TOWARDS COHERENT RG DESCRIPTION OF FRUSTRATED MAGNETS

Yurij Holovatch ICMP, Lviv, Ukraine & JK Universität Linz, Austria In collaboration with

Bertrand Delamotte, Dominique Mouhanna, Matthieu Tissier (Laboratoire de Physique Théorique de la Matière Condensé, Université Paris VI - Pierre et Marie Curie)

Dmytro Ivaneiko (Ivan Franko National University of Lviv, Ukraine)

Supported by

Fonds zur Förderung der wissenschaftlichen Forschung, Project P19583

Plan

- 1. An object: stacked triangular antiferromagnets. Fixed points (FP) picture:
- perturbative RG: no stable FP
- non-perturbative RG: no stable FP
- but: non-perturbative stable FP found within perturbative RG.
- 2. A method: fixed-*d* RG approach.
- 3. Convergence of numerical results and behaviour of FPs with change of d.

Effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = \int d^{d}R \left\{ \frac{1}{2} \left[\mu_{0}^{2} (\phi_{1}^{2} + \phi_{2}^{2}) + (\nabla \phi_{1})^{2} + (\nabla \phi_{2})^{2} \right] + \frac{u_{0}}{4!} \left[\phi_{1}^{2} + \phi_{2}^{2} \right]^{2} + \frac{v_{0}}{4!} \left[(\phi_{1} \cdot \phi_{2})^{2} - \phi_{1}^{2} \phi_{2}^{2} \right] \right\}.$$

Experiments

- there are two groups of incompatible exponents:
 - $N = 2: \text{ i. } \text{CsMnBr}_3, \text{CsNiCl}_3, \text{CsMnI}_3, \text{Tb: } \beta \sim 0.237(4)$ ii. Ho, Dy: $\beta \sim 0.389(7)$ $N = 3: \text{ i. } \mathbf{A}, \mathbf{B}, \text{VCl}_2, \text{VBr}_2: \beta \sim 0.230(8)$ ii. CsNiCl}3, CsMnI_3, C: $\beta \sim 0.287(8)$

• $\eta < 0$ for group i

• scaling relations are violated

MC simulations

 $N = 2 \bullet$ for STA exponents are compatible with group i

- $\eta < 0$ for STA
- 1st order transition for STAR-GLW

- $N=\mathbf{3}$ \bullet for STA β is compatible with group ii
 - $\eta < 0$
 - β differs for different systems
 - 1st order transition for STAR–GLW

Theory: RG analysis

FPs and RG flows of the STA model. Unstable FPs are shown by discs, stable FPs are shown by squares. Three marginal dimensions N_1 , N_2 , N_3 govern the FP picture. Kawamura'88, ...

Marginal dimensions

E.g. pseudo- ε -expansion for N_3 , d = 3 (Yu.H. et al.'04):

 $N_3 = 21.798 - 15.621 \tau + 0.262 \tau^2 - 0.151 \tau^3 - 0.039 \tau^4 - 0.030 \tau^5$, Padé analysis:

	21.798	6.177	6.439	6.288	6.249	6.220
$N_{3} =$	12.698	6.435	6.344	6.236	<u>6.126</u> 1.318	
	9.827	6.290	6.230	<u>6.182</u> 1.751		
	8.463	6.247	<u>6.155</u> 1.453			
	7.695	6.217				
	7.220					

 $N_3 = 6.23(21), N_2 = 1.99(4), N_1 = 1.43(2)$

Recall FP picture:

Therefore: no stable accesible FPs for N = 2, N = 3 at d = 3

FP picture for N = 2, N = 3, current situation

• Perturbative RG: no stable accessible FP found (Antonenko et al.'95, Yu.H. et al.'04, Calabrese et al.'04)

• Non-perturbative RG: no stable accessible FP found (Tissier et al.'00, Delamotte et al.'04)

• BUT: non-perturbative FP found within perturbative RG approach (Calabrese et al.'04, Pelissetto et al.'01)

How to judge whether a FP is not an artifact of the calculation procedure?

Perturbative field-theoretical RG: expansions and fixed-dimension approaches

$$\mathcal{H} = -\frac{J}{2} \sum_{\langle \mathbf{R}, \mathbf{R}' \rangle} \vec{S}_{\mathbf{R}} \vec{S}_{\mathbf{R}'} \quad \longleftrightarrow \quad \mathcal{H}_{\text{eff}} = \int \mathrm{d}^{d} R \left\{ \frac{1}{2} \left((\nabla \phi)^{2} + \mu_{0}^{2} \phi^{2} \right) + \frac{u_{0}}{4!} \phi^{4} \right\},$$

RG flow equation:

$$\frac{\mathrm{d}u}{\mathrm{d}\ln\ell} = \beta(u).$$

Fixed point:

$$\beta(u^*)=0.$$

E.g. β -function in \overline{MS} scheme (known in 5 loops, Kleinert et al.'1991):

$$\beta(u) = -u(\varepsilon - u + 3u^2(3N + 14)/(N + 8) + \cdots).$$

 ε -expansion (Wilson, Fisher'72):

$$u^* = \varepsilon + 3\varepsilon^2(3N + 14)/(N + 8) + \cdots$$

 β -function of the 3d N = 1 model in successive perturbation theory orders ranging from 1 to 5 as shown by the labels in the figures. (a): naïve evaluation, (b): resummation taking into account asymptotic properties of the series.

