{41}}{a_{42}} .
$$

- For the interactions invariant under $\mathrm{O}(n) \times \mathrm{O}(2)$ the amplitudes $a_{31}, a_{32}, a_{41}, a_{42}$ have to vanish. Otherwise we may choose φ.
- We will choose it so that $a_{42}=0$, i.e $g_{23}=g_{13}$.
- From the FPs with the condition $g_{23}=g_{13}$, all other FPs can be obtained by means of the orthogonal transformations leaving the expressions (1) invariant.

table of contents

(1) Introduction and Descriptive Overview
(2) 4-2 $\boldsymbol{6}$ Expansion
(3) Field rotations

44 The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents
6) Summary and Conclusions

The classification of the fixed points in the large n limit

- In the large n limit we may neglect the last term in the β functions:

$$
\beta_{i j}=-2 \epsilon g_{i j}+\frac{1}{2}(n+8) g_{i k} g_{k l}+\frac{1}{2} C_{i j, k l, m n} g_{k l} g_{m n}
$$

expressing g in terms of the matrix p,

$$
g=4 \epsilon p /(n+8)
$$

- At criticality $\left(\beta_{i j} \equiv 0\right)$ and in the limit $n \rightarrow \infty$ the matrix p becomes idempotent: $p=p^{2}$.
- The only eigenvalues of idempotent matrices are 0 and 1 . Thus depending on the number k of eigenvalues 1 there are four types of symmetric (3×3) idempotent matrices $p^{(k)}$

$$
p_{i j}^{(0)}=0, \quad p_{i j}^{(1)}=z_{i} z_{j}, \quad p_{i j}^{(2)}=\delta_{i j}-z_{i} z_{j}, \quad p_{i j}^{(3)}=\delta_{i j} ; \quad i, j=1,2,3,
$$

with the restriction

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1 .
$$

- Further conditions on z for the classes $p^{(1,2)}$ can be obtained by considering the first two orders in $1 /(n+8)$ to g^{*}.

The classification of the FPs in the large n, class $p^{(0)}$

- This class consists of the trivial FP

$$
g^{*}=4 \epsilon p^{(0)} /(n+8)=0
$$

only.

- The stability-matrix is diagonal:

$$
\omega_{i j}=-(2 \epsilon) \delta_{i j}
$$

All its eigenvalues are negative and the FP is unstable.

- This FP is exact and remains invariant under the orthogonal transformations.

The classification of the FPs in the large n, class $p^{(1)}$

- The following ansatz (h is symmetric) is put into the β-functions

$$
\begin{equation*}
g_{i j}^{*}=\frac{4 \epsilon}{(n+8)} z_{i} z_{j}+\frac{4 \epsilon}{(n+8)^{2}} h_{i j}+O\left(\frac{1}{(n+8)^{3}}\right) \tag{2}
\end{equation*}
$$

- We then obtain the following conditions on z :

$$
\begin{equation*}
\left(1-z_{12}^{2}\right)\left(4-z_{12}^{2}\right) z_{12}\left(z_{1}-z_{2}\right)=0 \quad\left(1-z_{12}^{2}\right)\left(4-z_{12}^{2}\right) z_{12} z_{3}^{2}=0, \tag{3}
\end{equation*}
$$

where $z_{12}:=z_{1}+z_{2}$. Thus solutions are given by

$$
z_{12}=0, \pm 1, \pm 2, \pm \sqrt{2}
$$

- the first solutions follow immediately from the eqs. (3), whereas the last pair follows from $z_{1}-z_{2}=0, z_{3}=0$ and $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1$ and describes an $\mathrm{O}(n) \times \mathrm{O}(2)$-invariant interaction. Due to (2) a change of the sign of the $z s$ does not alter the FP. Thus z_{12} and $-z_{12}$ yield the same class of FPs.

