Multicriticality and dynamic scaling

M.Dudka^{1,2}, R. Folk², Yu. Holovatch^{1,2,3}, G. Moser⁴

¹Institute for Condensed Matter Physics, Lviv, Ukraine
 ²Institute for Theoretical Physics, Johannes Kepler University, Linz Austria
 ³Ivan Franko National University, Lviv, Ukraine
 ⁴Department for Material Research and Physics, Paris Lodron University, Salzburg, Austria

Dubna September 2008

1 Multicritcality: Introduction and Statics

- 2 Dynamics: Introduction
- 3 Multicriticality Model A dynamics
 - 4 Multicriticality Model C dynamics
- Dynamic amplitude ratio and scaling functions of model C

Antiferromagnet in a magnetic field

d

$$H_{AF} = J \sum_{ij} \left[A(S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y}) + S_{i}^{z} S_{j}^{z} \right] - H^{z} \sum_{i} S_{i}^{z}$$

$$H_{singl-ion} = D \sum_{i} (S_{i}^{z})^{2}$$

$$= 3 \qquad n_{\perp} = 2 \qquad n_{\parallel} = 1$$

A=0.8 D/J=0

Monte Carlo simulations: Bannasch, Selke, cond-mat 0807.1019v1; Holtschneider, Selke, Leidl, Phys. Rev. B 72 064443 (2005)

Antiferromagnet in a magnetic field

d

$$H_{AF} = J \sum_{ij} \left[A(S_i^x S_j^x + S_i^y S_j^y) + S_i^z S_j^z \right] - H^z \sum_i S_i^z$$
$$H_{singl-ion} = D \sum_i (S_i^z)^2$$
$$= 3 \qquad n_\perp = 2 \qquad n_\parallel = 1$$

A=0.8 D/J=0.2

Monte Carlo simulations: Bannasch, Selke, cond-mat 0807.1019v1; Holtschneider, Selke, Leidl, Phys. Rev. B 72 064443 (2005)

Multicritcality: Introduction and Statics

Phase diagrams with a bi-, tetracritical or triple point

Lyuksyutov, Pokrovskii, Khmelnitskii, Sov. Phys. JETP **42** 923 (1975); Kosterlitz, Nelson, Fisher, Phys. Rev. B **13** 412 (1976): 1loop

Prudnikov², Fedorenko, JETP Lett. **68**, 950 (1998): 2 loop massive RG scheme, Borel summed ; Calabrese, Pelisetto, Vicari, Phys. Rev. B **67** 054505 (2003): 5 loop *e*-expansion

Vicari, Phys. Rev. B **07** 054505 (2003): 5 loop ε -expansion

4 / 38

Field theoretic functional

<u>ů⊥</u> 41 $\mathit{O}(\mathit{n}_{\parallel}) \oplus \mathit{O}(\mathit{n}_{\perp})$ symmetry

$$\mathcal{H}_{Bi}(x) = \int d^{d}x \left\{ \frac{1}{2} \mathring{r}_{\perp} \vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} + \frac{1}{2} \sum_{\alpha=1}^{n_{\perp}} \nabla_{\alpha} \vec{\phi}_{\perp 0} \cdot \nabla_{\alpha} \vec{\phi}_{\perp 0} \right. \\ \left. + \frac{1}{2} \mathring{r}_{\parallel} \vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} + \frac{1}{2} \sum_{i=1}^{n_{\parallel}} \nabla_{i} \vec{\phi}_{\parallel 0} \cdot \nabla_{i} \vec{\phi}_{\parallel 0} \right. \\ \left. \cdot \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right)^{2} + \frac{\mathring{u}_{\parallel}}{4!} \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right)^{2} + \frac{2\mathring{u}_{\times}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right) \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right) \right\}$$

F., Holovatch, Moser, to appear in Phys. Rev. E (2008); arXiv:0808.0314: 2loop minimal subtraction RG scheme, Borel summed

Flow equations for the static couplings

$$\beta_{u_{\perp}} = -\varepsilon u_{\perp} + \frac{(n_{\perp} + 8)}{6} u_{\perp}^{2} + \frac{n_{\parallel}}{6} u_{\times}^{2} - \frac{(3n_{\perp} + 14)}{12} u_{\perp}^{3} - \frac{5n_{\parallel}}{36} u_{\perp} u_{\times}^{2} - \frac{n_{\parallel}}{9} u_{\times}^{3}$$

$$\beta_{u_{\times}} = -\varepsilon u_{\times} + \frac{(n_{\perp} + 2)}{6} u_{\perp} u_{\times} + \frac{(n_{\parallel} + 2)}{6} u_{\times} u_{\parallel} + \frac{2}{3} u_{\times}^{2} - \frac{(n_{\perp} + n_{\parallel} + 16)}{72} u_{\times}^{3}$$

