Low-energy constants in SU(2) and SU(3) ChPT

M. A. Ivanov (JINR)
J. Gasser, Ch. Haefeli, M. Schmid (Bern U)

RG'08, Shirkov's Fest

Contents

Introduction

Effective Lagrangians

Example of matching: vector form factor

Matching at two loops

Generating functional

Summary

Effective field theory of QCD at low energies

- Expressed in physical hadron fields
- Exploits the chiral symmetry of QCD for massless quarks
- Spontaneous symmetry breaking gives Goldstone bosons

SU(2) \Longrightarrow pions SU(3) \Longrightarrow pions, kaons, eta

- Includes external currents
- Quantum field theory with $\mathcal{L}_{\text {eff }}$ is non-renormalizable \Longrightarrow requires the counterterms with highest derivatives
- The coefficients called Low Energy Constants LECs are not fixed by chiral symmetry
- Calculations with $\mathcal{L}_{\text {eff }}$ give an expansion in quark masses and external momenta

> Chiral perturbation theory (ChPT)

Introduction

- Calculations with $\mathcal{L}_{\text {eff }}$ give an expansion in quark masses and external momenta

Chiral perturbation theory (ChPT)

Gasser, Leutwyler 1984,1985

- ChPT exploits systematically quark mass dependence at low-energies
- Two options for strange quark
- Treat $\mathbf{m}_{\mathbf{s}}$ on same footing as heavy quarks

2 flavor ChPT

- Treat $\mathbf{m}_{\mathbf{s}} \bar{s} \mathbf{s}$ as perturbation

3 flavor ChPT

Introduction

- Calculations with $\mathcal{L}_{\text {eff }}$ give an expansion in quark masses and external momenta

Chiral perturbation theory (ChPT)

Gasser, Leutwyler 1984,1985

- ChPT exploits systematically quark mass dependence at low-energies
- Two options for strange quark
- Treat $\boldsymbol{m}_{\mathrm{s}}$ on same footing as heavy quarks

2 flavor ChPT

- Treat $\mathbf{m}_{\mathrm{s}} \bar{s}$ as perturbation
- The degrees of K and $\boldsymbol{\eta}$ freeze for

$$
\left|p^{2}\right| \ll M_{k}^{2}, \quad m_{u}, m_{d} \ll m_{s}
$$

- In this limit: relations among the 2 flavor vs. the 3 flavor low-energy constants of the effective Lagrangians.
- These relations give additional information on the values of the low-energy constants.

Introduction

- The procedure of findings the relations between SU(2) and SU(3) LECs is called as "matching".
- The matching at one-loop level has been done by Gasser and Leutwyler in 1985.
- The aim of our research is to perform the matching at two-loop level.

Effective Lagrangians

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots
$$

$\mathrm{U} \in \mathrm{SU}(\mathrm{n})$ contains the Goldstone fields.
LECs $\mathrm{l}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}$ and $\mathrm{L}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$ are not fixed by chiral symmetry. Local monomials $\mathrm{K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ and $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$ are known.

Effective Lagrangians

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots \\
\mathcal{L}_{2}^{S U_{2}} & =\frac{F^{2}}{4}\left\langle D_{\mu} U \mathrm{D}^{\mu} \mathbf{U}^{\dagger}+\mathrm{M}^{2}\left(\mathrm{U}+\mathrm{U}^{\dagger}\right)\right\rangle, \quad \mathrm{M}^{2}=\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\right) \mathrm{B}, \\
\mathcal{L}_{4}^{\mathrm{SU}_{2}} & =\sum_{\mathrm{i}=1}^{10} \mathrm{l}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}, \quad \quad \mathcal{L}_{6}^{\mathrm{SU}}=\sum_{\mathrm{i}=1}^{56} \mathrm{c}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} .
\end{aligned}
$$

$\mathrm{U} \in \mathrm{SU}(\mathrm{n})$ contains the Goldstone fields.
LECs I_{i}, c_{i} and L_{i}, C_{i} are not fixed by chiral symmetry. Local monomials $\mathrm{K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ and $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$ are known.