The classification of the FPs in the large n, class $p^{(1)}$

- The solutions $z_{12}=0, \pm 1, \pm 2, \pm \sqrt{2}$ divide the class $p^{(1)}$ into subclasses. Each subclass has its own characteristic critical exponents
- While $z_{12}=z_{1}+z_{2}$ stays constant, $z_{1}-z_{2}$ and z_{3} vary under rotation according to

$$
\left(z_{1}-z_{2}\right)^{2}+2 z_{3}^{2}=2-z_{12}^{2} .
$$

- For $z_{12} \neq \pm \sqrt{2}$ one obtains a whole continuum of solutions, i.e. lines of FPs!
- Each subclass has its own characteristic critical exponents. In the limit of large n they are

$$
\begin{aligned}
\omega & = & \{(2 \epsilon), 0(2 \times),-(2 \epsilon)(3 \times)\}, \quad \gamma_{\tau}^{*}=\{-(2 \epsilon), 0(2 \times)\} \\
\gamma_{c r}^{*} & = & \left\{\frac{(2 \epsilon)}{n}\left(-1 \pm z_{12} \sqrt{2-z_{12}^{2}}\right), \frac{(2 \epsilon)}{n}\left(1-z_{12}^{2}\right)(2 \times)\right\} \\
\gamma_{\Phi}^{*} & = & \left\{\frac{(2 \epsilon)^{2}}{8 n}\left(1 \pm z_{12} \sqrt{2-z_{12}^{2}}\right)\right\}
\end{aligned}
$$

The classification of the FPs in the large n, class $p^{(2)}$

- The following ansatz (h is symmetric) is put into the β-functions

$$
\begin{equation*}
g_{i j}^{*}=\frac{4 \epsilon}{n+8}\left(\delta_{i j}-z_{i} z_{j}\right)+\frac{4 \epsilon}{(n+8)^{2}} h_{i j}+O\left(\frac{1}{(n+8)^{3}}\right), \tag{4}
\end{equation*}
$$

- We then obtain the following conditions on z :

$$
\begin{equation*}
\left(z_{12}^{2}+1\right) z_{12}^{2}\left(z_{1}-z_{2}\right)=0, \quad\left(z_{12}^{2}+1\right) z_{12} z_{3}^{2}=0 . \tag{5}
\end{equation*}
$$

where $z_{12}:=z_{1}+z_{2}$. Thus solutions are given by

$$
z_{12}=0, \pm i, \pm \sqrt{2}
$$

where the first two solutions are immediately obvious from eqs. (5) and the last one follows from $z_{1}=z_{2}, z_{3}=0$, and $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1$. This last solution represents an $\mathrm{O}(n) \times \mathrm{O}(2)$-invariant model.

The classification of the FPs in the large n, class $p^{(2)}$

- The solutions $z_{12}=0, \pm \mathrm{i}, \pm \sqrt{2}$ divide the class $p^{(2)}$ into subclasses. Each subclass has its own characteristic critical exponents
- While $z_{12}=z_{1}+z_{2}$ stays constant, $z_{1}-z_{2}$ and z_{3} vary under rotation according to

$$
\left(z_{1}-z_{2}\right)^{2}+2 z_{3}^{2}=2-z_{12}^{2} .
$$

- For $z_{12} \neq \pm \sqrt{2}$ one obtains a whole continuum of solutions, i.e. lines of FPs!
- Each subclass has its own characteristic critical exponents. In the limit of large n they are

$$
\begin{array}{rlrl}
\omega & = & \{(2 \epsilon)(3 \times), 0(2 \times),-(2 \epsilon)\}, \quad \gamma_{\tau}^{*}=\{-(2 \epsilon)(2 \times), 0\}, \\
\gamma_{\mathrm{cr}}^{*} & = & \left\{\frac{(2 \epsilon)}{n}\left(-2+z_{12}^{2}\right), \frac{(2 \epsilon)}{n}\left(-1 \pm \sqrt{1+2 z_{12}^{2}-z_{12}^{4}}\right), \frac{(2 \epsilon)}{n} z_{12}^{2}\right\}, \\
\gamma_{\Phi}^{*} & = & & \left\{\frac{(2 \epsilon)^{2}}{8 n}\left(2 \pm z_{12} \sqrt{2-z_{12}^{2}}\right),\right\} .
\end{array}
$$