$$-\frac{(n_{\perp} + 2)}{6} u_{\times}^{2} u_{\perp} - \frac{(n_{\parallel} + 2)}{6} u_{\times}^{2} u_{\parallel} - \frac{5(n_{\perp} + 2)}{72} u_{\perp}^{2} u_{\times} - \frac{5(n_{\parallel} + 2)}{72} u_{\times} u_{\parallel}^{2};$$

$$\beta_{u_{\parallel}} = -\varepsilon u_{\parallel} + \frac{(n_{\parallel} + 8)}{6} u_{\parallel}^{2} + \frac{n_{\perp}}{6} u_{\times}^{2} - \frac{(3n_{\parallel} + 14)}{12} u_{\parallel}^{3} - \frac{5n_{\perp}}{36} u_{\parallel} u_{\times}^{2} - \frac{n_{\perp}}{9} u_{\times}^{3}.$$

No real fixed points at $\varepsilon = 1 \rightarrow$ Borel summation $\rightarrow \beta_{a}^{Borel}$

$$I\frac{du_a}{dI} = \beta_{u_a}^{Borel}(\{u\})$$

Multicritcality: Introduction and Statics

Fixed points and stability exponents

FP	u_{\perp}^{\star}	u_{\times}^{\star}	u_{\parallel}^{\star}
\mathcal{G}	0	0	0
$\mathcal{H}(n_{\perp})$	$u^{\mathcal{H}(n_{\perp})}$	0	0
$\mathcal{H}(n_{\parallel})$	0	0	$u^{\mathcal{H}(n_{\parallel})}$
\mathcal{D}	$u^{\mathcal{H}(n_{\perp})}$	0	$u^{\mathcal{H}(n_{\parallel})}$
$\mathcal{H}(n_{\perp}+n_{\parallel})$	$u^{\mathcal{H}(n_{\perp}+n_{\parallel})}$	$u^{\mathcal{H}(n_{\perp}+n_{\parallel})}$	$u^{\mathcal{H}(n_{\perp}+n_{\parallel})}$
B	$u_{\perp}^{\mathcal{B}}$	$u_{ imes}^{\mathcal{B}}$	$u_{\parallel}^{\mathcal{B}}$
\mathcal{U}_1	$u_{\perp}^{\mathcal{U}_1}$	$u_{\times}^{\mathcal{U}_1}$	$u_{\parallel}^{\dot{\mathcal{U}}_1}$
\mathcal{U}_2	$u_{\perp}^{\overline{\mathcal{U}}_2}$	$u_{ imes}^{\mathcal{U}_2}$	$u_{\parallel}^{\mathcal{U}_2}$

7 / 38

Multicritcality: Introduction and Statics

Regions of stable fixed points

Static 'phase diagram'

Biconical fixed point values

dotted: 1loop KNF dashed: 2loop massive P²F solid: 2loop minimal subtraction FMH

Fixed points and stability exponents for $n_{\parallel}=1$ and $n_{\perp}=2$

Small transient exponent due to nearby stability border line

FP	u_{\perp}^{\star}	$u_{ imes}^{\star}$	u_{\parallel}^{\star}	ω_1	ω_2	ω_3
${\mathcal G}$	0	0	0	-1	-1	-1
$\mathcal{H}(2)$	1.141	0	0	0.581	-0.461	-1
$\mathcal{H}(1)$	0	0	1.315	$^{-1}$	-0.552	0.565
\mathcal{D}	1.141	0	1.315	0.581	-0.014	0.566
$\mathcal{H}(3)$	1.002	1.002	1.002	0.597	0.407	-0.036
B	1.128	0.301	1.287	0.583	0.554	0.01

Table: Fixed points and stability exponents of the $O(1) \oplus O(2)$ model obtained by the Padé-Borel resummation within two loops. Biconical FP \mathcal{B} is stable.

Exponents: Definitions $i = \perp, \parallel$

Relations to the field theoretic ζ -functions

$$\eta_i = -\zeta_{\phi_i}^{\star}$$
$$\gamma_i = \frac{2 + \zeta_{\phi_i}^{\star}}{2 - \zeta_+^{\star}}$$

only one exponent for the correlation lengths!

$$\nu^{-1} = 2 - \zeta_+^* \equiv \nu_+^{-1}$$
$$\gamma_i = \nu(2 - \eta_i)$$

only one exponent for the specific heat!

