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Vacuum energy in quantum field theory

Every boson field mode has the vacuum energy

Eboson =
~ω
2

.

Every fermion field mode has the vacuum energy

Efermion = −~ω
2

.

The normal ordering prescription eleminates the vacuum
energy, but its influence should be taken into account in the
presence of gravity.



Suggestion of W. Pauli: cancellations

between bosons and fermions

In his lectures “Selected Topics in Field Quantization”
(1950-51) W. Pauli asked
“whether these zero-point energies [from Bosons and
Fermions] can compensate each other.”

Now we know that the exact cancellation of zero-point energy
is realized in the theories with an exact supersymmetry.
However, the Nature does not reveal an exact supersymemtry.



Idea of Ya.B. Zeldovich: vacuum energy is

responsible for the cosmological

constant (1967-68)

The vacuum energy density and the pressure of a boson field:

ε =
1

2

1

(2π~)3

∫ ∞

0

c
√

p2 + µ24πp2dp = KI (µ),

P = K · 1

3

∫ ∞

0

p2

√
p2 + µ2

p2dp = KF (µ),

µ = mc .



Having many fields, one writes

ε =

∫ ∞

0

f (µ)I (µ)dµ,

P =

∫ ∞

0

f (µ)F (µ)dµ.

Here f (µ) can be regarded as a spectral regularizing function
of the Pauli-Villars type.
The conditions of the cancellation of the quartic, quadratic
and logarithmic divergences are:

∫ ∞

0

f (µ)dµ = 0,
∫ ∞

0

f (µ)µ2dµ = 0,
∫ ∞

0

f (µ)µ4dµ = 0.



Then the finite parts are:

ε =
1

8

∫ ∞

0

f (µ)µ4 ln µdµ,

P = −1

8

∫ ∞

0

f (µ)µ4 ln µdµ,

P = −ε.

“The field theory with relativistically invariant regularization
does not require a zero vacuum energy, but it leads naturally
to the situation characterized by a cosmological constant.”
(Zeldovich).



Our approach

1. The particle content of a theory is such that UV
divergences do not appear insofar boson and fermions
should compensate each other as Pauli suggested (but
only for divergent parts).

2. The study of the finite value of the effective cosmological
constant provided the UV divergences are cancelled.

3. The study of a minimal extension of the Standard Model
compatible with an observable small value of the
cosmological constant.



The conditions of the cancellation of the ultraviolet

divergences (the Minkowski background)

Nboson degrees of freedom = Nfermion degrees of freedom,

∑
m2

s + 3
∑

m2
V = 2

∑
m2

F ,

∑
m4

s + 3
∑

m4
V = 2

∑
m4

F .



De Sitter spacetime

For the case of the curved de Sitter spacetime, equations
giving conditions of cancellation of quadratic and logarithmic
ultraviolet divergences are more involved. Some examples of
these conditions for simple particle physics models are
presented in our paper.



We would like to study the final part of the vacuum energy,
provided that the constraints, imposed by requirement of its
ultraviolet finiteness are satisfied.

ε =
1

8

(∑
m4

s ln ms + 3
∑

m4
V ln mV − 2

∑
m4

F ln mF

)
.

It should be comparable with the present value of the
cosmological constant. This value is very small in comparison
with masses of some constituents of the Standard Model of
elementary particles.

∑
m4

s ln ms + 3
∑

m4
V ln mV − 2

∑
m4

F ln mF = 0.



Minimal extension of the Standard Model

The number of fermion degrees of freedom - 96.
The number of boson degrees of freedom -27.
We need 69 boson degrees of freedom, part of which belongs
to Higgs bosons.
We would like to have some minimal extension of the Standard
Model, which leaves intact the fermionic degrees of freedom
adding hypothetical bosons.



Main Result

Such an extension does not exist. We show that introducing
new bosonic fields and providing the cancellation of the
ultraviolet divergences in the vacuum energy density, one finds
that the finite part of the effective cosmological constant is
huge and cannot be lowered below some rather big number (of
the order of the mass of the top quark elevated to the fourth
power) . That can be interpreted as a necessity of introducing
of new heavy fermions.



Standard Model and vacuum energy balance

The particles with greatest masses:

1. top quark - mt ≈ 170Gev

2. W± bosons - mW ≈ 0.47mt

3. Z 0 boson - mZ ≈ 0.53mt

Compare with
bottom quark - mb ≈ 4.5Gev
τ -lepton - mτ ≈ 2Gev .



Contributions of heavy particles and hypothetical

massive bosons
R2 ≡ 12m4

t − 6m4
W − 3m4

Z ≈ 11.5,

h ≡ 12m2
t − 6m2

W − 3m4
Z ≈ 9.83,

L ≡ 12m4
t ln m2

t − 6m4
W ln m2

W − 3m4
Z ln m2

Z ≈ 0.743.

The squared masses of massive boson fields -
x1, x2, . . . , xn, xi > 0.
The constraints:

n∑
i=1

x2
i = R2,

n∑
i=1

xi = h.



Question

Can the function

φ(x1, x2, · · · , xn) ≡
n∑

i=1

x2
i ln xi

be equal to L on the constraint surface ?



Constraint surface

It is (n − 2) - dimensional sphere - an intersection of (n − 1) -
dimensional sphere and (n − 1) - dimensional plane.