Effective Lagrangians

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots \\
& \mathcal{L}_{2}^{\mathrm{SU}_{2}}=\frac{\mathrm{F}^{2}}{4}\left\langle\mathrm{D}_{\mu} \mathbf{U} \mathrm{D}^{\mu} \mathbf{U}^{\dagger}+\mathrm{M}^{2}\left(\mathbf{U}+\mathbf{U}^{\dagger}\right)\right\rangle, \quad \mathrm{M}^{2}=\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\right) \mathrm{B}, \\
& \mathcal{L}_{4}^{\mathrm{SU}_{2}}=\sum_{\mathrm{i}=1}^{10} \mathrm{l}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}, \quad \mathcal{L}_{6}^{\mathrm{SU}_{2}}=\sum_{\mathrm{i}=1}^{56} \mathrm{c}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} . \\
& \mathcal{L}_{2}^{\mathrm{SU}_{3}}=\frac{\mathrm{F}_{0}^{2}}{4}\left\langle\mathrm{D}_{\mu} \mathbf{U} \mathrm{D}^{\mu} \mathbf{U}^{\dagger}+\mathrm{M}_{0}^{2}\left(\mathbf{U}+\mathbf{U}^{\dagger}\right)\right\rangle, \quad \mathrm{M}_{0}^{2}=\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}+\mathrm{m}_{\mathrm{s}}\right) \mathrm{B}_{0}, \\
& \mathcal{L}_{4}^{\mathrm{SU}_{3}}=\sum_{\mathrm{i}=1}^{12} \mathrm{~L}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \quad \mathcal{L}_{6}^{\mathrm{SU}_{3}}=\sum_{\mathrm{i}=1}^{94} \mathrm{C}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} .
\end{aligned}
$$

$\mathrm{U} \in \mathrm{SU}(\mathrm{n})$ contains the Goldstone fields.
LECs I_{i}, c_{i} and L_{i}, C_{i} are not fixed by chiral symmetry. Local monomials $\mathrm{K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ and $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$ are known.

Example of matching: vector form factor

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathrm{V}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $\mathbf{m}_{u}=\mathbf{m}_{\mathrm{d}}=\mathbf{0}$:
2 flavours: $\quad F_{V, 2}(t)=1+\frac{t}{F^{2}} \boldsymbol{\Phi}(t, 0 ; d)-\frac{\ell_{6} t}{F^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, \mathbf{3}}(\mathrm{t})=\mathbf{1}+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\boldsymbol{\Phi}(\mathrm{t}, \mathbf{0} ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathbf{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{9} \mathrm{t}}{\mathrm{F}_{0}^{2}}$

Example of matching: vector form factor

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathrm{V}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $\mathbf{m}_{u}=\mathbf{m}_{\mathrm{d}}=\mathbf{0}$:
2 flavours: $\quad F_{V, 2}(t)=1+\frac{t}{F^{2}} \boldsymbol{\Phi}(t, 0 ; d)-\frac{\ell_{6} t}{F^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, \mathbf{3}}(\mathrm{t})=\mathbf{1}+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\boldsymbol{\Phi}(\mathrm{t}, \mathbf{0} ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathbf{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{9} \mathrm{t}}{\mathrm{F}_{0}^{2}}$

$$
\Phi\left(t, M_{k} ; d\right)=\sum_{n=0}^{\infty} \Phi_{n}\left(M_{K}, d\right)\left(\frac{t}{M_{K}^{2}}\right)^{n}
$$

Example of matching: vector form factor

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathbf{v}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $\mathbf{m}_{\mathrm{u}}=\mathbf{m}_{\mathrm{d}}=\mathbf{0}$:
2 flavours: $\quad F_{V, 2}(t)=1+\frac{t}{F^{2}} \boldsymbol{\Phi}(t, 0 ; d)-\frac{\ell_{6} t}{F^{2}}$
3 flavours : $\quad F_{V, 3}(t)=1+\frac{t}{F_{0}^{2}}\left[\boldsymbol{\Phi}(\mathbf{t}, \mathbf{0} ; \mathbf{d})+\frac{1}{2} \Phi\left(t, M_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{\mathrm{g}} \mathrm{t}}{\mathrm{F}_{0}^{2}}$

Drop terms of order " t " and higher. It is seen that $\mathrm{F}_{\mathrm{v}, 3}(\mathrm{t})$ reduces to $\mathrm{F}_{\mathrm{v}, 2}(\mathrm{t})$ if we put

$$
-\ell_{6}=2 L_{9}+\frac{1}{2} \Phi_{0}\left(M_{K}, d\right) .
$$

At $d=4$, this equation gives the relation between renormalized LECs

$$
\ell_{6}^{r}(\mu)=-2 L_{9}^{r}(\mu)+\frac{1}{192 \pi^{2}}\left(\ln \mathrm{~B}_{0} \mathrm{~m}_{\mathrm{s}} / \mu^{2}+1\right) .
$$