 $\phi = \frac{2 - \zeta_-^\star}{2 - \zeta_+^\star}$

 $\nu^{-1} \equiv 2 - \zeta^{\star}$

 $\phi = \frac{\nu_+}{\nu}$

$$\alpha = \frac{\epsilon - 2\zeta_+^*}{2 - \zeta_+^*} = 2 - \frac{d}{2 - \zeta_+^*} = 2 - d\nu$$

Scaling laws fulfilled for FP H and B

Exponents: Results

FP	η_{\perp}	η_{\parallel}	γ_{\perp}	γ_{\parallel}	ν_+	ν_{-}	ϕ	α
В	0.037	0.037	1.366	1.366	0.696	0.692	1.144 ¹	-0.088
$\mathcal{H}(3)$	0.040	0.040	1.411	1.411	0.720	0.564	1.275 ¹	-0.160
B	0	0	1.222	1.222	0.611	0.503	1.176	0.167
$\mathcal{H}(3)$	0	0	1.227	1.227	0.611	0.505	1.136	0.167
\mathcal{B}	0.037(5)	0.037(5)	1.37(7)	1.37(7)	0.70(3)	0.56(3)	1.25(1)	-0.10(9)
H(3)	0.0375(45)	0.0375(45)	1.382(9)	1.382(9)	0.7045(55)	0.559(17)	1.259(23)	-0.114(17)

Critical exponents of the $O(1) \oplus O(2)$ model obtained by resummation of the two-loop RG series at fixed d = 3 in different FPs (first two rows of the table). Our data is compared with the results of first order ε -expansion, and resummed fifth order ε -expansion. Numbers, shown in italic were obtained via familiar scaling relations.

¹Pole in the Padé approximant is present.

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling

Multicritcality: Introduction and Statics

Multicritcality: Introduction and Statics

Consequences for the phase diagram

Dynamic models					
conservation of OP	no	yes			
static couplings	model A	model B			
dynamic couplings		model J			
cons. density (CD)	yes				
two time scales;	time scale ra	itio w			
static couplings	model C	model D			
dynamic couplings	model E,G	model H			
both couplings	model F				

Dynamic models					
conservation of OP	no	yes			
static c.	uniaxial AFM	model B			
dynamic c.		model J			
cons. density (CD)	yes				
two time scales; time scale ratio w					
static c.	model C	model D			
dynamic c.	model E,G	model H			
both c.	model F				

Dynamic models					
conservation of OP	no yes				
static c.	uniaxial AFM	uniaxial FM			
dynamic c.	model J				
cons. density (CD)	yes				
two time sca	les; time scale ra	ntio w			
static c.	model C	model D			
dynamic c.	model E,G model H				
both c.	model F				

Dynamic models					
conservation of OP	no yes				
static c.	uniaxial AFM	uniaxial FM			
dynamic c.	isotropic F				
cons. density (CD)	yes				
two time sca	lles; time scale r	atio w			
static c.	model C	model D			
dynamic c.	model E,G	model H			
both c.	model F				

Dynamic models				
conservation of OP	no	yes		
static c.	uniaxial AFM	uniaxial FM		
dynamic c.		isotropic FM		
cons. density (CD)	yes			
two time s	scales; time scale ration	0 W		
static c.	AFM in mag. field	model D		
dynamic c.	model E,G	model H		
both c.	model F			

Dynamic models				
conservation of OP	no	yes		
static c.	uniaxial AFM	uniaxial FM		
dynamic c.		isotropic FM		
cons. density (CD)	r (CD) yes			
two time scales; time scale ratio w				
static c.	AFM in mag. field	model D		
dynamic c.	planar FM, isotropic AFM	model H		
both c.	model F			

Dynamic models					
conservation of OP	no	yes			
static c.	uniaxial AFM	uniaxial FM			
dynamic c.		isotropic FM			
cons. density (CD)	ity (CD) yes				
two ti	two time scales; time scale ratio w				
static c.	AFM in mag. field	model D			
dynamic c.	planar FM, isotropic AFM	gas-liquid			
both c.	model F				

Dynamic models				
conservation of OP	no	yes		
static c.	uniaxial AFM	uniaxial FM		
dynamic c.		isotropic FM		
cons. density (CD) yes				
two time scales; time scale ratio w				
static c.	AFM in mag. field	model D		
dynamic c.	planar FM, isotropic AFM	gas-liquid		
both c.	superfluid He ⁴ ,AFM in mag. field			

Strong and weak dynamic scaling

STRONG SCALING

Fixed point value of the time scale ratio $w^* \neq 0$, finite One dynamical critical exponent $z_{OP} = z_{CD}$; one characteristic frequency ω_c

WEAK SCALING

Fixed point value of the time scale ratio $w^* = 0, \infty$ Two dynamical critical exponents z_{OP} different from z_{CD} ; two characteristic frequencies

Prominent examples for weak dynamic scaling: dynamics at superfluid transition and the magnetic transition of a planar antiferromagnet (models F and E for the case n = 2 in d = 3)

