NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYNAMIC MODELS

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nalimov M. Yu., Sergeev V.A., Sladkoff L.

> Department of Statistical Physics Saint-Petersburg State University

Renormalization group 2008

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

伺 ト イ ヨ ト イ ヨ ト

Standard models of critical dynamics with Gibbsian static limit may be described by the generic Langevin equation

$$\frac{\partial \varphi_{a}}{\partial t} + (\alpha_{ab} + \beta_{ab}) \frac{\delta S}{\delta \varphi_{b}} = \xi_{a}, \qquad (2.1)$$

a 0

- 4 同 6 4 日 6 4 日 6

S is the static "action" (effective Hamiltonian). ξ is a Gaussian random field, $<\xi>=0$

$$\langle \xi_{a}(t, \mathbf{x}) \xi_{b}(t', \mathbf{x}') \rangle = 2\alpha_{ab}\delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$
(2.2)

where:

$$\alpha^{\top} = \alpha, \qquad \beta^{\top} = -\beta, \qquad \sum_{\alpha} \frac{\delta \beta_{ab}}{\delta \varphi_a} = 0.$$
 (2.3)

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

Let us list the static actions S and the parameters α and β for models A-H: Model A:

$$S = rac{1}{2}
abla \phi
abla \phi + rac{g}{4!} \phi^4 \,. \qquad lpha = D/2,$$

where the correlator D is a constant. Model B:

$$S = rac{1}{2}
abla \phi
abla \phi + rac{g}{4!} \phi^4 \,. \qquad lpha = -\lambda
abla^2 \,,$$

where λ is a constant. Model C:

$$S = \frac{1}{2} (\nabla \phi)^2 + \frac{g}{4!} \phi^4 + \frac{m^2}{2} + \frac{1}{2} v_2 m \phi^2 . \qquad \alpha = \begin{pmatrix} \Gamma & 0 \\ 0 & -\lambda \nabla^2 \end{pmatrix}_{\Xi}, \quad \infty \in A$$

where *m* is an additional scalar field; Γ , λ are constants; v_2 is an additional coupling constant. Model D:

$$S = \frac{1}{2} \left(\nabla \phi \right)^2 + \frac{g}{4!} \phi^4 + \frac{m^2}{2} + \frac{1}{2} v_2 m \phi^2 \,. \qquad \alpha = \left(\begin{array}{cc} -\lambda \nabla^2 & 0 \\ 0 & -\lambda_1 \nabla^2 \end{array} \right)$$

where λ and λ_1 are constants. Model F:

$$S = |\nabla \psi|^2 + \frac{g}{6}|\psi|^4 + \frac{m^2}{2} + v_2 m |\psi|^2 \,.$$

$$\alpha = \begin{pmatrix} 0 & \lambda_{\psi} & 0 \\ \lambda_{\psi} & 0 & 0 \\ 0 & 0 & -\lambda_m \nabla^2 \end{pmatrix} , \qquad \beta = \begin{pmatrix} 0 & iv_3 & iv_4\psi \\ -iv_3 & 0 & -iv_4\psi^* \\ -iv_4\psi^* & iv_4\psi & 0 \end{pmatrix} ,$$

where ψ is a complex-valued field; λ_{ψ} , λ_m are constants; v_i

(i = 2, 3, 4) are additional coupling constants. $\square \rightarrow A \square \rightarrow A \square$