Matching at two loops

What about a matching at two-loop order? Some remarks:

- For ℓ_{6} one can extract its strange quark mass dependence at two-loops from the literature

$$
\begin{array}{lll}
2 \text { flavours: } & \mathrm{F}_{\mathrm{v}, 2}(\mathrm{t}), & \text { Gasser, Leutwyler (84) } \\
3 \text { flavours: } & \mathrm{F}_{\mathrm{v}, 3}(\mathrm{t}) & \text { Bijnens, Talavera (02) }
\end{array}
$$

- Despite literature, still an exhaustive work, because two-loop diagrams need to be known analytically in an expansion in $t / B_{0} m_{s}$ [up to logarithms $\ln \left(-t / B_{0} m_{s}\right)$]

Matching at two loops

- One can get the matching for $F, B, \ell_{1}, \ldots, \ell_{6}$ from available two-loop calculations of the various matrix elements.
- But the matching at order p^{6} in this manner requires a tremendous amount of two-loop calculations in $\mathrm{ChPT}_{2,3}$.
- Therefore, we have developed a generic method based on the path integral formulation of ChPT.

Generating functional

Loop expansion in a scalar field theory

- N scalar fields $\phi_{1}, \ldots, \phi_{\mathrm{N}}$ and M external sources $\mathrm{j}=\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}$.
- Action

$$
\mathbf{S}[\phi, \mathbf{j}]=\mathbf{S}_{2}[\phi, \mathbf{j}]+\hbar \mathbf{S}_{4}[\phi, \mathbf{j}]+\hbar^{2} \mathbf{S}_{6}[\phi, \mathbf{j}]+\cdots
$$

- The generating functional for connected Green's functions

$$
\exp (-\mathrm{Z}[\mathbf{j}] / \hbar)=\mathcal{N}^{-1} \int[\mathbf{d} \phi] \exp (-\mathbf{S}[\phi, \mathbf{j}] / \hbar)
$$

- The loop expansion is constructed as an expansion around the solution of the equation of motion:

$$
\phi_{\mathrm{k}}=\phi_{\mathrm{cl}, \mathrm{k}}+\xi_{\mathrm{k}},\left.\quad \frac{\delta \mathrm{~S}_{2}[\phi, \mathrm{j}]}{\delta \phi_{\mathrm{k}}}\right|_{\phi_{\mathrm{k}}=\phi_{\mathrm{c}, \mathrm{k}}}=0 .
$$

- Introduce the abbreviation $\bar{S}_{2 \mathrm{n}}=\mathrm{S}_{2 \mathrm{n}}\left[\phi_{\mathrm{cl}}, \mathrm{j}\right]$.

Generating functional

- Functional integration over fluctuation field ξ gives

$$
\begin{aligned}
\mathbf{Z} & =\mathbf{Z}_{0}+\hbar \mathbf{Z}_{1}+\hbar^{2} \mathbf{Z}_{2}+\mathbf{O}\left(\hbar^{3}\right) \\
\mathbf{Z}_{0} & =\overline{\mathbf{S}}_{2}, \quad \mathbf{Z}_{1}=\overline{\mathbf{S}}_{4}+\frac{1}{2} \operatorname{Tr} \ln \left(\mathbf{D} / \mathbf{D}^{0}\right)
\end{aligned}
$$

$$
Z_{2}=
$$

(a)

(b)

(c)

(d)
(f)

(e)
(g)

- The propagator is the inverse of the differential operator D from quadratic term over ξ.
- Dotted vertices stem from $\overline{\mathrm{S}}_{2}$, crossed vertices from $\overline{\mathrm{S}}_{4}$.
- Diagram (g) represents the tree graphs of $\overline{\mathrm{S}}_{6}$.

Generating functional

Two-flavor limit of the SU(3) generating functional.

- The restricted framework of ChPT_{3} :
- massless light quarks $m_{u}=m_{d}=0$
- SU(2)-type external sources

$$
\mathrm{s}=\mathrm{p}=0, \quad \mathrm{v}_{\mu}=\sum_{1}^{3} \lambda^{\mathrm{a}} \mathrm{v}_{\mu}^{\mathrm{a}}, \quad \mathrm{a}_{\mu}=\sum_{1}^{3} \lambda^{\mathrm{a}} \mathrm{a}_{\mu}^{\mathrm{a}} .
$$

- external momenta are small $\left|\mathrm{p}^{2}\right| \ll \mathrm{B}_{0} \mathrm{~m}_{\mathrm{s}}$
- tree level:

$$
\mathbf{u}=\mathbf{u}^{(2)} \mathbf{e}^{\frac{\mathrm{i}}{2 \mathrm{~F}_{0}} \eta \lambda_{8}}, \quad \mathbf{u}^{(2)}=\left(\begin{array}{ccc}
& & 0 \\
& & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Inserting this ansatz into the EOM yields that also the solution of the η field is trivial, $\eta=0$.

