J. Phys. G 32, 1025 (2006) arXiv:0808.2043 [hep-ph]

ON THE INFRARED BEHAVIOR OF THE ADLER FUNCTION

A.V. Nesterenko

Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research, Dubna, 141980, Russia

7th Conference on Renormalization Group and Related Topics Dubna, Russia, 1 – 5 September 2008 The relevant dispersion relation provides definite analytic properties in a kinematic variable of a quantity in hand.

BASIC IDEA

perturbation theory + RG method + analytic properties in Q^2 QED: Redmond, Uretsky (1958); Bogoliubov, Logunov, Shirkov (1959).

QCD: D.V. Shirkov and I.L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).

Advantages:

- no unphysical singularities
- mild scheme dependence

- no free parameters
- higher loop stability

ADLER FUNCTION

Hadronic vacuum polarization function $\Pi(q^2)$ plays a crucial role in various issues of elementary particle physics. Indeed, the theoretical description of some strong interaction processes and hadronic contributions to electroweak observables is inherently based on $\Pi(q^2)$:

- electron–positron annihilation into hadrons
- hadronic τ lepton decay
- muon anomalous magnetic moment
- running of the electromagnetic coupling

It is worth stressing that $\Delta_{\mu\nu}(q^2)$ exists only for $q^2 \ge 4m_{\pi}^2$, since otherwise no hadron state Γ could be excited:

R.P. Feynman (1972); S.L. Adler, PRD10 (1974).

The hadronic tensor can be represented as $\Delta_{\mu\nu} = 2 \operatorname{Im} \Pi_{\mu\nu}$, $\Pi_{\mu\nu}(q^2) = i \int e^{iqx} \langle 0 | T \{ J_{\mu}(x) J_{\nu}(0) \} | 0 \rangle d^4x = (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2).$

The hadronic vacuum polarization function $\Pi(q^2)$ satisfies the once-subtracted dispersion relation (cut for $q^2 \ge 4m_{\pi}^2$)

$$\Pi(q^2) = \Pi(q_0^2) - \left(q^2 - q_0^2\right) \int_{4m_\pi^2}^{\infty} \frac{R(s)}{(s - q^2)(s - q_0^2)} \, ds,$$

where $m_{\pi} = 135 \text{ MeV}$ is the mass of the π meson and R(s)denotes the measurable ratio of two cross-sections:

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[\Pi(s - i\varepsilon) - \Pi(s + i\varepsilon) \right] = \frac{\sigma \left(e^+ e^- \to \text{hadrons}; s \right)}{\sigma \left(e^+ e^- \to \mu^+ \mu^-; s \right)}$$

It is worth noting here that $R(s) \equiv 0$ for $s < 4m_{\pi}^2$ because of the kinematic restrictions mentioned above:

R.P. Feynman (1972).

and plays an indispensable role for the congruous processing of the timelike and spacelike experimental data:
S.L. Adler (1974); A. De Rujula, H. Georgi, PRD13 (1976); J.D. Bjorken (1989).

The inverse relation between $D(Q^2)$ and R(s) reads

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta}$$

A.V. Radyushkin (1982); N.V. Krasnikov, A.A. Pivovarov, PLB116 (1982).

On the one hand, perturbation theory provides an explicit expression for the Adler function valid at high energies (an overall factor $N_c \sum_f Q_f^2$ is omitted throughout):

On the other hand, this perturbative approximation is inconsistent with the dispersion relation for $D(Q^2)$ due to unphysical singularities of the strong running coupling $\alpha_s(Q^2)$:

$$D_{\text{pert}}^{(1)}(Q^2) = 1 + d_1 \,\alpha_{\text{s}}^{(1)}(Q^2), \qquad \alpha_{\text{s}}^{(1)}(Q^2) = \frac{4\pi}{\beta_0} \frac{1}{\ln(Q^2/\Lambda^2)},$$

where $d_1 = 1/\pi$ and $\beta_0 = 11 - 2n_{\text{f}}/3$.