Dynamical critical exponents

STRONG SCALING

$$z = 2 + \zeta_{\Gamma_{OP}}$$

A finite FP value of the (static or dynamic) coupling leads to an exact expression for z Examples: Model C: $z = 2 + \alpha/\nu$ Model E,G: z = 3/2 Model J: $z = (5 - \eta)/2$

WEAK SCALING

 $z_{OP} = 2 + \zeta_{\Gamma_{OP}} \qquad \qquad z_{CD} = 2 + \zeta_{\Gamma_{CD}}$

A finite FP value of the (static or dynamic) coupling leads to an exact expression for $z_{OP} + z_{CD}$ Examples: Model E,G: $z_{OP} + z_{CD} = 3$ Model H: $z_{OP0} + z_{CD} = 5$

Flow equation

$$\ell \frac{dw}{d\ell} = \beta_w(couplings, w)$$

$$\beta_{w}(couplings, w) = w \Big(\zeta_{\Gamma_{OP}}(couplings, w) - \zeta_{\Gamma_{CD}}(couplings, w) \Big)$$

Matching condition for flow paramter ℓ

$$\ell^{2z_{vanHove}} = \left(\frac{\xi_0}{\xi}\right)^{2z_{vanHove}} + \left(\frac{2\omega\xi_0^{z_{vanHove}}}{\Gamma_{OP}(\ell)}\right)^2$$

Dynamic model I

perpendicular components of the alternating magnetization $ec{\phi}_{\perp 0}$

$$\frac{\partial \vec{\phi}_{\perp 0}}{\partial t} = -\overset{\mathbf{\rho}}{\Gamma}_{\perp} \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + g_{\perp} \vec{\phi}_{\perp 0} \times \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + g_m \vec{\phi}_{\perp 0} \times \vec{e}_z \frac{\delta \mathcal{H}_{Bi}}{\delta m_0} + \vec{\theta}_{\phi_{\perp}}$$

z-component of the alternating magnetization $\phi_{\parallel 0}$

$$\frac{\partial \phi_{\parallel 0}}{\partial t} = -\frac{\mathbf{o}}{\Gamma_{\parallel}} \frac{\delta \mathcal{H}_{Bi}}{\delta \phi_{\parallel 0}} + \theta_{\phi_{\parallel}}$$

z-component of the magnetization m_0

$$\frac{\partial m_0}{\partial t} = \frac{\delta}{\lambda} \nabla^2 \frac{\delta \mathcal{H}_{Bi}}{\delta m_0} + g_m \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + \theta_m$$

V. Dohm, H.-K. Janssen, Phys. Rev. Lett. 39 946 (1977) 1loop

Dynamic model II

4

$$\mathcal{H}_{Bi}(x) = \int d^{d}x \left\{ \frac{1}{2} \mathring{r}_{\perp} \vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} + \frac{1}{2} \sum_{\alpha=1}^{n_{\perp}} \nabla_{\alpha} \vec{\phi}_{\perp 0} \cdot \nabla_{\alpha} \vec{\phi}_{\perp 0} \right. \\ \left. + \frac{1}{2} \mathring{r}_{\parallel} \vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} + \frac{1}{2} \sum_{i=1}^{n_{\parallel}} \nabla_{i} \vec{\phi}_{\parallel 0} \cdot \nabla_{i} \vec{\phi}_{\parallel 0} \right. \\ \left. - \frac{\mathring{u}_{\perp}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right)^{2} + \frac{\mathring{u}_{\parallel}}{4!} \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right)^{2} + \frac{2\mathring{u}_{\times}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right) \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right) \\ \left. + \frac{1}{2} \, \mathring{\gamma}_{m\perp} \, m_{0} \vec{\phi}_{\perp 0}^{2} + \frac{1}{2} \, \mathring{\gamma}_{m\parallel} \, m_{0} \phi_{\parallel 0}^{2} - \mathring{h}_{m} \, m_{0} \right\}$$

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling Dubr

Dynamic universality classes

Isotropic antiferromagnet in a magnetic field OP and CD measurable !; neutron scattering

Model F: superfluid transition; OP not measuable $\frac{\partial \vec{\phi}_{\perp 0}}{\partial t} = - \mathring{\Gamma}_{\perp} \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + g_{\perp} \vec{\phi}_{\perp 0} \times \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + g_m \vec{\phi}_{\perp 0} \times \vec{e}_z \frac{\delta \mathcal{H}_{Bi}}{\delta m_0} + \vec{\theta}_{\phi_{\perp}}$ $\frac{\partial m_0}{\partial t} = \stackrel{o}{\lambda} \nabla^2 \frac{\delta \mathcal{H}_{Bi}}{\delta m_0} + g_m \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + \theta_m$ ζ -functions: F., Moser, Phys. Rev. Lett. **89**, 125301 (2002); Erratum **93**, 229902 (2004)

