Large-order asymptotes of Kraichnan model with a 'frozen' velocity field: renormalization constant.

M. Komarova, I. Kremnev and M. Nalimov

Department of Statistical Physics
Saint-Petersburg State University

Dubna, RG 2008

(1) Introduction to the model

- Stochastic equation
- The velocity correlator
- Renormalization constant
- Martin-Siggia-Rose formalism
(2) The object to be calculated
- The usual way to extract Z_{ν}
- Lagrange variables
- The correct order of limit operations
(3) Instanton analyses
- The action at the instanton
- Simple poles in ε
- The replica trick
(4) Summary

Introduction to the model

Turbulent advection of passive scalar in d - dimensional fluid.

Stochastic equation

$$
\begin{equation*}
\left(\partial_{t}+g \nabla_{i} V_{i}-\nu \Delta\right) \varphi(\mathbf{x}, t)=\xi(\mathbf{x}, t) . \tag{1.1}
\end{equation*}
$$

- $\mathbf{x} \in \mathbb{R}^{d}$ and t are space and time variables
- $\varphi(\mathbf{x}, t)$ is a passive scalar field
- $\mathbf{V}(\mathbf{x})$ is a random vector velocity field
- $\xi(\mathbf{x}, t)$ is a random force
- ν is a viscosity

The velocity correlator

Gaussian distribution of the velocity field

$$
\begin{equation*}
\left\langle\mathbf{V}_{i}(\mathbf{x}) \mathbf{V}_{j}\left(\mathbf{x}^{\prime}\right)\right\rangle=D_{i j}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{1.2}
\end{equation*}
$$

Coordinate representation of the correlator

$$
\begin{equation*}
D_{i j}(\mathbf{z})=a_{1} \frac{\delta_{i j}}{\mathbf{z}^{2 \beta}}+a_{2} \frac{\mathbf{z}_{i} \mathbf{z}_{j}}{\mathbf{z}^{2 \beta+2}}, \quad \beta=1-\varepsilon / 2 \tag{1.3}
\end{equation*}
$$

ε is a regular expansion parameter

Renormalization constant

Minimal subtraction scheme (MS)

$$
\begin{gathered}
\nu \rightarrow \nu Z_{\nu}, \quad u \equiv g^{2} \\
Z_{\nu}=1+\frac{\square u+\square u^{2}+\ldots+\pitchfork u^{N}+\ldots}{\epsilon}+\frac{\square u^{2}+\square u^{3}+\ldots}{\epsilon^{2}}+\ldots \\
\ln \left(Z_{\nu}\right)=\frac{\square u+\square u^{2}+\ldots+\pitchfork u^{N}+\ldots}{\epsilon}+\frac{\square u^{2}+\square u^{3}+\ldots}{\epsilon^{2}}+\ldots
\end{gathered}
$$

Investigation of coefficients $\boldsymbol{\phi}$ at large N.

Martin-Siggia-Rose formalism

Response function in arbitrary \mathbf{V} field

$$
\begin{gather*}
G_{V}^{(1,2)}=\int \mathcal{D} \varphi \mathcal{D} \varphi^{\prime} \varphi\left(\mathbf{x}_{1}, t_{1}\right) \varphi^{\prime}\left(\mathbf{x}_{2}, t_{2}\right) \exp \left(-S^{m s r}\right) \tag{1.4}\\
S^{m s r}=\frac{\varphi^{\prime} D_{\xi} \varphi^{\prime}}{2}+\varphi^{\prime}\left(\partial_{t}+g \nabla_{i} \mathbf{V}_{i}-\nu Z_{\nu} \Delta\right) \varphi, \tag{1.5}
\end{gather*}
$$

Response function (gaussian integration in \mathbf{V})

$$
\begin{equation*}
<\varphi \varphi^{\prime}>=\int \mathcal{D} \mathbf{V} G_{V}^{(1,2)} e^{-\mathbf{v}_{i} D_{i j}^{-1} \mathbf{v}_{j} / 2} \tag{1.6}
\end{equation*}
$$

The usual way to extract Z_{ν}
Lagrange variables

The usual way to extract Z_{ν}

$$
\frac{\partial}{\partial \nu}<\varphi \varphi^{\prime}>=Z_{\nu}<\varphi \varphi^{\prime}\left(\varphi \Delta \varphi^{\prime}\right)>=Z_{\nu} G=\text { finite }
$$

$$
\begin{gathered}
G(\mathbf{x}, T) \equiv<\varphi\left(\mathbf{x}_{1}, t_{1}\right) \varphi^{\prime}\left(\mathbf{x}_{2}, t_{2}\right) \Delta \varphi^{\prime}\left(\mathbf{x}_{0}, t_{0}\right) \varphi\left(\mathbf{x}_{0}, t_{0}\right)>=\mathbf{x}_{0}, t_{0} \\
x \equiv \mathbf{x}_{2}-\mathbf{x}_{1}, \quad T \equiv t_{2}-t_{1}, \mathbf{x}_{1}, t_{1}
\end{gathered}
$$

$$
\begin{equation*}
\underset{\varepsilon \rightarrow 0}{\operatorname{res}} \ln Z_{\nu}=-\underset{\varepsilon \rightarrow 0}{\operatorname{res}} \ln G . \tag{2.1}
\end{equation*}
$$