The classification of the FPs in the large n, class $p^{(3)}$

- In the large n limit one obtains

$$
g^{*}=4 \epsilon p^{(3)} /(n+8)=4 \epsilon \delta_{i j} /(n+8),
$$

which yields the exponents in leading order

$$
\begin{aligned}
\omega & = & \{(2 \epsilon)(6 \times)\}, & \gamma_{\tau}^{*}=\{-(2 \epsilon)(3 \times)\}, \\
\gamma_{\mathrm{cr}}^{*} & = & \left\{\frac{-3(2 \epsilon)}{n}, \frac{-(2 \epsilon)}{n}(2 \times), \frac{(2 \epsilon)}{n}\right\}, & \gamma_{\Phi}^{*}=\left\{\frac{3(2 \epsilon)^{2}}{8 n}(2 \times)\right\} .
\end{aligned}
$$

table of contents

(1) Introduction and Descriptive Overview
(2) 4-2 ϵ Expansion
(3) Field rotations

44 The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents
(6) Summary and Conclusions

Solutions for finite n, Fixed Points and Critical Exponents

- The 'gauge' condition $g_{13}=g_{23}$ yields (simple) Representative Solutions (RS), all other solutions can be obtained by means of rotations.
- For each class $p^{(k)}$ there is one solution invariant under $\mathrm{O}(n) \times \mathrm{O}(2)$
- Solutions not invariant under $\mathrm{O}(n) \times \mathrm{O}(2)$ have one exponent $\omega=0$ since the field rotations create lines of fixed points.
- All solutions with the exception of the trivial FP have one exponent $\omega=2 \epsilon$ independent of n in one-loop order, since $\beta_{i j}=-2 \epsilon g_{i j}+$ term bilinear in the $g s$

Solutions for finite n, Fixed Points and Critical Exponents

- RS 0.1 This is the trivial (interaction free) fixed point. All anomalous exponents γ^{*} vanish

$$
\gamma_{\Phi}^{*}=\{0(2 \times)\}, \quad \gamma_{\tau}^{*}=\{0(3 \times)\}, \quad \gamma_{\mathrm{cr}}^{*}=\{0(4 \times)\}, \omega=\{-(2 \epsilon)(6 \times)\}
$$

- RS $1.1 g_{11}=\frac{4 \epsilon}{n+8}$, other $g_{i j}=0 . z_{12}= \pm 1 . R S 1.1$ represents the unstable n-Heisenberg-Gaussian FP of the $O(n)+O(n)$ model. The critical exponents are given by

$$
\begin{aligned}
& \gamma_{\tau}^{*}=\quad\left\{-\frac{(n+2)(2 \epsilon)}{n+8}, 0(2 \times)\right\}, \quad \gamma_{\text {cr }}^{*}=\left\{-\frac{2(2 \epsilon)}{n+8}, 0(3 \times)\right\}, \\
& \gamma_{\Phi}^{*}=\left\{\frac{(n+2)(2 \epsilon)^{2}}{4(n+8)^{2}}, 0\right\}, \quad \omega=\left\{(2 \epsilon),-(2 \epsilon)(2 \times),-\frac{(n+6)(2 \epsilon)}{n+8},-\frac{6(2 \epsilon)}{n+8}, 0\right\} .
\end{aligned}
$$

Solutions for finite n, Fixed Points and Critical Exponents

- RS $1.2 g_{11}=g_{22}=\frac{2 n}{n^{2}+8} \epsilon, g_{12}=\frac{8-2 n}{n^{2}+8} \epsilon$, other $g_{i j}=0 . z_{12}=0$. $R S 1.2$ represents the biconical FP of the $O(n)+O(n)$ model (stable for $n=3$ in the $O(n)+O(n)$ model). The critical exponents are