$\begin{aligned} & \frac{\partial \phi_{\parallel 0}}{\partial t} = - \stackrel{\circ}{\Gamma}_{\parallel} \frac{\delta \mathcal{H}_{Bi}}{\delta \phi_{\parallel 0}} + \theta_{\phi_{\parallel}} \\ & \frac{\partial m_0}{\partial t} = \stackrel{\circ}{\lambda} \nabla^2 \frac{\delta \mathcal{H}_{Bi}}{\delta m_0} + + \theta_m \\ & \zeta \text{-functions: F., Moser, Phys. Rev. Lett. 91, 030601 (2003)} \end{aligned}$

Model A

$$\begin{split} \frac{\partial \vec{\phi}_{\perp 0}}{\partial t} &= -\mathring{\Gamma}_{\perp} \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + \vec{\theta}_{\phi_{\perp}} \qquad \frac{\partial \vec{\phi}_{\parallel 0}}{\partial t} = -\mathring{\Gamma}_{\parallel} \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\parallel 0}} + \vec{\theta}_{\phi_{\parallel}} \\ \mathcal{H}_{Bi}(x) &= \int d^d x \left\{ \frac{1}{2} \mathring{r}_{\perp} \vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} + \frac{1}{2} \sum_{\alpha=1}^{n_{\perp}} \nabla_{\alpha} \vec{\phi}_{\perp 0} \cdot \nabla_{\alpha} \vec{\phi}_{\perp 0} \right. \\ &+ \frac{1}{2} \mathring{r}_{\parallel} \vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} + \frac{1}{2} \sum_{i=1}^{n_{\parallel}} \nabla_{i} \vec{\phi}_{\parallel 0} \cdot \nabla_{i} \vec{\phi}_{\parallel 0} \\ &+ \frac{\mathring{u}_{\perp}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right)^2 + \frac{\mathring{u}_{\parallel}}{4!} \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right)^2 + \frac{2\mathring{u}_{\times}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right) \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right) \right\} \end{split}$$

Time scale ratio

$$v = \frac{\Gamma_{\parallel}}{\Gamma_{\perp}}$$

 $v^{\star} \neq 0, \infty$ finite \rightarrow strong dynamic scaling \rightarrow one time scale $v^{\star} = 0, \infty \rightarrow$ weak dynamic scaling \rightarrow two time scales

What is new?

Dohm, Janssen, Phys. Rev. Lett. **39** 946 (1977) used the static one loop order result. The Heisenberg FP was stable, the stability border lines far away! Now the Borel summed two loop order result is used. The biconical FP is stable and the stability border line to the decoupeld FP is nearby!

Dynamical exponents

$$\begin{aligned} \zeta_{\Gamma_{\perp}} &= \frac{n_{\perp} + 2}{36} u_{\perp}^{2} \left(3 \ln \frac{4}{3} - \frac{1}{2} \right) & \text{Transient exponent} \\ &+ \frac{n_{\parallel}}{36} u_{\times}^{2} \left[\frac{2}{v} \ln \frac{2(1+v)}{2+v} + \ln \frac{(1+v)^{2}}{v(2+v)} - \frac{1}{2} \right] & \omega_{v} = \left(\frac{\partial \beta_{v}}{\partial v} \right)_{u_{\times}^{*},v^{\star}} = \\ \zeta_{\Gamma_{\parallel}} &= \frac{n_{\parallel} + 2}{36} u_{\parallel}^{2} \left(3 \ln \frac{4}{3} - \frac{1}{2} \right) &= u_{\times}^{\star 2} \frac{v^{\star}}{18} \left(\frac{n_{\parallel}}{v^{\star}} \ln \frac{2(1+v^{\star})}{2+v^{\star}} + \\ &+ \frac{n_{\perp}}{36} u_{\times}^{2} \left[2v \ln \frac{2(1+v)}{1+2v} + \ln \frac{(1+v)^{2}}{1+2v} - \frac{1}{2} \right] &+ n_{\perp} \ln \frac{2(1+v^{\star})}{1+2v^{\star}} \right) \\ z_{\parallel} = 2 + \zeta_{\parallel}^{\star} & z_{\perp} = 2 + \zeta_{\perp}^{\star} & \omega_{v}^{\mathcal{B}} = 0.004 \\ z_{\parallel}^{\mathcal{B}} = z_{\parallel}^{\mathcal{B}} = z_{\parallel}^{\mathcal{B}} = 2.052 \end{aligned}$$

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling Dubna

Attraction regions

Static couplings

 $\begin{array}{c} 1.4 \\ 1.2 \\ 0.8 \\ 0.6 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.2 \\$

Timescale ratio vBiconical fixed point $v^{\mathcal{B}} = 1.055$

24 / 38

Multicriticality Model A dynamics

Dynamical 'phase diagram'