Lagrange variables

The two fluid particles. $\mathbf{c}_{1}^{\prime}, \mathbf{c}_{2}^{\prime}$ are momenta, $\mathbf{c}_{1}, \mathbf{c}_{2}$ are coordinates.
The action for composite operator calculation

$$
\begin{equation*}
S=-i \mathbf{q}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)-\nu Z_{\nu}\left(\mathbf{c}_{1}^{\prime 2}+\mathbf{c}_{2}^{\prime 2}\right)+i \mathbf{c}_{1}^{\prime} \partial \mathbf{c}_{1}+i \mathbf{c}_{2}^{\prime} \partial \mathbf{c}_{2}+S_{u} . \tag{2.2}
\end{equation*}
$$

A nonlinear part of the action is collected in the term

$$
\begin{aligned}
u \equiv & g^{2}, \quad S_{u}=-\frac{u}{2}\left(\mathbf{c}_{1}^{\prime}\left(\tau_{1}\right) D\left(\mathbf{c}_{1}\left(\tau_{1}\right)-\mathbf{c}_{1}\left(\tau_{1}^{\prime}\right)\right) \mathbf{c}_{1}^{\prime}\left(\tau_{1}^{\prime}\right)+\right. \\
& \left.+\mathbf{c}_{2}^{\prime}\left(\tau_{2}\right) D\left(\mathbf{c}_{2}\left(\tau_{2}\right)-\mathbf{c}_{2}\left(\tau_{2}^{\prime}\right)\right) \mathbf{c}_{2}^{\prime}\left(\tau_{2}^{\prime}\right)+2 \mathbf{c}_{1}^{\prime} D\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right) \mathbf{c}_{2}^{\prime}\right)
\end{aligned}
$$

The correct order of limit operations

There are two large parameters

$$
\frac{1}{-} \rightarrow \infty \quad N \rightarrow \infty \quad N \varepsilon \rightarrow 0
$$

Renormalization constants

$$
Z_{\nu}=1+\frac{\square u+\square u^{2}+\ldots+\square u^{N}+\ldots}{\epsilon}+\frac{\square u^{2}+\square u^{3}+\ldots}{\epsilon^{2}}+\ldots
$$

How to handle

$$
\exp (S)=\exp \left(S_{\text {reg }}+S_{\text {sing }}\right)=\exp \left(S_{\text {reg }}\right) \sum_{p=0}^{\infty} \frac{1}{p!}\left(S_{\text {sing }}\right)^{p}, \quad \oint \frac{d u}{u^{N+1} \ldots}
$$

Instanton analyses

$G(\mathbf{x}, T)$ composite operator

- The stationarity equation can be written (7)
- The symmetry of the model can be considered
- A particular solution can be found

$$
F=0 \quad \Leftrightarrow \quad G(\mathbf{x}, T), \quad|\mathbf{x}|=x_{s t}
$$

- Momentum frequency representation $G(q, \omega)$. Additional integrals in T and $x . \int d T d x e^{i q x} G(\mathbf{x}, T)$

$$
q=q_{0}=\frac{i D_{0} u}{(1-\varepsilon) x_{5} t^{1-\varepsilon} \nu^{2}} \quad \omega=0
$$

The action at the instanton

$$
\begin{equation*}
S_{s t}=-\frac{u D_{0} x_{s t}^{\epsilon}}{\nu^{2} \varepsilon}=-\frac{u}{\nu^{2}}\left(\frac{A\left(x_{s t}^{\varepsilon}-1\right)}{\varepsilon}+\frac{A}{\varepsilon}+B(\varepsilon) x^{\varepsilon}\right) \tag{3.1}
\end{equation*}
$$

The velocity correlator formulae reminder

$$
D_{i j}(\mathbf{z})=a_{1} \frac{\delta_{i j}}{\mathbf{z}^{2 \beta}}+a_{2} \frac{\mathbf{z}_{\mathbf{i}} \mathbf{z}_{j}}{\mathbf{z}^{2 \beta+2}}, \quad D_{0}=a_{1}(\varepsilon)+a_{2}(\varepsilon)=A+\varepsilon B(\varepsilon),
$$

How to handle

$$
\exp (S)=\exp \left(S_{\text {reg }}+S_{\text {sing }}\right)=\exp \left(S_{\text {reg }}\right) \sum_{p=0}^{\infty} \frac{1}{p!}\left(S_{\text {sing }}\right)^{p},
$$

