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“Ten years of the Analytic Perturbation Theory in QCD”

The analytic approach modifies the PT expansions in such way, that new

approximations reflect basic principles of the theory, such as renormalization

invariance, spectrality, and causality. The APT is the next logical step in the

modification of the PT by bringing into consideration the Q2-analyticity. It is

important from a point of view of a correct theoretical description, and also

from the standpoint of extracting the parameter QCD from the experimental

data (additional terms are ‘invisible’ in the PT expansions, but important

numerically).

Important features of APT:

• infrared fixed point aan(0) = ãan(0) = 1/β0

• correct analytic properties and a self-consistent definition of analytic
continuation from spacelike to timelike region

• better convergence properties and stability with respect to higher-loop
corrections

• RS dependence of the results obtained is reduced drastically (three-loop
level practically RS independent for the whole energy interval)

• APT ⇒ PT at large Q2
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Basic relations

A main object in a description of the hadronic decay of the τ lepton and of

many other physical processes is the correlator Π(q2) or the corresponding

Adler function D(Q2)

Πµν(q2) = i

∫
d4x eiqx

〈
0

∣∣TVµ(x)Vν(0)+
∣∣ 0

〉

∝ (qµqν − gµν q2)Π(q2), V µ
ij = ψ̄jγ

µψi

D(Q2) ≡ −Q2 dΠ(−Q2)
dQ2

, Q2 = −q2 > 0
[in Euclidian (spacelike) region]

D(Q2) = Q2

∫ ∞

0

ds

(s + Q2)2
R(s) ,

where R(s) = ImΠ(s)/π . The D-function is an analytic

function in the complex Q2-plane with a cut along the negative real axis.
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QCD contributions d(Q2) and r(Q2): D ∝ 1 + d , R ∝ 1 + r

d(Q2) = Q2

∫ ∞

0

ds

(s + Q2)2
r(s) , r(s) = − 1

2πi

∫ s+iε

s−iε

dz

z
d(-z)

(contour encircles the cut of d(−z) on the positive real z-azis)

PT: PT expansion (after application of RG) (a ≡ αs/π)

d(Q2, RS) = a(Q2, RS)
[
1 + d1(RS) a(Q2, RS) + d2 (RS) a2(Q2, RS) + ...

]

For nf = 3 : dMS
1 = 1.6398 , dMS

2 = 6.3710 , dMS
3 = 49.076 .

Baikov-Chetyrkin-Kühn – 2008

The standard PT parametrization as an expansion in inverse powers of

L ≡ ln(Q2 /Λ2 ) (PDG)

a(Q2) =
4

β0L

{
1− β1

β2
0

ln L

L
+

1

L2

[
β2
1

β4
0

(
ln2 L− ln L− 1

)
+

β2

β3
0

]
+ · · ·

}

(!) The correct analytic properties of the Adler D function are no longer

valid due to unphysical singularities of the PT running coupling.
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Renormalization scheme dependence for PT

The dependence of result on choice of the RS can be a significant source of
theoretical uncertainty. In QCD that uncertainty is the greater, the smaller
typical energy scale of a process.

Cancelation index criterium: C ≤ Cmax

PMS – principle of minimal sensitivity CA ' CB ' CPMS ' 2
ECH – method of effective charge
MS – modified minimal subtraction scheme
K – gives a fixed point for the three-loop running coupling (CK = 5.3)
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RS dependence in APT

The APT gives very stable results over a wide range of renormalization

schemes.

dan(Q2) = aan(Q2) + d1δ
(1)
an (Q2) + d2 δ(2)

an (Q2)

6



'

&

$

%

The Euclidean functions δ
(n)
an (Q2) satisfy the Källen–Lehmann representation

δ(n)
an (Q2) =

1
π

∫ ∞

0

dσ
ρn(σ)
σ + Q2

,

with the spectral function being defined as the discontinuity of the respective

power of the invariant charge across the physical cut:

%n(σ) = Im
[

an+1
pt (−σ − iε)

]

Running coupling in the Euclidian region

aan(Q2) =
1
π

∫ ∞

0

dσ

σ + Q2
%0(σ)
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Leading order

%0(σ) =
1
β0

π

ln2(σ/Λ2) + π2

aan(Q2) =
1
β0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2

]
(spacelike)

ãan(s) =
1
β0

[
1
2
− 1

π
arctg

ln(s/Λ2)
π

]
(timelike)

aan(Q2) = Q2

∫ ∞

0

d s

(s + Q2)2
ãan(s),

ãan(s) = − 1
2πi

∫ s+iε

s−i ε

d z

z
aan(−z).