F., Holovatch, Moser, submitted to Phys. Rev. E (2008)

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling

Dubna September 2008

25 / 38

Multicriticality Model A dynamics

Flow of the time scale ratio v

At the biconical static FP

Starting in the static background

Multicriticality Model A dynamics

Effective dynamic exponents

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling Dubna September 2008

Multicriticality Model C dynamics

Relaxational dynamics including conservation of magnetization

$$\frac{\partial \vec{\phi}_{\perp 0}}{\partial t} = -\overset{o}{\Gamma}_{\perp} \frac{\delta \mathcal{H}_{Bi}}{\delta \vec{\phi}_{\perp 0}} + \vec{\theta}_{\phi_{\perp}} \qquad \frac{\partial \phi_{\parallel 0}}{\partial t} = -\overset{o}{\Gamma}_{\parallel} \frac{\delta \mathcal{H}_{Bi}}{\delta \phi_{\parallel 0}} + \theta_{\phi_{\parallel}}$$
$$\frac{\partial m_{0}}{\partial t} = \overset{o}{\lambda_{m}} \nabla^{2} \frac{\delta \mathcal{H}_{Bi}}{\delta m_{0}} + \theta_{m}$$

$$\begin{aligned} \mathcal{H}_{Bi}(x) &= \int d^{d}x \Biggl\{ \frac{1}{2} \mathring{r}_{\perp} \vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} + \frac{1}{2} \sum_{\alpha=1}^{n_{\perp}} \nabla_{\alpha} \vec{\phi}_{\perp 0} \cdot \nabla_{\alpha} \vec{\phi}_{\perp 0} + \frac{1}{2} \mathring{r}_{\parallel} \vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \\ &+ \frac{1}{2} \sum_{i=1}^{n_{\parallel}} \nabla_{i} \vec{\phi}_{\parallel 0} \cdot \nabla_{i} \vec{\phi}_{\parallel 0} + \frac{\mathring{u}_{\perp}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right)^{2} + \frac{\mathring{u}_{\parallel}}{4!} \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right)^{2} \\ &+ \frac{2\mathring{u}_{\times}}{4!} \left(\vec{\phi}_{\perp 0} \cdot \vec{\phi}_{\perp 0} \right) \left(\vec{\phi}_{\parallel 0} \cdot \vec{\phi}_{\parallel 0} \right) + \frac{1}{2} \mathring{\gamma}_{m\perp} m_{0} \vec{\phi}_{\perp 0}^{2} + \frac{1}{2} \mathring{\gamma}_{m\parallel} m_{0} \phi_{\parallel 0}^{2} - \mathring{h}_{m} m_{0} \Biggr\} \end{aligned}$$

Time scale ratios

$$v = rac{\Gamma_{\parallel}}{\Gamma_{\perp}}$$
 $w_{\parallel} = rac{\Gamma_{\parallel}}{\lambda_m}$ $w_{\perp} = rac{\Gamma_{\perp}}{\lambda_m}$ $rac{w_{\parallel}}{w_{\perp}} = v$

 $v^{\star} \neq 0, \infty$ finite \rightarrow strong dynamic scaling \rightarrow one time scale $v^{\star} = 0, \infty \rightarrow$ weak dynamic scaling \rightarrow two time scales

Dynamical ζ -functions: Fixed points and exponents

$$\zeta_{\Gamma_{\perp}}^{(C)}(\{u\},\{\gamma\},\{w\})) = \zeta_{\Gamma_{\perp}}^{(A)}(u_{\perp},u_{\times},v) + \left[\zeta_{\Gamma_{\perp}}^{(C_{\perp})}(u_{\perp},\gamma_{\perp},w_{\perp}) - \zeta_{\Gamma_{\perp}}^{(A_{\perp})}(u_{\perp})\right] - \frac{n_{\parallel}}{4} \frac{w_{\perp}\gamma_{\perp}\gamma_{\parallel}}{1+w_{\perp}} \left[\frac{2}{3}u_{\times} + \frac{w_{\perp}\gamma_{\perp}\gamma_{\parallel}}{1+w_{\perp}}\right] \left(1 + \ln\frac{2v}{1+v} - \left(1 + \frac{2}{v}\right)\ln\frac{2(1+v)}{2+v}\right) - \zeta_{\Gamma}^{(C)}(\{u\},\{\gamma\},\{w\})) = \zeta_{\Gamma}^{(A)}(u_{\parallel},u_{\times},v) + \left[\zeta_{\Gamma}^{(C_{\parallel})}(u_{\parallel},\gamma_{\parallel},w_{\parallel}) - \zeta_{\Gamma}^{(A_{\parallel})}(u_{\parallel})\right]$$