Analysis of the RG functions for two couplings

• fixed *d* approach:

$$\beta_u(u, v,)|_{d=3} = 0,$$

 $\beta_v(u, v)|_{d=3} = 0$

• resummation:

$$\beta_u^{\text{res}}(u,v) = 0,$$

$$\beta_v^{\text{res}}(u,v) = 0$$

 \bullet peculiarities: resummation with respect to u at fixed v

$$f(u,z) = \sum_{n} f_n(z) u^n, \qquad z = v/u.$$

Borel resummation based on conformal mapping

RG function:
$$f(u) = \sum_{n} f_n u^n$$
, $f_{n \to \infty} \sim (-a)^n n! n^b$

Its Borel-Leroy transform: $B(u) = \sum_{k} \frac{f_n}{\Gamma(k+1+b)} u^k$, $f(u) = \int_{\infty}^{\infty} e^{-t} B(ut) t^b dt$ $u = \frac{4}{a} \frac{w}{(1-w)^2}$ $w = \frac{(1+au)^{1/2}-1}{(1+au)^{1/2}+1}$ Resummed expression for f:

$$f_R(u,z) = \sum_n d_n(\alpha, a(z), b; z) \int_0^\infty dt \ \frac{e^{-t} t^b \left[\omega(ut; z)\right]^n}{\left[1 - \omega(ut; z)\right]^\alpha}$$

with

$$\omega(u;z) = (\sqrt{1 + a(z)u} - 1)/(\sqrt{1 + a(z)u} + 1)$$

Parameters a(z), b, and α are determined by:

•
$$f_{n\to\infty} \sim (-a(z))^n n! n^b$$

•
$$f(u \to \infty, z) \sim u^{\alpha/2}$$
.

Convergence of the numerical results (STA)

The (real part of the) critical exponent ω as a function of b at five (upper curves) and four (lower curves) loops for $\alpha = -0.5, 0$ and 0.5 for the frustrated model (N = 3).

Similar analysis for the cubic model

$$\mathcal{H}_{\rm eff} = \int d^d R \left\{ \frac{1}{2} \left((\nabla \phi)^2 + \mu_0^2 \phi^2 \right) + \frac{u_0}{4!} \phi^4 + \frac{v_0}{4!} \sum_{i=1}^m (\phi^i)^4 \right\},\,$$

Stable FP ${\bf P}$ exists for any $N \leq$ 7.5 and lies in the region of Borel summability u+v>0

Convergence of the numerical results (cubic)

The (real part of the) critical exponent ω as a function of b at five (upper curves) and four (lower curves) loops for $\alpha = 1, 1.5$ and 1.7 for the cubic model (N=2).

Therefore, the convergence of the perturbative numerical results is not enough to judge whether a FP is a genuine one or an artifact of the analysis.

Behaviour of FPs with change of d

The u^* coordinate of the FP P (N = 2, upper curve) and the $v \equiv u_1^*$ coordinate of the FP C_+^{FD} (N = 3, lower curve) as functions of d.

Curves $N_3(d) \equiv N_c(d)$ obtained within the ϵ -expansion (N_c^{ϵ}) , the $\overline{\text{MS}}$ scheme without ϵ -expansion (N_c^{FD}) and the NPRG approach (N_c^{NPRG}) . The resummation parameters for the $\overline{\text{MS}}$ curve are a = 1/2, b = 10 and $\alpha = 1$. The part of the curve N_c^{FD} below S corresponds to a regime of non-Borel-summability.

Lines of zeros of the β -functions for the cubic and frustrated model in 5 loops. No resummation is applied for small ε . Crossing of the lines corresponds to a fixed point. One of the "spurious" fixed points is shown by a square. If a FP survives as a non-Gaussian FP at upper critical dimension, it is a signal that it is a spurious one

How to judge whether a FP is not an artifact of the calculation procedure?

The convergence of the perturbative numerical results is not enough to judge whether a FP is a genuine one or an artifact of the analysis.

If a FP survives as a non-Gaussian FP at upper critical dimension, it is a signal that it is a spurious one.