Dispersion relation imposes stringent constraints on $D(Q^2)$: $D(Q^2) = Q^2 \int_{4m_{\pi}^2}^{\infty} \frac{R(s)}{(s+Q^2)^2} ds$

• Since R(s) assumes finite values and $R(s) \rightarrow \text{const}$ when $s \rightarrow \infty$, then $D(Q^2) = 0$ at $Q^2 = 0$ (holds for $m_{\pi} \neq 0$ only)

• Adler function possesses the only cut $Q^2 \leq -4m_{\pi}^2$ along the negative semiaxis of real Q^2

PRIMARY OBJECTIVE: to merge these nonperturbative constraints with perturbative result for the Adler function.

NEW INTEGRAL REPRESENTATION FOR $D(Q^2)$

This objective can be achieved by deriving the integral representations for the Adler function and R(s)-ratio, which involve the common spectral function.

Parton model prediction + kinematic restriction on R(s): $R_0(s) = \theta(s - 4m_\pi^2)$ \longleftrightarrow $D_0(Q^2) = \frac{Q^2}{Q^2 + 4m_\pi^2}$

R.P. Feynman (1972).

$$D(Q^{2}) = \frac{Q^{2}}{Q^{2} + 4m_{\pi}^{2}} + d(Q^{2})$$

$$R(s) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_{+}} \int_{s+i\varepsilon}^{s-i\varepsilon} D(-\zeta) \frac{d\zeta}{\zeta}$$

$$R(s) = \theta(s - 4m_{\pi}^{2}) \left[1 + \int_{s}^{\infty} \rho_{\mathbf{D}}(\sigma) \frac{d\sigma}{\sigma} \right]$$

$$D(Q^{2}) = Q^{2} \int_{4m_{\pi}^{2}}^{\infty} \frac{R(s)}{(s + Q^{2})^{2}} ds$$

$$D(Q^{2}) = \frac{Q^{2}}{Q^{2} + 4m_{\pi}^{2}} \left[1 + \int_{4m_{\pi}^{2}}^{\infty} \rho_{\mathbf{D}}(\sigma) \frac{\sigma - 4m_{\pi}^{2}}{\sigma + Q^{2}} \frac{d\sigma}{\sigma} \right]$$

$$\rho_{\mathbf{D}}(\sigma) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_{+}} \left[D(-\sigma - i\varepsilon) - D(-\sigma + i\varepsilon) \right] = -\frac{dR(\sigma)}{d\ln\sigma}$$

■ A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).

Thus one arrives at the following integral representations:

$$D(Q^2) = \frac{Q^2}{Q^2 + 4m_\pi^2} \left[1 + \int_{4m_\pi^2}^{\infty} \rho_{\mathbf{D}}(\sigma) \frac{\sigma - 4m_\pi^2}{\sigma + Q^2} \frac{d\sigma}{\sigma} \right]$$
$$R(s) = \theta(s - 4m_\pi^2) \left[1 + \int_s^{\infty} \rho_{\mathbf{D}}(\sigma) \frac{d\sigma}{\sigma} \right]$$
$$\rho_{\mathbf{D}}(\sigma) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[D_{\mathbf{exact}}(-\sigma - i\varepsilon) - D_{\mathbf{exact}}(-\sigma + i\varepsilon) \right] = -\frac{dR(\sigma)}{d\ln\sigma}$$

A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).

- nonperturbative constraints on $D(Q^2)$ are satisfied
- congruent analysis of spacelike and timelike processes

In the limit $m_{\pi} = 0$ the obtained expressions become identical to those of the Analytic perturbation theory:

D.V. Shirkov, I.L. Solovtsov, PRL79 (1997); PLB442 (1998); TMP150 (2007).

10

There is no unique way to compute the corresponding spectral density by making use of perturbative $D_{pert}(Q^2)$. In what follows the one-loop spectral function is adopted:

$$\rho^{(1)}(\sigma) = \left(1 + \frac{1}{\sigma}\right) \frac{1}{\ln^2 \sigma + \pi^2}$$

A.V. Nesterenko, PRD62 (2000); PRD64 (2001).