F., Holovatch, Moser unpublished (2008)

Flow equation for asymmetric couplings γ_{\parallel} and $\gamma_{\perp_{\parallel}}$

$$ec{\gamma} \equiv \left(egin{array}{c} \gamma_{\perp} \ \gamma_{\parallel} \end{array}
ight) \qquad ext{condition} \qquad \gamma_{\perp} = f(\gamma_{\parallel}, \{u\})$$

coupling only to 'magnetic' conserved density not to energy density

$$\ell rac{dec{\gamma}}{d\ell} = \left(\left[-rac{arepsilon}{2} + rac{1}{2}ec{\gamma}^{\mathcal{T}} \cdot \mathbf{B}_{\phi^2}(\{u\}) \cdot ec{\gamma}
ight] \mathbf{1} + \boldsymbol{\zeta}_{\phi^2}^{\mathcal{T}}(\{u\})
ight) \cdot ec{\gamma}$$

In two loop order:

$$\mathbf{B}_{\phi^2}(\{u\}) = \begin{pmatrix} \frac{n_\perp}{2} & 0\\ 0 & \frac{n_\parallel}{2} \end{pmatrix} + \mathcal{O}(\{u^2\})$$

Dohm, Report of the Kernforschungsanlage Jülich Nr. 1578 (1979) There: \mathcal{H} eisenberg - O(n) symmetric fixed point Here: \mathcal{B} iconical - $O(n_{\parallel}) \oplus O(n_{\perp})$ symmetric fixed point! Scaling exponent for m: $2\frac{\phi}{\nu} - 3 = 0.287$

Fixed points for asymmetric couplings γ_{\parallel} and γ_{\perp}

Stable FP: coupling only to 'magnetic' density $\gamma^{\star}_{+} = 0$ $(\zeta^{\star}_{m} = 2\frac{\phi}{\nu} - 3)$

$$\gamma_{\parallel}^{\star 2} = \frac{2\frac{\phi}{\nu} - 3}{\frac{n_{\parallel}}{2} + \frac{n_{\perp}}{2} \left(\frac{[\boldsymbol{\zeta}_{\phi^2}^{\star 2}]_{21}}{\zeta_{-}^{\star} - [\boldsymbol{\zeta}_{\phi^2}^{\star 2}]_{11}}\right)^2} \qquad \gamma_{\perp}^{\star 2} = \left(\frac{[\boldsymbol{\zeta}_{\phi^2}^{\star}]_{21}}{\zeta_{-}^{\star} - [\boldsymbol{\zeta}_{\phi^2}^{\star 2}]_{11}}\right)^2 \gamma_{\parallel}^{\star 2}$$

 $\mathcal{H}\text{eisenberg - O(n) symmetric fixed point: } \frac{[\zeta_{\phi^2}]_{21}}{\zeta_{-}^{\star} - [\zeta_{\phi^2}]_{11}} = -\frac{n_{\parallel}}{n_{\perp}}$ $\mathcal{B}\text{iconical - } O(n_{\parallel}) \oplus O(n_{\perp}) \text{ symmetric fixed point: } \frac{[\zeta_{\phi^2}]_{21}}{\zeta_{-}^{\star} - [\zeta_{\phi^2}]_{11}} = f(\{u^{\star}\})$

Dynamic scaling of the correlation function

Shape functions \mathcal{F}_i Kawasaki functions f_i

$$C_i(\xi, k, \omega, w) = \frac{C_i^{(st)}(\xi, k)}{\omega_i(\xi, k)} \mathcal{F}_i(x, y, w(\ell[\xi, k, \omega])) \qquad i = OP, CD$$

$$x = k\xi$$
, $y_i = \frac{\omega}{\omega_i(\xi, k)}$, $\omega_i = A_i k^{z_i} f_i(x)$

 $w(\ell)$ solution of flow equations or $\sim w^{\star}$

 $\ell \qquad \text{from matching condition ot } \textit{ell} \to \infty$

$$C_{OP}^{(st)}(\xi,k) = k^{-2+\eta} g_{OP}(x) , \qquad C_{CD}^{(st)}(\xi,k) = g_{CD}(x)$$