$$
\begin{array}{rrr}
\gamma_{\Phi}^{*}= & \left\{\frac{n\left(n^{2}-3 n+8\right)(2 \epsilon)^{2}}{8\left(n^{2}+8\right)^{2}}(2 \times)\right\}, \quad \gamma_{\tau}^{*}=\left\{-\frac{3 n(2 \epsilon)}{n^{2}+8}, \frac{(1-n) n(2 \epsilon)}{n^{2}+8}, \frac{(n-4)(2 \epsilon)}{n^{2}+8}\right\}, \\
& \left\{-\frac{n(2 \epsilon)}{n^{2}+8}(2 \times), \frac{(n-4)(2 \epsilon)}{n^{2}+8}(2 \times)\right\}, \\
\gamma_{\mathrm{cr}}^{*}= & \\
\omega= & \left\{0,(2 \epsilon), \frac{8(n-1)(2 \epsilon)}{n^{2}+8}, \frac{(4-n)(2+n)(2 \epsilon)}{n^{2}+8}, \frac{(4-n)(n-2)(2 \epsilon)}{n^{2}+8}, \frac{(2-n)(4+n)(2 \epsilon)}{n^{2}+8}\right\} .
\end{array}
$$

- RS 1.3 Not only invariant under $\mathrm{O}(n) \times \mathrm{O}(2)$, but even under $\mathrm{O}(2 n)$. $g_{11}=g_{22}=\frac{2}{n+4} \epsilon, g_{12}=\frac{2}{n+4} \epsilon$, other $g_{i j}=0 . z_{12}= \pm \sqrt{2} . R S 1.3$ represents the for $n<2$ stable (in all models) isotropic $2 n$-Heisenberg FP. The critical exponents are

$$
\begin{array}{ll}
\gamma_{\Phi}^{*}= & \left\{\frac{(2 n+2)(2 \epsilon)^{2}}{4(2 n+8)^{2}}(2 \times)\right\}, \quad \gamma_{\tau}^{*}=\left\{-2 \frac{(2 n+2)(2 \epsilon)}{2 n+8},-\frac{2(2 \epsilon)}{2 n+8}(2 \times)\right\}, \\
\gamma_{\text {cr }}^{*}= & \left\{-\frac{2(2 \epsilon)}{2 n+8}(4 \times)\right\}, \omega=\left\{(2 \epsilon), \frac{8(2 \epsilon)}{2 n+8}(2 \times), \frac{(4-2 n)(2 \epsilon)}{2 n+8}(3 \times)\right\} .
\end{array}
$$

Solutions for finite n, Fixed Points and Critical Exponents

- RS $1.4 g_{11,22}=\frac{2}{n+8} \epsilon \pm \sqrt{\frac{32(1-n)}{(n+8)^{3}}} \epsilon, g_{12}=\frac{6}{n+8} \epsilon$, other $g_{i j}=0$.
$z_{12}= \pm 2 . R S 1.4$ also belongs to the $O(n)+O(n)$ model. This FP coincides with the biconical FP for $n=1$. In one loop order one obtains the exponents

$$
\begin{aligned}
& \gamma_{\Phi}^{*}= \\
& \gamma_{\tau}^{*}= \\
& \left\{\frac{\left(n^{2}+37 n+16\right)(2 \epsilon)^{2}}{8(n+8)^{3}} \pm(n+2) \frac{\sqrt{2(1-n)(2 \epsilon)^{2}}}{2(n+8)^{5 / 2}}\right\}, \\
& \left\{-\frac{(2+n)(2 \epsilon)}{2(n+8)} \pm \frac{\sqrt{n^{3}+48 n^{2}+32}(2 \epsilon)}{2(n+8)^{3 / 2}},-\frac{3(2 \epsilon)}{n+8}\right\}, \\
& \left\{-\frac{(2 \epsilon)}{n+8} \pm \frac{2 \sqrt{2(1-n)}(2 \epsilon)}{(n+8)^{3 / 2}},-\frac{3(2 \epsilon)}{n+8}(2 \times)\right\} \text {, } \\
& \omega=\quad\left\{0,(2 \epsilon), \frac{(6-n)(2 \epsilon)}{n+8}, \frac{(10-n)(2 \epsilon)}{n+8},-\frac{(n+2)(2 \epsilon)}{2(n+8)} \pm \frac{\sqrt{n^{2}-188 n+196(2 \epsilon)}}{2(n+8)}\right\} .
\end{aligned}
$$

We considered the coupling in two loop order, since it yields in order ϵ the region in which the couplings are real. We obtained
$n_{c}=1-(2 \epsilon) / 48+O(2 \epsilon)^{2}$.