Model E is F model with $v_2 = v_3 = 0$. Model G: There are two real vector fields forming the field φ by prescription: $\varphi_a = \phi_a$ and $\varphi_{3+a} = m_a$, where a = 1, 2, 3. Then

$$S = \frac{1}{2} (\nabla \phi)^2 + \frac{g}{4!} \phi^4 + \frac{m^2}{2}, \qquad \alpha = \begin{pmatrix} \lambda_{\phi} & 0\\ 0 & -\lambda_m \nabla^2 \end{pmatrix}, \beta_{ab} = 0, \qquad \beta_{a3+b} = \mathbf{v}_2 \epsilon_{abc} \phi_c, \qquad \beta_{3+a3+b} = \mathbf{v}_2 \epsilon_{abc} m_c,$$

a, b, c = 1, 2, 3.Model H:

$$S = \frac{1}{2} (\nabla \phi)^2 + \frac{g}{4!} \phi^4 + \frac{c}{2} \mathbf{v}_{\perp}^2,$$
$$\alpha = \begin{pmatrix} -\lambda_{\phi} \nabla^2 & \mathbf{0} \\ \mathbf{0} & -\lambda_{\nu} \nabla^2 \end{pmatrix}, \qquad \beta = \begin{pmatrix} \mathbf{0} & \mathbf{v}_2 \overrightarrow{\nabla} \phi \\ -\mathbf{v}_2 \overleftarrow{\nabla} \phi & \mathbf{0} \\ -\mathbf{v}_2 \overleftarrow{\nabla} \phi & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \qquad \beta = \begin{pmatrix} \mathbf{0} & \mathbf{v}_2 \overrightarrow{\nabla} \phi \\ -\mathbf{v}_2 \overleftarrow{\nabla} \phi & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix},$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali

NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN

where the transverse projection operator for the vector field **v** is implied; λ_{ψ} , λ_m , v_2 are constants. In the MSR approach the dynamic action for the model (2.1)– (2.3) may be written symbolically [4] as

$$\overline{S} = -\varphi'_{a}\alpha_{ab}\varphi'_{b} + \varphi'_{a}\left[\frac{\partial\varphi_{a}}{\partial t} + (\alpha_{ab} + \beta_{ab})\frac{\delta S}{\delta\varphi_{b}}\right].$$
 (2.4)

the boundary conditions $\varphi(t = -\infty) = 0$ and arbitrary $\varphi(T)$, $\varphi'(t = -\infty)$, $\varphi'(T)$. T is a maximal time in the consideration. The Nth order contribution to perturbation expansion in g of the Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., National Science Contraction in Contracti

k-point Green function

$$G_{k}^{[N]} = \frac{1}{2\pi i} \oint \frac{du}{u} \frac{\iint \mathcal{D}\varphi \mathcal{D}\varphi' \Phi_{a_{1}}(t_{1}, \mathbf{x_{1}}) \dots \Phi_{a_{k}}(t_{k}, \mathbf{x_{k}}) e^{-\overline{S} - N \ln u}}{\iint \mathcal{D}\varphi \mathcal{D}\varphi' e^{-\overline{S}_{0}}},$$
(3.1)

 $\Phi = \{\varphi, \, \varphi'\}.$ The stationarity equations of the method of steepest descent

$$\frac{\delta\overline{S}}{\delta\varphi_{a}} = -\frac{\partial\varphi_{a}'}{\partial t} + \varphi_{b}' \left(\alpha_{bc} + \beta_{bc}\right) \frac{\delta^{2}S}{\delta\varphi_{c}\delta\varphi_{a}} + \varphi_{b}' \frac{\delta\beta_{bc}}{\delta\varphi_{a}} \frac{\delta S}{\delta\varphi_{c}} = 0, \quad (3.2)$$

$$\frac{\delta\overline{S}}{\delta\varphi_{a}'} = -2\alpha_{ab}\varphi_{b}' + \frac{\partial\varphi_{a}}{\partial t} + (\alpha_{ab} + \beta_{ab}) \frac{\delta S}{\delta\varphi_{b}} = 0, \quad (3.3)$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

with the boundary condition

$$\varphi'(\mathcal{T}, \mathbf{x}) = 0. \tag{3.4}$$

The dynamic instanton φ_D for the basic field is the nontrivial solution of the equation

$$-\frac{\partial \varphi_{a}}{\partial t} + (\alpha_{ab} - \beta_{ab}) \frac{\delta S}{\delta \varphi_{b}} = 0.$$
(3.5)

 $\varphi_D(T, \mathbf{x}) = \varphi_{st}(\mathbf{x})$, where φ_{st} is the static instanton solution for the static action S. An iterative solution of the instanton equation (3.5) exists. Then

$$\overline{S}\left(arphi_{D},arphi_{D}'
ight)=S\left(arphi_{st}
ight)$$
 .