ADVANTAGES:

- unphysical perturbative singularities are eliminated
- additional parameters are not introduced
- reasonable agreement with $D_{exp}(Q^2)$ for all energies

The inclusive semileptonic branching ratio:

$$R_{\tau} = \frac{\Gamma(\tau^- \to \text{hadrons}^- \nu_{\tau})}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})} = R_{\tau,\mathbf{v}} + R_{\tau,\mathbf{A}} + R_{\tau,\mathbf{s}}.$$

Its nonstrange part associated with vector quark currents: $R_{\tau,\mathbf{v}} = \frac{N_{\mathbf{c}}}{2} |V_{\mathbf{ud}}|^2 S_{\mathbf{EW}} \left(\Delta_{\mathbf{QCD}} + \delta'_{\mathbf{EW}} \right) = 1.764 \pm 0.016$

• OPAL Collaboration, EPJC7 (1999).

In this equation $N_{\rm c} = 3$, $|V_{\rm ud}| = 0.9738 \pm 0.0005$, $\delta'_{\rm EW} = 0.0010$, $S_{\rm EW} = 1.0194 \pm 0.0050$, $M_{\tau} = 1.777 \,\text{GeV}$, and $\Delta_{\rm QCD} = 2 \int_0^{M_{\tau}^2} \left(1 - \frac{s}{M_{\tau}^2}\right)^2 \left(1 + 2 \frac{s}{M_{\tau}^2}\right) R(s) \frac{ds}{M_{\tau}^2}$.

Perturbative approach:

$$\Delta_{\rm QCD} = 1 + d_1 \, \alpha_{\rm s}^{(1)}(M_{\tau}^2) \quad \longrightarrow \quad \Lambda = (678 \pm 55) \, {\rm MeV}, \quad n_{\rm f} = 2$$

E. Braaten, S. Narison, A. Pich, NPB373 (1992).

Current analysis:

$$\begin{split} \Delta_{\mathbf{QCD}} &= 1 + d_1 \alpha_{\rm TL}^{(1)}(M_{\tau}^2) - \delta_{\Gamma} + \frac{4}{\beta_0} \int_{\chi}^{1} f(\xi) \rho^{(1)} (\xi M_{\tau}^2) d\xi - d_1 \delta_{\Gamma} \alpha_{\rm TL}^{(1)}(m_{\Gamma}^2), \\ f(\xi) &= \xi^3 - 2\xi^2 + 2, \quad \chi = \frac{m_{\Gamma}^2}{M_{\tau}^2}, \quad \delta_{\Gamma} = \chi f(\chi) \simeq 0.048, \quad d_1 = \frac{1}{\pi}, \\ \alpha_{\rm TL}^{(1)}(s) &= \frac{4\pi}{\beta_0} \theta(s - m_{\Gamma}^2) \int_s^{\infty} \rho^{(1)}(\sigma) \frac{d\sigma}{\sigma}, \qquad m_{\Gamma} = m_{\pi^0} + m_{\pi^-} \end{split}$$

- massive case: $\Lambda = (941 \pm 86) \,\mathrm{MeV}$
- massless limit: $\Lambda = (493 \pm 56) \text{ MeV}$

SUMMARY

- New integral representations for the Adler function and R(s)-ratio are derived
- These representations possess appealing features:
 - unphysical perturbative singularities are eliminated
 - additional parameters are not introduced
 - the π^2 -terms are automatically taken into account
 - reasonable description of $D(Q^2)$ in entire energy range
- The effects due to the pion mass play a substantial role in processing the data on the inclusive τ lepton decay

$$\rho^{(\ell)}(\sigma) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[D_{\mathbf{pert}}^{(\ell)}(-\sigma - i\varepsilon) - D_{\mathbf{pert}}^{(\ell)}(-\sigma + i\varepsilon) \right], \quad m_{\pi} = 0$$

APT + relativistic quark mass threshold resummation:

[taken from MPLA21 (2006)]

K.A. Milton, I.L. Solovtsov, O.P. Solovtsova (2001)–(2006) APT + vector meson dominance assumption:

[taken from NPBPS164 (2007)]

- G. Cvetic, C. Valenzuela,
- I. Schmidt (2005)–(2007)

$$\rho^{(\ell)}(\sigma) = \frac{1}{2\pi i} \lim_{\varepsilon \to 0_+} \left[D_{\mathbf{pert}}^{(\ell)}(-\sigma - i\varepsilon) - D_{\mathbf{pert}}^{(\ell)}(-\sigma + i\varepsilon) \right], \quad m_{\pi} \neq 0$$