8



'

&

$

%

ãan(s) = − 1

2πi

∫

C1

dz

z
aan(z) =

=
1

2πi

∫

C2

dz

z
aan(z) =

=
1

πβ0

(
π

2
− arctg

ln s/Λ2

π

)

The APT leads to a self-consistent definition of analytic continuation

t-channel s-channel

Fapt(z)6=− z

∫ ∞

0

d s

(s− z)2
ãpt(s)
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At present, there is rich high-precision experimental material obtained from

hadronic decays of the τ lepton by ALEPH and OPAL Collaborations.

The mass of the τ lepton, Mτ = 1.777GeV , is large enough in order to

produce decays with a hadronic mode. At the same time, in the context of

QCD, the mass is sufficiently small to allow one to investigate perturbative

and non-perturbative QCD effects.

The theoretical analysis of the hadronic decays of a heavy lepton was

performed Y.S. Tsai (1971) before the experimental discovery of the τ lepton

in 1975.

Hadronic τ decays provide a clean laboratory for the precise study of low-energy

QCD. It initializes many theoretical developments which concentrate primarily

on perturbative expansions. These approaches mainly distinguish themselves in

how they deal with the fact that the perturbative series is truncated.
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QCD contribution to Rτ -ratio

Rτ =
Γ(τ− → hadrons ντ )

Γ(τ− → ` ν̄` ντ )
∼= NC(|Vud|2 + |Vus|2) ' 3

Rexp
τ = 3.642± 0.012

The initial theoretical expression

Rτ =
2
π

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2 (
1 + 2

s

M2
τ

)
ImΠ(s)

(!) cannot be directly calculated in PT due to unphysical singularities

of the PT running coupling lying in the range of integration.
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Possible solution (?) The initial

integral is rewritten by using the Cauchy

theorem in the form of a contour integral

in the complex plane with the contour

running around a circle with radius M2
τ

Rτ = 2

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2 (
1 + 2

s

M2
τ

)
R(s)

=
1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3 (
1 +

z

M2
τ

)
D(-z) ( ∗ )

= 3(|Vud|2 + |Vus|2) SEW(1 + δτ ) = R
(0)
τ (1 + δτ )

|Vud| and |Vus| are CKM matrix elements, SEW – electroweak factor

δτ – QCD contribution to Rτ -ratio

(!) If a calculation method maintains the correct analytic properties

of the D-function, then both representations are equivalent.
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PT

The PT description is based on the contour representation ( ∗ ) and

can be developed in the following two ways.

NP effects being smaller that the PT uncertainties.

• In the Braaten’s method (Phys. Rev. Lett.’88) [ fixed-order PT

(FOPT ) ] δτ is represented in the form of truncated power series with

the expansion aτ = αs(M2
τ )/π : known up α4

s!
(Baikov-Chetyrkin-Kühn – 2008)

δFOPT
τ = a τ + K1( a τ )2 + K2( a τ )3 + K3( a τ )4

K1 = 5.2023, K2 = 26.366, K3 = 127.079 ( in the MS, nf = 3 ).

• Contour-improved fixed-order PT (CIPT )

[Pivovarov (Z. Phys.’92), Le Diberder and Pich (Phys. Lett.’92)]
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δCIPT
τ = A(1)

(
M2

τ

)
+ d1 A(2)

(
M2

τ

)
+ d2 A(3)

(
M2

τ

)

A(n)
(
M2

τ

)
=

1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3 (
1 +

z

M2
τ

)

× a n

pt
(−z)

• APT Milton-Solovtsov-S (Phys. Lett.’97)

The APT description can be equivalently done either on the basis of the

initial expression or on the contour representation

δan =
1

π

∞∫

M2
τ

dσ

σ
ρ(σ) +

1

π

M2
τ∫

0

dσ

σ

[
2

σ

M2
τ

− 2

(
σ

M2
τ

)3

+

(
σ

M2
τ

)4
]

ρ(σ)

= δ
(0)
an + d1 δ

(1)
an + d2 δ

(2)
an , % = %0 + d1%1 + d2%2

The additional terms, which are ‘invisible’ in the PT expansions

turns out to be very important at a low energy scale.
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Stability with respect to higher-loop corrections

Numbers – the order of FOPT.