Solutions for finite n, Fixed Points and Critical Exponents

- RS $2.1\left(z_{12}=0\right)$ Two of the exponents ω equal 0 for any n in one-loop order.
- One is due to the invariance under rotations between the fields ϕ. The other one indicates that there may branch off a second line of FPs.
- One finds besides the FP of two decoupled systems (RS 2.1a)

$$
g_{11}^{*}=g_{22}^{*}, \quad \text { other } g_{i j}=0
$$

another solution ($R S$ 2.1b) with

$$
g_{11}^{*}=g_{22}^{*}, \quad g_{12}^{*}, g_{33}^{*}=O\left(\epsilon^{2}\right), \quad g_{13}^{*}=g_{23}^{*}=O\left(\epsilon^{3 / 2}\right)
$$

- Both types of FPs agree in one-loop order, but differ in the next order.
- In the following we give the FPs and critical exponents in two-loop order (for γ_{Φ}^{*} in three-loop order).

Solutions for finite n, Fixed Points and Critical Exponents

- RS 2.1a

$$
g_{11}^{*}=g_{22}^{*}=\frac{4}{n+8} \epsilon-\frac{4\left(n^{2}-2 n-20\right)}{(n+8)^{3}} \epsilon^{2}, \quad \text { other } g_{i j}=0 .
$$

This solution describes two independent $\mathrm{O}(n)$ models and is the decoupled n-Heisenberg- $n-$ Heisenberg FP of the $O(n)+O(n)$ model.

$$
\begin{aligned}
\gamma_{\Phi}^{*}= & \left\{\frac{(n+2)}{4(n+8)^{2}}(2 \epsilon)^{2}-\frac{(n+2)\left(n^{2}-56 n-272\right)}{16(n+8)^{4}}(2 \epsilon)^{3}(2 \times)\right\} \\
\gamma_{\tau}^{*}= & \left\{-\frac{n+2}{2(n+8)^{2}}(2 \epsilon)^{2},-\frac{n+2}{n+8}(2 \epsilon)-\frac{(n+2)(13 n+44)}{2(n+8)^{3}}(2 \epsilon)^{2}(2 \times)\right\} \\
\gamma_{\mathrm{cr}}^{*}= & \left\{-\frac{2}{n+8}(2 \epsilon)+\frac{(n+4)(n-22)}{2(n+8)^{3}}(2 \epsilon)^{2}(2 \times),-\frac{n+2}{2(n+8)^{2}}(2 \epsilon)^{2}(2 \times)\right\}, \\
\omega= & \left\{(2 \epsilon)-\frac{3(3 n+14)}{(n+8)^{2}}(2 \epsilon)^{2}(2 \times), \frac{n-4}{n+8}(2 \epsilon)+\frac{(n+2)(13 n+44)}{(n+8)^{3}}(2 \epsilon)^{2}\right. \\
& \left.-\frac{n+4}{n+8}(2 \epsilon)-\frac{(n+4)(n-22)}{(n+8)^{3}}(2 \epsilon)^{2}, \frac{n+2}{2(n+8)^{2}}(2 \epsilon)^{2}, 0\right\}
\end{aligned}
$$

Solutions for finite n, Fixed Points and Critical Exponents

- RS 2.1b is new to our best knowledge. It agrees with $R S$ 2.1a, which describes two uncoupled systems, in one-loop order:

$$
\begin{array}{rr}
g_{11}^{*}=g_{22}^{*}= & \frac{4}{n+8} \epsilon-\frac{9 n^{3}+98 n^{2}-400 n-2272}{2(n+8)^{3}(n+14)} \epsilon^{2}, \\
g_{13}^{*}=g_{23}^{*}= & \pm \frac{\sqrt{2(n+4)(n+2)(n-4)}}{(n+8)^{2} \sqrt{n+14}} \epsilon^{3 / 2}, \\
g_{12}^{*}= & -\frac{n+2}{2(n+8)(n+14)} \epsilon^{2}, \\
g_{33}^{*}= & \frac{(n+2)(n-4)}{(n+8)^{2}(n+14)} \epsilon^{2} .
\end{array}
$$

In the limit $D=4$ it is real for $n \geq 4$.