Thus the dynamic model at leading order in N are determined by the static instanton solution which leads to

$$F^{[N]} = C N! a_M^N N^b, \quad \text{and} \quad$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN/

The developed turbulence is described by the equation

 $\partial_t \mathbf{v} - \nu \Delta \mathbf{v} + (\mathbf{v} \partial) \mathbf{v} = \xi,$

for d = 2: $\langle \xi \xi \rangle = \text{const}\Delta\delta(\mathbf{x} - \mathbf{x}')\delta(t - t')$. Then the static limit exists, it is Gibbsian $\exp(-\nu^2/2)$. There is no nonzero static instanton.

There is a model with derivative in the interaction.

The advection of a passive scalar field $\varphi(\mathbf{x}, t)$ is described by a stochastic equation:

$$\partial_t \varphi - \nu \Delta \varphi + g \partial_i (\mathbf{v}_i \varphi) = \xi(\mathbf{x}, t),$$
 (5.1)

where ν is a molecular diffusivity coefficient, ξ is an Gaussian scalar noise, $\mathbf{v}(\mathbf{x}, t)$ is a velocity field. The field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian and and an analysis of the field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian and a scalar and a scalar and a scalar scalar and a scalar scalar and the field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian and a scalar scalar and the field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian and a scalar scalar and the field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian scalar scalar and the field $\mathbf{v}(\mathbf{x}, t)$ obeys a Gaussian scalar sca

distribution

$$\mathbf{D}_{v}^{ij}(\mathbf{x} - \mathbf{x}') \equiv \langle \mathbf{v}_{i}(\mathbf{x}, t)\mathbf{v}_{j}(\mathbf{x}', t') \rangle =$$
(5.2)
$$D_{0}\delta(t - t') \int \frac{d\mathbf{k}}{(2\pi)^{d}} \frac{P_{ij}^{\perp}(\mathbf{k}) + \alpha P_{ij}^{\parallel}(\mathbf{k})}{(\mathbf{k}^{2} + m^{2})^{\beta(\epsilon)}} e^{i\mathbf{k}(\mathbf{x} - \mathbf{x}')}.$$

or for the model with the "frozen" velocity

$$\mathbf{D}_{\nu}^{ij}(\mathbf{x} - \mathbf{x}') \equiv \langle \mathbf{v}_{i}(\mathbf{x}, t) \mathbf{v}_{j}(\mathbf{x}', t') \rangle =$$
(5.3)
$$D_{0} \int \frac{d\mathbf{k}}{(2\pi)^{d}} \frac{P_{ij}^{\perp}(\mathbf{k}) + \alpha P_{ij}^{\parallel}(\mathbf{k})}{(\mathbf{k}^{2} + m^{2})^{\beta(\epsilon)}} e^{i\mathbf{k}(\mathbf{x} - \mathbf{x}')}.$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN

The Lagrangian variables

$$<\phi(\mathbf{x},s)\phi'(\mathbf{y},t)>=\Theta(s-t)M\int_{\mathbf{c}(t)=\mathbf{y}}^{\mathbf{c}(s)=\mathbf{x}}D\mathbf{c}D\mathbf{c}'\exp\int_{t}^{s}d\tau(-\nu\mathbf{c}'^{2}+(5.4)$$
$$i\mathbf{c}'\dot{\mathbf{c}}+ig\mathbf{c}'\mathbf{v}(\mathbf{c},\tau)),$$