Method 1 2 3

FOPT∗) 1 + δFO
pt = 1 + 0.104 + 0.056 + 0.030

CIPT 1 + δCI
pt = 1 + 0.148 + 0.030 + 0.012

APT 1 + δan = 1 + 0.167 + 0.021 + 0.002

∗) In 4-loop : 1+0.103+0.055+0.285+ 0.014
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Renormalization scheme dependence

δexp
τ = 0.200± 0.004 ⇒ αMS

S (M2
τ ) = 0.337± 0.004

2%− exp, 6%− FOPT, 0.2%−APT, ∆αFOPT
RS = 0.021

αMS
CIPT − αMS

FOPT = 0.020 4-loop (BChK’08)

δFOPT
τ = aτ + K1aτ

2 + K2aτ
3 , b2 = β2/β0

The APT gives the remarkable stability. (MSSYa’00)
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Experimental spectral functions: V and A channels
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v(s)/a(s) = 1
2
RV/A , ( R ∝ 1 + r )

The agreement between ALEPH/OPAL experiments is satisfying
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Experimentally Rτ can be decomposed into the three contributions

Rτ = Rτ,V + Rτ,A + Rτ,S

Rτ,V and Rτ,A are contributions coming from the non-strange hadronic

decays associated with vector (V ) and axial-vector (A) quark currents

respectively, and Rτ,S contains strange decays (S).

R
exp/theo

τ, V/A
= 3|Vud|2SEW

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2 (
1 + 2

s

M2
τ

)
R

exp/theo

V/A

|Vud| = 0.9746± 0.0006 denotes the CKM weak mixing matrix element,

SEW = 1.0198± 0.0006 accounts for electroweak radiative corrections

Within the PT with massless quarks Rτ,V and Rτ,A coincide with each other

RPT
τ,V = RPT

τ,A =
3

2
|Vud|2(1 + δτ ) R exp

τ,V 6= R exp
τ,A
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Vector channel in τ decay

Rexp
τ,V = 1.787 ± 0.013 Dτ,V/A(Q2) = Q2

∞∫

0

ds
R V/A(s)

(s + Q2)2

RAPT
τ,V = 1.79 = Rexp ,centr

τ,V

[Milton-Solovtsov-S – 2006]
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Axial-vector channel

Rexp
τ,A = 1.695 ± 0.013

Rτ,A ⇒ R
(1)
τ,A + R

(0)
τ,A

Rexp
τ, π = 0.612± 004

Rexp
τ,A1 = 1.083± 0.014

RAPT
τ,A = 1.087

The contribution to the imaginary part of the axial-vector correlator, ImΠ(0),

is taken from the pion pole

Rτ, π = 3|Vud|2SEW
8π2f2

π

M2
τ

(
1− mπ

M2
τ

)2

→ 0.612± 004
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Model for the function RA(s) that usually used in the QCD sum rules

Rhad
A (s) =

2π

g2
A

m2
A δ(s−m2

A) +

(
1 +

α
(0)
s

π

)
θ(s− s0)

Dhad
A (Q2) =

2π

g2
A

Q2 m2
A

(Q2 + m2
A)2

+

(
1 +

α
(0)
s

π

)
Q2

Q2 + s0

This expression reproduces well the “experimental” curve Dexp
A (Q2).
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Smeared R∆-function

[Poggio, Quinn, Weinberg 1976]

R∆(s) =
1

2π i
[ Π(s + i∆)−Π(s− i∆) ]

R∆(s) =
∆
π

∞∫

0

ds′
R(s′)

(s− s′)2 + ∆2

‘Light’ smeared axial-vector smeared function RA
∆(s)

22



'

&

$

%
23



'

&

$

%

Vector + Axial-vector smeared func-

tion RV+A
∆ (s) for ∆ = 0.5 GeV2.

Vector + Axial-vector smeared func-

tion RV+A
∆ (s) for ∆ = 1.0 GeV2.

The method allows us to describe well the smeared functions.

Let us emphasize that in the spacelike region (s . 0) there is an excellent

agreement between data and theory.
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Conclusions

The method of analytic perturbation theory, which resolves the problem of

ghost-pole type singularities and gives a self-consistent description of both

spacelike and timelike regions, was applied to a description of hadronic tau

decays.

We presented the arguments in favor of the APT, which has a number of

practical advantages. The better convergence properties of APT

approximations and stability with respect to higher-loop corrections allows one

to reduce the uncertainties of theoretical predictions drastically. Three-loop

level gives stable and practically RS independent results for the whole energy

interval.

Note also that if the calculation method maintains the correct analytic

properties of the correlator two methods are EQUIVALENT as it is in APT.

It was shown that the APT leads to good agreement with the experimental

Adler function both in the vector and in the axial-vector channel down to the

lowest energy scale.
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There is still room for improvements in theoretical methods
stimulate further intensive studies along lines associated with both
the perturbative description and with nonperturbative effects.

The reliability of extracting information on nonperturbative effects
is connected to the indeterminacy in the description of the
perturbative component of calculations.

Calculations in the framework of APT are self-consistent and give
stable results down to low energy scale.
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Thank You for Your attention !

27