Solutions for finite n, Fixed Points and Critical Exponents

- RS 2.1b Its critical exponents are

$$
\begin{aligned}
\gamma_{\Phi}^{*}= & \left\{\frac{(n+2)}{4(n+8)^{2}}(2 \epsilon)^{2} \pm \frac{(n+2) \sqrt{2(n-4)(n+2)(n+4)}}{16(n+8)^{3} \sqrt{n+14}}(2 \epsilon)^{5 / 2}-\frac{(n+2)\left(n^{2}-56 n-272\right)}{16(n+8)^{4}}(2 \epsilon)^{3}\right\}, \\
\gamma_{\tau}^{*}= & \left\{-\frac{n+2}{(n+8)}(2 \epsilon)-\frac{(n+2)\left(29 n^{2}+470 n+1256\right)}{4(n+14)(n+8)^{3}}(2 \epsilon)^{2},-\frac{n+2}{n+8}(2 \epsilon)-\frac{(n+2)\left(23 n^{2}+434 n+1208\right)}{4(n+8)^{3}(n+14)}(2 \epsilon)^{2},\right. \\
& \left.-\frac{3(n+2)\left(n^{2}+10 n+64\right)}{4(n+8)^{3}(n+14)}(2 \epsilon)^{2}\right\}, \\
\gamma_{\mathrm{cr}}^{*}= & \left\{-\frac{2}{n+8}(2 \epsilon)+\frac{n^{3}-12 n^{2}-660 n-2416}{4(n+8)^{3}(n+14)}(2 \epsilon)^{2},-\frac{2}{n+8}(2 \epsilon)+\frac{3 n^{3}-4 n^{2}-700 n-2512}{4(n+8)^{3}(n+14)}(2 \epsilon)^{2},\right. \\
\omega= & \left.-\frac{(n+2)(n+6)(n+32)}{4(n+8)^{3}(n+14)}(2 \epsilon)^{2},-\frac{(n+2)(n+26)}{4(n+8)^{2}(n+14)}(2 \epsilon)^{2}\right\}, \\
& (2 \epsilon)-\frac{3(3 n+14)}{(n+8)^{2}}(2 \epsilon)^{2}(2 \times),-\frac{n+2}{(n+8)^{2}}(2 \epsilon)^{2}, 0, \frac{n-4}{n+8}(2 \epsilon)+\frac{(n+2)\left(15 n^{3}+242 n^{2}+656 n+32\right)}{n(n+8)^{3}(n+14)}(2 \epsilon)^{2}, \\
& \left.-\frac{n+4}{n+8}(2 \epsilon)-\frac{3 n^{4}+12 n^{3}-332 n^{2}-1252 n+64}{n(n+8)^{3}(n+14)}(2 \epsilon)^{2}\right\} .
\end{aligned}
$$

Solutions for finite n, Fixed Points and Critical Exponents

- RS $2.3\left(z_{12}= \pm i\right)$ also is new to our knowledge.

$$
\begin{aligned}
g_{11,22} & =\frac{2}{n+8} \epsilon \pm \sqrt{\frac{-4(3 n+22)(n-2)(n+2)(n+4)(n+14)}{(n+8)^{3}\left(n^{2}+4 n+20\right)^{2}}} \epsilon \\
g_{12}^{*} & =\frac{4(n+6)(n+4)}{(n+8)\left(n^{2}+4 n+20\right)} \epsilon, \quad g_{33}^{*}=\frac{4\left(n^{2}-36\right)}{(n+8)\left(n^{2}+4 n+20\right)} \epsilon, \quad g_{13,23}^{*}=0 .
\end{aligned}
$$