The stationarity equations in these variables have a form

$$-i\dot{\mathbf{c}}' = u\nu \int d\tau' \mathbf{c}' \frac{\partial D(\mathbf{c} - \mathbf{c}(\tau'))}{\partial(\mathbf{c} - \mathbf{c}(\tau'))} \mathbf{c}(\tau')',$$

$$i\dot{\mathbf{c}} = u\nu \int d\tau' D(\mathbf{c} - \mathbf{c}(\tau')) \mathbf{c}(\tau')' + 2\nu \mathbf{c}',$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

These equations have a solution

$$\mathbf{p}(\tau) = \frac{i\dot{\mathbf{q}}(\tau)}{2\nu - g\nu D_{\nu}(\mathbf{q}(\tau))}, \dot{\mathbf{q}}(\tau) = \frac{l_{1}(\mathbf{x})}{T}\sqrt{2\nu - g\nu D_{\nu}(\mathbf{q}(\tau))},$$
$$l_{1}(\mathbf{x}) = \int_{0}^{x} \frac{dz}{\sqrt{2\nu - g\nu D_{\nu}(z)}}$$

where $\boldsymbol{p}=\boldsymbol{c}_1'-\boldsymbol{c}_2',~\boldsymbol{q}=\boldsymbol{c}_1-\boldsymbol{c}_2$, or

$$c'(\tau) = \frac{i\partial_{\tau}c(\tau)}{\nu}.$$
 (5.5)

$$\int_{0}^{c} \frac{dy}{\int_{0}^{|x|} dz D(z-y)} = -\frac{u_{st}\tau}{\nu}, \qquad c \equiv c_{st}(\tau). \tag{5.6}$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali

NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

The hight-order asymptotes in the Kraichnan model show the convergent perturbation series.

Recently was calculated for dynamic index z in the model A

$$z = 2 + R\eta, \tag{6.1}$$

$$R = (h-1) \left[1 - 0.188483\epsilon + \left(-0.0999529 + \frac{b_1 n + b_0}{(n+8)^2} \right) \epsilon^2 \right]$$
(ϵ^3),

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN

16(

 $b_1 = 4.772294768, \ b_0!.49187274, \ h = 6 \ln(4/3),$

$$\eta = \frac{(n+2)\epsilon^2}{2(n+8)^2} \left[1 + \frac{\epsilon}{4(n+8)^2} (-n^2 + 56n + 272) + (6.2) \right]$$

$$\epsilon^2 \qquad (5n^4 - 220n^3 + 1124n^2 + 17020n + 46144)$$

$$(n+8)^4$$
 ($3n^2 - 230n^2 + 112 m^2 + 11520n^2 + 10111^2$
 $384(n+8)(5n+22)\zeta(3)) + O(\epsilon^5),$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Table: $z = z^{(k)} \epsilon^k$.

$Z_{\epsilon}^{(k)}$	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
$Z_{\epsilon}^{(2)}$	0.0134462	0.0145218	0.0150019
$z_{\epsilon}^{(3)}$	0.0110364	0.0110588	0.0105317
$z_{\epsilon}^{(4)}$	-0.0055807	-0.0052671	-0.0049778

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Table: Direct calculation of z in ϵ expansion.

d	Ν	n = 1	<i>n</i> = 2	<i>n</i> = 3
	2	2.0537846	2.0580874	2.0600076
2	3	2.1420758	2.1465574	2.1442609
	4	2.0527838	2.0622836	2.0646160
	2	2.0134462	2.0145218	2.0150019
3	3	2.0244826	2.0255806	2.0255336
	4	2.0189018	2.0203135	2.0205558

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

(日) (同) (三) (三)

Table: z, PBL P_2^2 -approximation ($b = b_z + 1.5$).

d	Ν	n = 1	<i>n</i> = 2	<i>n</i> = 3
	2	2.0537846	2.0580874	2.0600076
2	3	2.0313245	2.0371809	2.0424021
	4	2.0195447	2.0232205	2.0260295
	2	2.0134462	2.0145218	2.0150019
3	3	2.0151405	2.0169805	2.0181449
	4	2.0111743	2.0127178	2.0136547