It exists if

n >
h2

R2
≈ 8.4.

The minimal number of massive boson degrees of freedom is

n0 ≡
[

h2

R2
+ 1

]
= 9.



Calculation of the minimal value of φ(xi)

Result

φ(xi)min = (n0 − 1)x2
0 ln x0 + y 2

0 ln y0,

where

x0 =
h

n0
+

√
R2

n0(n0 − 1)
− h2

n2
0(n0 − 1)

,

y0 =
h

n0
− (n0 − 1)

√
R2

n0(n0 − 1)
− h2

n2
0(n0 − 1)

.



Calculation of the minimal value of φ(xi)

Technique

An auxiliary function

F (x1, · · · , xn) =
1

2

n∑
i=1

x2
i ln x2

i −λ(
n∑

i=1

x2
i −R2)−µ(

n∑
i=1

xi−h),

where λ and µ are the Lagrange multipliers.

We look for stationary points of the function F .
Differentiation with respect to the Lagrange multipliers gives
the constraints.



The differentiation with respect to xi

gives the system of equations:

x2
i ln xi − xi − 2λxi − µ = 0, i = 1, · · · , n.

Consider a solution
x̄1, · · · , x̄n, λ̄, µ̄.
Let us choose
x̄1 6= x̄2.
Then

λ̄ = 1 +
x̄1 ln x̄2

1 − x̄2 ln x̄2
2

x̄1 − x̄2
,

µ̄ =
x̄1x̄2(ln x̄2

2 − ln x̄2
1 )

x̄1 − x̄2
.



If x3 = x4 = · · · = xk = x1 while xk+1 = xk+2 = · · · = xn,
where 3 ≤ k ≤ n the system will be satisfied.

Thus, if one subset of x̄i has one value and its complement has
another value such set of values of xi provides us with an
extremum point of the function F , or in other words with the
conditional extremum point of the function φ.

If all x̄i are divided into these two classes, the possible values
of x̄1 and x̄2 can be found exactly by solving the constraints.



x = x(k , n) =
h

n
+

√
R2(n − k)

nk
− h2(n − k)

n2k
,

where 1 ≤ k ≤ n − 1

y = y(k , n) =
h

n
− k

n − k

√
R2(n − k)

nk
− h2(n − k)

n2k
.

The value of y is positive if

k < n0 ≤ n.



The analysis of the stationarity equations shows that
stationary points whose coordinates have three different values
can exist. However, if such points exist, at least one these
three values is negative and they are of no interest.

The minimum of the function φ on the constraint surface can
be achieved only in the staionary points with the coordinates
described above or on the boundary of the region of the
positivity, where at least one of the coordinates is equal to
zero. In this last case the problem is reduced to the problem
with the lower dimensionality n.



The lowest dimensionality case n = n0

All the values of xi are positive. The extremum points are
achieved in the points with x(k , n), y(k , n) given above.
Consider the function

φ1(k , n) = kx2(k , n) ln x(k , n) + (n − k)y(k , n)2 ln y(k , n).

We have proven that

dφ1(k , n)

dk
< 0

and
dφ1(k , n)

dn
> 0.



Minimum value of the function φ(k, n)

is achieved at
n = n0, k = n0 − 1

It is equal to

φ1 min = (n0 − 1)x2(n0 − 1, n0) ln x(n0 − 1, n0)

+y 2(n0 − 1, n0) ln y(n0 − 1, n)0).

For our values of n0, R
2, h

φ1 min ≈ 1.95

which is greater than

L ≈ 0.743.



The solution of the equation

φ = L

on the constraint surface does not exist. Moreover the
difference φmin − L giving the minimal value of the effective
cosmological constant is huge - of order of m4

t .

It is necessary to introduce some new fermions.



Presence of new fermions

modifies the quantities

R̃2 = R2 +
∑

nf m
4
f ,

h̃ = h +
∑

nf m
4
f ,

L̃ = L + s
∑

nf m
4
f ln m2

f .



The condition for the existence of a solution of the

equation

φ = L̃

is

φ1 min(ñ0, R̃
2, h̃) < L̃ < φ1 max(ñ0, R̃

2, h̃).



Numerical results

For a Majorana spinor (nf = 2)

mf > 1.52mt

For a Dirac spinor (nf = 4)

mf > 1.46mt



For a colored quark (nf = 12)

0.354mt < mf < 0.359mt

or

0.4mt < mf < 0.66mt

or

0.689mt < mf < 0.691mt

or

mf > 1.4mt



The lightest additional boson mass mB (Higgs ?)

For a Majorana spinor with the mass m2
f = 2.5m2

t

111 Gev < mB < 139 Gev

For a Majorana spinor with the mass m2
f = 3m2

t

115 Gev < mB < 172 Gev

For a Majorana spinor with the mass m2
f = 3.5m2

t

112 Gev < mB < 178 Gev

For a Majorana spinor with the mass m2
f = 4m2

t

86 Gev < mB < 177 Gev



Dedication

I Lectures of D.V. Shirkov and the problem of ultraviolet
divergences in quantum field theory

I How to get finite numbers after elimination of the
ultraviolet divergences ?

I How to connect these finite numbers and
observable/measurable quantities ?