- We consider the coupling in two loop order to obtain in order ϵ the region in which the couplings are real:

$$
n_{\mathrm{c}}=2-(2 \epsilon) / 140+O(2 \epsilon)^{2}
$$

Solutions for finite n, Fixed Points and Critical Exponents
 - RS $2.3\left(z_{12}= \pm i\right)$ The critical exponents are

$$
\begin{aligned}
& \gamma_{\Phi}^{*}= \\
& \gamma_{\tau}^{*}= \\
& \left\{\frac{\left(2 n^{6}+37 n^{5}+348 n^{4}+2360 n^{3}+9376 n^{2}+13904 n-9152\right)(2 \epsilon)^{2}}{8(n+8)^{3}\left(n^{2}+4 n+20\right)^{2}}\right. \\
& \left. \pm \frac{(n+2) \sqrt{-(3 n+22)(n-2)(n+2)(n+4)(n+14)}(2 \epsilon)^{2}}{8(n+8)^{5 / 2}\left(n^{2}+4 n+20\right)}\right\}, \\
& \left\{-\frac{(2 \epsilon)(n-1)(n-2)(n+6)}{(n+8)\left(n^{2}+4 n+20\right)},-\frac{(n+2)(2 \epsilon)}{2(n+8)}\right. \\
& \left. \pm \frac{(2 \epsilon) \sqrt{n^{7}+32 n^{6}+512 n^{5}+3792 n^{4}+10064 n^{3}-3548 n^{2}-21376 n+61184}}{2(n+8)^{3 / 2}\left(n^{2}+4 n+20\right)}\right\}, \\
& \gamma_{\mathrm{cr}}^{*}= \\
& \left\{-\frac{(2 \epsilon)}{n+8} \pm \frac{\sqrt{-2\left(n^{5}+34 n^{4}+312 n^{3}+752 n^{2}-1776 n-7648\right)}(2 \epsilon)}{(n+8)^{3 / 2}\left(n^{2}+4 n+20\right)},\right. \\
& \left.-\frac{(n+6)(3 n+2)(2 \epsilon)}{(n+8)\left(n^{2}+4 n+20\right)},-\frac{(n+6)(n+14)(2 \epsilon)}{(n+8)\left(n^{2}+4 n+20\right)}\right\}, \\
& \omega= \\
& \left\{0,(2 \epsilon), \frac{(2 \epsilon)\left(n^{3}+10 n^{2}-4 n-232\right)}{(n+8)\left(n^{2}+4 n+20\right)}, \frac{(2 \epsilon) \lambda^{\prime}}{2(n+8)\left(n^{2}+4 n+20\right)}\right\} .
\end{aligned}
$$

where λ^{\prime} is solution of the equation

$$
\begin{array}{r}
\lambda^{\prime 3}+16\left(n^{2}+4 n+20\right) \lambda^{\prime 2}-4(n+4)\left(n^{5}-18 n^{4}-392 n^{3}-1648 n^{2}-496 n+8928\right) \lambda^{\prime} \\
-16(3 n+22)(n-2)(n+6)(n-6)(n+4)(n+2)(n+14)^{2}=0 .
\end{array}
$$

Solutions for finite n, Fixed Points and Critical Exponents

- RS $2.2\left(z_{12}= \pm \sqrt{2}\right)$ and RS 3.1 are solutions of one and the same quadratic equation and correspond to the antichiral and chiral FP of the $O(2) \times O(n)$ model, respectively:

$$
\begin{aligned}
g_{11,22} & =\frac{3 n^{2}-2 n+24+s(n-6) \sqrt{n^{2}-24 n+48}}{n^{3}+4 n^{2}-24 n+144} \epsilon, \\
g_{12} & =\frac{-n^{2}-6 n+72+s(n+6) \sqrt{n^{2}-24 n+48}}{n^{3}+4 n^{2}-24 n+144} \epsilon, \\
g_{33} & =\frac{4\left(n^{2}+n-12-s 3 \sqrt{n^{2}-24 n+48}\right)}{n^{3}+4 n^{2}-24 n+144} \epsilon, \quad g_{13,23}=0,
\end{aligned}
$$

where $s=+1$ corresponds to $R S 3.1$ and $s=-1$ to $R S 2.2$

- Both fixed points are $\mathrm{O}(n) \times \mathrm{O}(2)$ invariant.