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

- 4 同 6 4 日 6 4 日 6

Table: z, PBL P_1^3 -approximation ($b = b_z + 1.5$).

d	Ν	n = 1	<i>n</i> = 2	<i>n</i> = 3
	2	2.0537846	2.0580874	2.0600076
2	3	2.1420758	2.1465574	2.1442609
	4	2.0988800	2.1045005	2.1043143
	2	2.0134462	2.0145218	2.0150019
3	3	2.0244826	2.0255806	2.0255336
	4	2.0208646	2.0220921	2.0222247

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

- 4 同 6 4 日 6 4 日 6

Table: z PBL $P_{1,-1/a}^{4}$ -approximation $(b = b_z)$.

d	Ν	n = 1	<i>n</i> = 2	<i>n</i> = 3
	2	2.0537846	2.0580874	2.0600076
2	3	2.1420758	2.1465574	2.1442609
	4	2.1274836	2.1322986	2.1303831
	2	2.0134462	2.0145218	2.0150019
3	3	2.0244826	2.0255806	2.0255336
	4	2.0229318	2.0240719	2.0240707

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Table: z CM ($b = b_z + 1.5$).

d	Ν	n = 1	<i>n</i> = 2	<i>n</i> = 3
	2	2.0064932	2.0073128	2.0078256
2	3	2.0198686	2.0220831	2.0233094
	4	2.0369831	2.0406409	2.0423686
	2	2.0032593	2.0036430	2.0038735
3	3	2.0081436	2.0089683	2.0093953
	4	2.0127529	2.0138750	2.0143549

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

<ロ> <同> <同> < 同> < 同>

-

Table:
$$z_{asymp}^{(k)}$$
 (6.7).

Zasymp	n = 1	<i>n</i> = 2	<i>n</i> = 3
Zasymp	0,0000034	0,0000011	0,000003
(3) Zasymp	-0,0000141	-0,0000051	-0,0000017
(4) Zasymp	0,0000516	0,0000195	0,0000067

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

3

Table: Results for z (d=3).

d=3	n = 1	<i>n</i> = 2	<i>n</i> = 3
P_{2}^{2}	$2.011\pm0,012$	2.013 ± 0.012	2.014 ± 0.011
P_{1}^{3}	$2.021\pm0,006$	2.022 ± 0.005	2.022 ± 0.005
$P^{4}_{1,-1/a}$	2.023 ± 0.006	2.024 ± 0.005	2.024 ± 0.005
СМ	$2.0133 \substack{+0.011 \\ -0.0}$	2.014 ± 0.011	2.014 ± 0.011

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

-

Table: Results for z (d=2).

d=2	n = 1	<i>n</i> = 2	<i>n</i> = 3
P_{2}^{2}	$2.020\pm0,045$	2.023 ± 0.053	2.026 ± 0.055
P_{1}^{3}	$2.100\pm0,089$	2.105 ± 0.084	2.104 ± 0.080
$P^{4}_{1,-1/a}$	2.130 ± 0.089	2.134 ± 0.084	2.132 ± 0.080
ĆM	2.037 ± 0.033	2.041 ± 0.040	2.042 ± 0.041

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

- 4 同 6 4 日 6 4 日 6

-

Borel-transformation

$$A(\epsilon) = \sum_{k \ge 0} A_k \epsilon^k, \tag{6.3}$$

$$B(\epsilon) = \sum_{k>0} B_k \epsilon^k, \quad B_k = \frac{A_k}{\Gamma(k + b + 1)}, \quad (6.4)$$

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali

NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN

$$A(\epsilon) = \int_{0}^{+\infty} t^{b} e^{-t} B(\epsilon t) dt.$$

$$u(\epsilon) = \frac{\sqrt{1+a\epsilon}-1}{\sqrt{1+a\epsilon}+1} \quad \Leftrightarrow \quad \epsilon(u) = \frac{4u}{a(u-1)^{2}}.$$
(6.5)

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

3

Why the results are inconsistent?