Dynamic vertex functions i = OP, CD 1loop order

$$\begin{split} \mathring{C}_{i}(\xi,k,\omega) &= -\frac{\mathring{\Gamma}_{\tilde{i}\tilde{i}}(\xi,k,\omega)}{|\mathring{\Gamma}_{i\tilde{i}}(\xi,k,\omega)|^{2}}.\\ \mathring{\tilde{\Gamma}}_{i\tilde{i}}(\xi,k,\omega) &= -i\omega\mathring{\Omega}_{i\tilde{i}}(\xi,k,\omega) + \mathring{\Gamma}_{i}^{st}(\xi,k)\mathring{\Gamma}_{i\tilde{i}}^{(d)}(\xi,k,\omega)\\ \mathring{\Gamma}_{\tilde{i}\tilde{i}}(\xi,k,\omega) &= -2\Re[\mathring{\Gamma}_{i\tilde{i}}^{(d)}(\xi,k,\omega)\mathring{\Omega}_{i\tilde{i}}(\xi,k,\omega)]\\ \mathring{\Omega}_{i\tilde{i}} &= 1 + \mathring{\gamma}\mathring{W}_{i\tilde{i}} \qquad \mathring{\Gamma}_{i\tilde{i}}^{(d)} &= 2\mathring{\Gamma}_{i}k^{a_{i}} + \mathring{g}\mathring{G}_{i\tilde{i}}\\ \text{model A,C} \qquad \text{model E,G}\\ \text{both in model F} \end{split}$$

Model C

$$\begin{aligned} \frac{\partial \vec{\phi}_0}{\partial t} &= -\overset{o}{\Gamma} \frac{\delta H}{\delta \vec{\phi}_0} + \vec{\theta}_{\phi} \qquad \frac{\partial m_0}{\partial t} = \overset{o}{\lambda} \nabla^2 \frac{\delta H}{\delta m_0} + \theta_m \,. \\ H &= \int d^d x \left\{ \frac{1}{2} \overset{o}{\tau} \vec{\phi}_0^2 + \frac{1}{2} \sum_{i=1}^n (\nabla \phi_{i0})^2 + \frac{\overset{o}{\mu}}{\frac{4!}{4!}} \vec{\phi}_0^4 + \frac{1}{2} a_m m_0^2 + \frac{1}{2} \overset{o}{\gamma} m_0 \vec{\phi}_0^2 - \overset{o}{h}_m m_0 \right\} \end{aligned}$$

Time scale ratio $w = \frac{\Gamma}{\lambda}$; borderline to weak scaling at d = 3 is n_c

n = 1, d = 3	$\gamma^{\star 2}$	w*	$z = 2 + \alpha/\nu$	ω_w	n _c
1 loop, ϵ -expan.	2/3	1	2.33	1/6	2
2 loop, ϵ -expan.	0.2	0.56	2.01	0.375	2
2 loop, at $d = 3$	0.35	0.49	2.18	0.045	1.3

Strong dynamic scaling at d = 3 and n = 1 $\gamma^* \neq 0$, finite Model A dynamics at d = 3 and n = 2 $\gamma^* = 0$ Dynamic amplitude ratio and scaling functions of model C

Characteristic frequencies of model C

$$\omega_{i}^{-1}(k,\xi) = C_{i}(\xi,k,\omega=0)/2C_{i}^{\text{st}}(k,\xi).$$

$$f_{OP}(x) = (1+\frac{1}{x^{2}})^{z_{OP}}\left(1-\frac{\zeta_{\Gamma}(w)}{2}(1+a_{OP}(x,w))\right). \quad f_{CD}(x) = \left(1+\frac{1}{x^{2}}\right)^{z_{CD}(w)-2}\left(1-\frac{\zeta_{\lambda}(w)}{2}(1-a_{CD}(x,w))\right)$$

M.Dudka, R. Folk, Yu. Holovatch, G. Moser Multicriticality and dynamic scaling Dubna September 2008 36 / 38

OP Shape functions

$$\mathcal{F}_{OP} = \frac{2}{y^2 + 1} \left(1 + \frac{\zeta_{\Gamma}(w)}{2(y^2 + 1)} \left\{ + (y^2 - 1)A(x, y, w) - 2yB(x, y, w) \right\} \right)$$

Same one loop expressions A and B for model C and E

Amplitude ratio R

$$R = \lim_{\xi \to \infty} \lim_{k \to 0} \left[\frac{\omega_{CD}(k,\xi)}{\omega_{OP}(k,\xi)(k\xi)^2} \right] = \frac{1}{w^*} \left[1 + \frac{\gamma^{*2}}{2} \left(\frac{n}{2} + \frac{w^{*2}}{1 + w^*} \ln \frac{w^*}{1 + w^*} \right) \right]$$

n = 1, d = 3	$\gamma^{\star 2}$	w*	$z = 2 + \alpha/\nu$	ω_w	nc	R
1 loop, ϵ -expan.	2/3	1	2.33	1/6	2	1.05
2 loop, ϵ -expan.	0.2	0.56	2.01	0.375	2	1.79
2 loop, at $d = 3$	0.35	0.49	2.18	0.045	1.3	2.04

Dudka, F., Moser unpublished (2008)

Fixed point values i^* , dynamical exponent z, dynamical

transient exponent ω_w , and amplitude ratio R.

For $n > n_c = 1.3$ the strong scaling fixed point is unstable.