Generating functional

- Loops at order $\hbar \Longrightarrow \frac{1}{2} \operatorname{Tr} \ln \left(D / D^{0}\right)=\frac{1}{2} \ln \left(\operatorname{det} D / \operatorname{det} D^{0}\right)$

Generating functional

- Loops at order $\hbar \Longrightarrow \frac{1}{2} \operatorname{Tr} \ln \left(D / D^{0}\right)=\frac{1}{2} \ln \left(\operatorname{det} D / \operatorname{det} D^{0}\right)$

Determinant:

- Separation of heavy and light fields

$$
\ln \operatorname{det} D=\ln \operatorname{det} D_{\pi}+\ln \operatorname{det} D_{\eta}+\underbrace{\ln \operatorname{det} D_{K}}_{(1)}+\underbrace{\ln \operatorname{det}\left(1-D_{\pi}^{-1} D_{\pi \eta} D_{\eta}^{-1} D_{\eta \pi}\right)}_{(2)}
$$

Generating functional

- Loops at order $\hbar \Longrightarrow \frac{1}{2} \operatorname{Tr} \ln \left(D / D^{0}\right)=\frac{1}{2} \ln \left(\operatorname{det} D / \operatorname{det} D^{0}\right)$

Determinant:

- Separation of heavy and light fields

$$
\text { In det } D=\ln \operatorname{det} D_{\pi}+\ln \operatorname{det} D_{\eta}+\underbrace{\ln \operatorname{det} D_{k}}_{(1)}+\underbrace{\ln \operatorname{det}\left(1-D_{\pi}^{-1} D_{\pi \eta} D_{\eta}^{-1} D_{\eta \pi}\right)}_{(2)}
$$

(1)

(2)

- (1) Short distance expansion with heat-kernel \Longrightarrow manifestly covariant at all steps
- (2) $\pi-\eta$ mixing
[gives no headaches at this order]

Generating functional

- Matching at one-loop order:

$$
\overline{\mathrm{S}}_{\text {tree }}^{(3)}+\frac{1}{2} \ln \frac{\operatorname{det} D}{\operatorname{det} \mathrm{D}^{0}}=\bar{s}_{\text {tree }}^{(2)}+\frac{1}{2} \ln \frac{\operatorname{det} \mathrm{~d}}{\operatorname{det} \mathbf{d}^{0}}
$$

- E.g. for ℓ_{6} :

$$
(-2 \mathrm{~L}_{9} \underbrace{-\frac{1}{12} \int \frac{\mathrm{dq}}{(2 \pi)^{\mathrm{d}}} \frac{1}{\left[\mathrm{M}_{\mathrm{K}}^{2}+\mathbf{q}^{2}\right]^{2}}}_{\text {from } \operatorname{det} \mathrm{D}_{\mathrm{K}}}) \int \mathrm{dx}\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle=\ell_{6} \int \mathrm{dx} \underbrace{\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle}_{\text {chiral operator }}
$$

Generating functional

- Matching at one-loop order:

$$
\overline{\mathrm{S}}_{\text {tree }}^{(3)}+\frac{1}{2} \ln \frac{\operatorname{det} D}{\operatorname{det} \mathrm{D}^{0}}=\bar{s}_{\text {tree }}^{(2)}+\frac{1}{2} \ln \frac{\operatorname{det} \mathrm{~d}}{\operatorname{det} \mathbf{d}^{0}}
$$

- E.g. for ℓ_{6} :

$$
(-2 \mathrm{~L}_{9} \underbrace{-\frac{1}{12} \int \frac{\mathrm{dq}}{(2 \pi)^{\mathrm{d}}} \frac{1}{\left[\mathrm{M}_{\mathrm{K}}^{2}+\mathbf{q}^{2}\right]^{2}}}_{\text {from det } \mathrm{D}_{\mathrm{K}}}) \int \mathrm{dx}\left\langle\mathbf{f}_{+\mu \nu}\left[\mathrm{u}_{\mu}, \mathrm{u}_{\nu}\right]\right\rangle=\ell_{6} \int \mathrm{dx} \underbrace{\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle}_{\text {chiral operator }}
$$