Solutions for finite n, Fixed Points and Critical Exponents

- RS 2.2 and RS 3.1 The critical exponents are

$$
\begin{aligned}
& \gamma_{\phi}^{*}= \\
& \left\{\frac{\left(5 n^{5}-3 n^{4}-16 n^{3}-656 n^{2}+3072 n-1152+s(n-3)(n+4) w^{3 / 2}\right)(2 \epsilon)^{2}}{16 N^{2}}(2 \times)\right\}, \\
& \gamma_{\tau}^{*}=\quad\left\{-\frac{\left(n\left(48+n+n^{2}\right)-s(n-3)(4+n) \sqrt{w}\right)(2 \epsilon)}{2 N}, \frac{\left(-2 n^{3}-3 n^{2}+28 n-48+5 s n \sqrt{w}\right)(2 \epsilon)}{2 N}(2 \times)\right\} . \\
& \gamma_{\mathrm{cr}}^{*}= \\
& \left\{\frac{\left(-5 n^{2}-s(n-12) \sqrt{w}\right)(2 \epsilon)}{2 N}, \frac{\left(-n^{2}+4 n-48-s n \sqrt{w}\right)(2 \epsilon)}{2 N}(2 \times),\right. \\
& \left.\frac{\left(3 n^{2}+8 n-96-s(n+12) \sqrt{w}\right)(2 \epsilon)}{2 N}\right\} . \\
& \omega=\left\{\frac{(n+4)((n+4)(n-3)-3 s \sqrt{w})(2 \epsilon)}{N}(2 \times), \frac{\left(n^{3}+14 n^{2}+56 n-96+s(n+8)(n-6) \sqrt{w}\right)(2 \epsilon)}{2 N}(2 \times),\right. \\
& \left.\frac{\left(-3\left(n^{2}-24 n+48\right)+s(n+4)(n-3) \sqrt{w}\right)(2 \epsilon)}{N},(2 \epsilon)\right\} .
\end{aligned}
$$

where $N=n^{3}+4 n^{2}-24 n+144$, and $w=n^{2}-24 n+48$,

Solutions for finite n, Fixed Points and Critical Exponents

- The FP 3.1 is stable for large n.
- Two loop calculation gives the range where the FPs are real:

$$
\begin{aligned}
& n>21.8-23.4(2 \epsilon)+O(2 \epsilon)^{2} \\
& n<2.20-0.57(2 \epsilon)+O(2 \epsilon)^{2}
\end{aligned}
$$

- The question of the range of stability in $D=3$ is under debate
- The $1 / n$ expansion of the general $O(n)$ symmetric two field model gives in first order

$$
\begin{aligned}
\eta & =\frac{6 \Gamma(D-2) \sin \left(\frac{D \pi}{2}\right)}{\pi \Gamma(D / 2-2) \Gamma(1+D / 2) n} \\
\gamma_{\tau}^{*}-(D-4) & =\left\{\frac{2(2-D)(1-D) \eta}{4-D}, \frac{2(2-D)(3-2 D) \eta}{3(4-D)}\right\} .
\end{aligned}
$$

- Both expansions agree with each other!
(1) Introduction and Descriptive Overview
(2) 4-2 $\mathbf{4}$ Expansion
(3) Field rotations

4 The classification of the fixed points in the large n limit
(5) Solutions for finite n, Fixed Points and Critical Exponents
(6) Summary and Conclusions
 클

Summary and Conclusions

- The general $O(n)$ symmetric Hamiltonian has three different mass terms. It gives rise to a variety of critical and multicritical behaviors generalizing the $O(n)+O(n)$ and $O(2) \times O(n)$ models.
- We gave the expressions for the β functions and the matrices γ_{Φ}, $\gamma_{\tau}, \gamma_{\mathrm{cr}, \mathrm{s}}$ and ω, and $\gamma_{\mathrm{cr}, \mathrm{a}}$ for the general $O(n)$ model from which the critical exponents are obtained in one-loop order (for η in two-loop order).
- A classification of the FPs in the large n limit was given. Two types of FPs emerge: Four of them are invariant under $\mathrm{O}(n) \times \mathrm{O}(2)$. The other six FPs are not invariant under $\mathrm{O}(2)$ and yield lines of FPs.
- Under the numerous FPs the corresponding FPs of the well-known models were found.
- To our best knowledge the FPs RS 2.1b and 2.3 are new. RS 2.1b agrees with $R S$ 2.1a, which describes two uncoupled systems, in one-loop order.