Simple poles in ε

$$
G^{(N)} \sim \oint \frac{d u}{u^{N+1}} \int d T z(T, u) e^{N S_{\text {rg }}(\in, T)} \sum_{p=0}^{\infty} \frac{1}{p!}\left(S_{\text {sing }}\right)^{p}
$$

$$
S_{\text {reg }}=-\frac{u}{\nu^{2}} B(\varepsilon) x^{\varepsilon} \sim-\frac{u}{\nu^{2}} B(\varepsilon)(6 u T A / \nu)^{\varepsilon / 2}
$$

- Finite renormalization $u B(\varepsilon) / \nu^{2} \rightarrow \bar{u}$

Simple poles in ε

$$
G^{(N)} \sim \oint \frac{d u}{u^{N+1}} \int \frac{d T}{T} \bar{z}(u) \quad e^{N S_{\text {reg }}(\varepsilon, T)} \sum_{p=0}^{\infty} \frac{1}{p!}\left(S_{\text {sing }}\right)^{p}
$$

$$
S_{\text {reg }}=-\frac{u}{\nu^{2}} B(\varepsilon) x^{\varepsilon} \sim-\frac{u}{\nu^{2}} B(\varepsilon)(6 u T A / \nu)^{\varepsilon / 2}
$$

- Finite renormalization $u B(\varepsilon) / \nu^{2} \rightarrow \bar{u}$

Simple poles in ε extraction

The term corresponding to $p=0$

$$
\begin{gathered}
\oint \frac{d \bar{u}}{\bar{u}^{N+1}} \int \frac{d T}{T} \bar{z}(\bar{u}) \exp \left(-N \bar{u}(T \bar{u})^{\varepsilon / 2}\right)= \\
\oint \frac{d \bar{u}}{\bar{u}^{N+1}} \bar{z} \int \frac{d \chi}{\chi} \exp \left(-N \bar{u} \chi^{\varepsilon / 2}\right) \sim \frac{N^{N}}{N!} \int_{0}^{1} \frac{d \chi}{\chi^{1-N \varepsilon / 2}} \sim N^{n} \frac{1}{N \varepsilon}
\end{gathered}
$$

Scale integration is not saddle-point one!

Replica trick

Logarithm representation

$$
\begin{equation*}
\ln \int d T f(T)=\lim _{r \rightarrow 0} \frac{\partial}{\partial r} \prod_{\alpha=0}^{r-1} \int d T_{\alpha} f\left(T_{\alpha}\right) \tag{3.3}
\end{equation*}
$$

T becomes an r-dimensional vector in a replica space.

$$
\begin{equation*}
\oint \frac{d u}{u^{N+1}} \int\left(\prod_{\alpha=0}^{r-1} d T_{\alpha}\right) \exp \left(N u \sum_{\alpha=0}^{r-1}\left(T_{\alpha} u\right)^{\varepsilon / 2}\right) z\left(\left\{T_{\alpha}\right\}_{\alpha=0}^{r-1}\right), \tag{3.4}
\end{equation*}
$$

Saddle-point method and replica trick

Let's try to calculate all integrations in (1) by saddle-point method.
To be variated

$$
N u \sum_{\alpha=0}^{r-1}\left(T_{\alpha} u\right)^{\varepsilon / 2}-N \ln u
$$

With respect to u

$$
u_{s t}^{-1-\varepsilon}=(1+\varepsilon) \sum T_{\alpha} .
$$

With respect to T_{α}

$$
T_{\alpha}=0
$$

Replica trick results

- At least one of integrations has a non-saddle-point structure.
- Let's exclude the integration in T_{0} from the saddle-point method consideration.
- The set of variables $\left\{T_{\alpha}\right\}_{\alpha=1}^{r-1}=0$ at the stationary point.
- $u_{s t}^{-1-\varepsilon}=(1+\varepsilon) T_{0}$.
- The same result!
- The factor r allows us to produce the operation $\lim _{r \rightarrow 0} \partial / \partial r$ correctly.

Summary

- We have calculated the large order asymptotics for $\ln Z_{\nu}$ constants
- Though the number of diagrams has a factorial growth at large orders the series has a finite convergence radius.
- This was a difficult problem both from idealogical and technical point of view.

Thank you!

Some papers

- Lipatov L. N., J. Exp. and Theor. Phys (1977).
- Juha Honkonen and Esa Karjalainen, J. Phys. A: Math. Gen. (1988), Phys Lett. A (1988)
- M.V.Komarova, M.Yu.Nalimov, Theor. and Math. Phys. (2001)
- A.Yu. Andreanov, M.Komarova, M.Nalimov, J. Phys. A (2006).
- To be publish (2008).