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

< ∃ →

$$z_{asymp}^{(k)} \approx (h-1)\eta_{asymp}^{(k)}.$$
(6.7)

 $\begin{array}{l} d = 3, \ z = 2.1 \pm 0.1 \ [16]. \ z = 1.97 \pm 0.08 \ [17], \\ z = 2.04 \pm 0.03 \ [18], \ z = 2.04 \pm 0.01 \ [19] \ z = 2.032 \pm 0.004 \ [20]. \\ d = 2, \ z = 2.14 \pm 0.02 \ [21], \ z = 2.13 \pm 0.03 \ [22], \\ z = 2.076 \pm 0.005 \ [23], \ z = 2.24 \pm 0.04 \ [24], \ z = 2.24 \pm 0.07 \ [25], \\ z = 2.16 \pm 0.04 \ [26] \ z = 2.1667 \pm 0.0005 \ [27]. \ d = 2 \ z = 2.125 \ [28]. \end{array}$

- L.N. Lipatov, Zh. Eksp. Teor. Fiz. 72 (1977) 411.
- E.Brezin, J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. D 15 (1977) 1544.

M.V. Komarova and M.Yu. Nalimov, Theor. Math. Phys. 126 (2001) 393.

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

- P.C. Martin, E.D. Siggia and H.A. Rose, Phys. Rev. A 8 (1973) 423.
- P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49 (1977) 435.
- A.N. Vasil'ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman & Hall/CRC, Boca Raton, 2004).
- C. De Dominicis, J. Phys. (Paris) 37, Suppl C1 (1976) 247;
 H.K. Janssen, Z. Phys. B 23 (1976) 377.
- J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996).

(人間) (人) (人) (人) (人) (人)

- M.V. Komarova and M.Yu. Nalimov, Theor. Math. Phys. 129 (2001) 387.
- 👔 ADZJEMYAN UNPUBLISHED YET
- Honkonen J., Komarova M. V., Nalimov M. Yu. // Nucl.Phys. 2005. B707. P. 493-508.
- Honkonen J., Komarova M. V., Nalimov M. Yu. // Nucl.Phys. 2005. B714. P. 292-306.
- Krinitsyn A. S., Prudnikov V. V., Prudnikov P. V. // Theoretical and Mathematical Physics, 147(1): P561-575 (2006).
- Le Guillou J.C., Zinn-Justin J. // Phys. Rev. D. Vol. 21. N 9. P. 3976-3998 (1977).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Honkonen J., Komarova M., Nalimov M. // Acta Physica Slovaca 52, N 4, 303 (2002).
- Belanger D. P. et al. // Journ. de Phys., 49, C8-1229 (1988).
- Prudnikov V. V., Markov A. N. // JETP, 76, 469 (1993).
- Wansleben S., Landau D. P. // Phys. Rev. B, 43, 6006 (1991).
- Gropengiessen U. // Phys. A, 213, 308 (1995).
 - Grassberger P. // Phys. A, 214, 547 (1995).
- Kalle C. // Phys. A, 17, L801 (1984).
- Williams J. K. // Phys. A, 18, 49 (1985).
- Mori M., Tsuda Y. // Phys. Rev. B, 37, 5444 (1988).

Andreanov A., Komarova M.V., Kremnev I.S., Honkonen J., Nali NEW RESULTS OF LARGE-ORDER INVESTIGATION IN DYN.

- Poole P. H., Jan N. // Phys. A, 23, L453 (1990).
- Prudnikov V. V, Markov O. N. // Europhys. Lett., 29, 245 (1995).
- Wang F., Hatane N., Suzuki M. // Phys. A, 28, 4543 (1995).
- Nightingale M. P., Blöte W. J. // Phys. Rev. B, 62, 1089 (2000).
- *Racz Z., Collins M. F.* // Phys. Rev. B, 13, 3074 (1976).