- From which one verifies again

$$
-2 L_{9}^{r}(\mu)+\frac{1}{192 \pi^{2}}\left(\ln B_{0} m_{s} / \mu^{2}+1\right)=\ell_{6}^{r}(\mu)
$$

Generating functional

- Loops at order \hbar^{2}
- The one-particle reducible diagrams with eta and kaons

(c)
- tadpole and butterfly diagrams

Generating functional

- Loops at order \hbar^{2}
- The one-particle reducible diagrams with eta and kaons

(c)
- tadpole and butterfly diagrams
- sunset diagram is more difficult to evaluate
- need to know the propagators with two covariant derivatives
- need to expand the Seeley-coefficients around $x=y$ up to 4th order
- need to express the normal derivatives via the covariant ones (use fixed gauge)
- need to evaluate the tensorial two-loop diagrams of the sunset topology analytically

Generating functional

Results of matching at two-loops

$$
\mathbf{p}^{2} ; \mathbf{p}^{4} \longrightarrow \mathbf{F}, \mathbf{B} ; \quad \ell_{1}, \ldots, \ell_{7}
$$

Gasser, Haefeli, Ivanov, Schmidt PLB 652. (2007) 21
$\mathrm{p}^{6} \longrightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{56}$
Gasser, Haefeli, Ivanov, Schmidt done, to be published
Two examples:

$$
\begin{aligned}
& \mathrm{F}=\mathrm{F}_{0}\left\{1+\mathrm{z}\left[8 \mathrm{~N} \mathrm{~L}_{4}^{r}-\frac{1}{2} \ln \frac{\overline{\mathrm{M}}_{\mathrm{K}}^{2}}{\mu^{2}}\right]+\mathrm{z}^{2}\left[\mathrm{~d}_{\mathrm{F}}-\frac{11}{12} \ln ^{2}\left(\bar{\Xi}_{\mathrm{F}}^{2} / \overline{\mathrm{M}}_{\mathrm{K}}^{2}\right)\right]+\mathcal{O}\left(z^{3}\right)\right\}, \\
& \mathrm{I}_{6}^{r}=\frac{1}{12 \mathrm{~N}}\left(1+\ln \frac{\overline{\mathrm{M}}_{\mathrm{K}}^{2}}{\mu^{2}}\right)-2 \mathrm{~L}_{9}^{r}+\mathrm{z}\left[d_{6}-\frac{1}{8 \mathrm{~N}} \ln ^{2}\left(\Xi_{6}^{2} / \overline{\mathrm{M}}_{\mathrm{K}}^{2}\right)\right]+\mathcal{O}\left(z^{2}\right)
\end{aligned}
$$

The expansion parameter

$$
\mathrm{z}=\frac{\overline{\mathrm{M}}_{\mathrm{K}}^{2}}{\mathrm{NF}_{0}^{2}}, \quad \mathrm{~N}=16 \pi^{2}
$$

where $\overline{\mathbf{M}}_{\mathrm{K}}$ stands for the kaon mass at next-to-leading order at $\mathbf{m}_{\mathbf{u}}=\mathbf{m}_{\mathrm{d}}=0$, and $\mathrm{F}_{\mathbf{0}}$ denotes the pion decay constant at $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=\mathrm{m}_{\mathrm{s}}=0$.

Generating functional

The dimensionless parameters $\mathrm{d}_{\mathrm{F}}, \mathrm{d}_{6}$ and the logarithmic scales $\Xi_{\mathrm{F}}, \Xi_{6}$ are given by

$$
\begin{aligned}
\mathbf{d}_{\mathrm{F}}= & -\frac{841}{1056}+\frac{2}{3} \rho_{1}-\frac{1}{11} \ln \frac{4}{3}+\frac{1}{33}\left(\ln \frac{4}{3}\right)^{2} \\
& +N\left[\left(\frac{5824}{99}+\frac{64}{11} \ln \frac{4}{3}\right) L_{1}^{r}+\left(\frac{884}{99}+\frac{16}{11} \ln \frac{4}{3}\right) L_{2}^{r}\right. \\
& \left.+\left(\frac{4651}{297}+\frac{12}{11} \ln \frac{4}{3}\right) L_{3}-\left(\frac{952}{33}+\frac{72}{11} \ln \frac{4}{3}\right) L_{4}^{r}\right] \\
& +N^{2}\left[\frac{173056}{297}\left(L_{1}^{r}\right)^{2}+\frac{10816}{297}\left(L_{2}^{r}\right)^{2}+\frac{14884}{297}\left(L_{3}\right)^{2}+\frac{7792}{33}\left(L_{4}^{r}\right)^{2}\right. \\
& +\frac{86528}{297} L_{1}^{r} L_{2}^{r}+\frac{101504}{297} L_{1}^{r} L_{3}-\frac{56576}{99} L_{1}^{r} L_{4}^{r}+\frac{25376}{297} L_{2}^{r} L_{3} \\
& -\frac{14144}{99} L_{2}^{r} L_{4}^{r}-\frac{16592}{99} L_{3} L_{4}^{r}+64 L_{4}^{r} L_{5}^{r} \\
& \left.-256 L_{4}^{r} L_{6}^{r}-128 L_{4}^{r} L_{8}^{r}+32 C_{16}^{r}\right],
\end{aligned}
$$

$$
\ln \left(\bar{\Xi}_{\mathrm{F}}^{2} / \overline{\mathrm{M}}_{\mathrm{K}}^{2}\right)=\frac{14}{11}-\frac{2}{11} \ln \frac{4}{3}+N\left[\frac{244}{33} L_{3}+\frac{832}{33} L_{1}^{r}+\frac{208}{33} L_{2}^{r}-\frac{136}{11} L_{4}^{r}\right]-\ln \frac{\overline{\mathrm{M}}_{\mathrm{K}}^{2}}{\mu^{2}}
$$

Generating functional

$$
\begin{aligned}
\mathbf{d}_{6}= & -\frac{1}{N}\left(\frac{163}{288}+\frac{1}{16} \rho_{1}-\frac{1}{24} \ln \frac{4}{3}\right)+2 N\left(\frac{7}{24 N}-2 L_{3}-2 L_{9}^{r}\right)^{2} \\
& +8 N\left(4 C_{13}^{r}+C_{64}^{r}\right), \\
\ln \left(\bar{\Xi}_{6}^{2} / \bar{M}_{K}^{2}\right)= & -\frac{7}{6}-\ln \frac{\bar{M}_{K}^{2}}{\mu^{2}}+8 N\left(L_{3}+L_{9}^{r}\right) .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\rho_{1} & =\sqrt{2} \mathrm{Cl}_{2}(\arccos (1 / 3)) \cong 1.41602 \\
\mathrm{Cl}_{2}(\theta) & =-\frac{1}{2} \int_{0}^{\theta} \mathrm{d} \phi \ln \left(4 \sin ^{2} \frac{\phi}{2}\right)
\end{aligned}
$$

Generating functional

Some applications

- The scale independent LEC

$$
\overline{\mathrm{I}}_{2}=3 \mathrm{NI}_{2}^{r}(\mu)-\ln \frac{\mathrm{M}_{\pi}^{2}}{\mu^{2}}
$$

- It has been determined from a dispersive analysis

$$
\overline{\mathrm{I}}_{2}=4.3 \pm 0.1
$$

- As follows from our formulae, \bar{I}_{2} depend on L_{2}^{r}, L_{3}^{r} and the combination $2 \mathrm{C}_{13}^{r}-\mathrm{C}_{11}^{r}$.

$$
\begin{aligned}
\mathrm{L}_{2}^{\mathrm{r}} & =(+0.73 \pm 0.12) 10^{-3}, \quad \mathrm{~L}_{3}=(-2.35 \pm 0.37) 10^{-3} \\
\mu & =\mathrm{M}_{\rho}=770 \mathrm{MeV}
\end{aligned}
$$

Generating functional

Summary

- The degrees of K and η freeze for

$$
\left|\mathbf{p}^{2}\right| \ll M_{K}^{2}, \quad m_{u}, m_{d} \ll m_{s}
$$

- In this limit, one can establish relations among the 2 flavor vs. the 3 flavor low energy constants

Results of matching at two-loops

chiral order	LECs	
\mathbf{p}^{2}	$\mathbf{F}^{2} \mathbf{B}$	Moussallam (00)
\mathbf{p}^{2}	\mathbf{B}	Kaiser, Schweizer (06)
$\mathbf{p}^{2}, \mathbf{p}^{4}$	$\mathbf{F}, \mathbf{B}, \ell_{1}, \ldots, \ell_{10}$	Gasser, Haefeli, Ivanov, Schmid (07)
\mathbf{p}^{6}	$\mathbf{c}_{1}, \ldots, \mathbf{C}_{56}$	Gasser,Haefeli, Ivanov, Schmid (08)

